Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T17:32:50.374Z Has data issue: false hasContentIssue false

8 - Spherically symmetric spacetimes

Published online by Cambridge University Press:  05 March 2013

Thomas W. Baumgarte
Affiliation:
Bowdoin College, Maine
Stuart L. Shapiro
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Turn now from the most general spacetime in full 3 + 1 dimensions to the special case of spherical symmetry. Why should we do this? Actually, spherical systems provide very useful computational, physical and astrophysical insight and working with them serves multiple purposes. The field equations reduce to 1 + 1 dimensions – variables may be written as functions of only two parameters, a time coordinate t and a suitable radial coordinate r – and are much simpler to solve in spherical symmetry. Solving them is a very cost-effective way of probing dynamical spacetimes with strong gravitational fields, including spacetimes with black holes. After all, nonrotating stars and black holes are themselves spherical, so many important aspects of gravitational collapse, including black hole formation and growth, can be studied in spherical symmetry. For example, the numerical study of spherically symmetric collapse to black holes led to the discovery of critical phenomena in black hole formation. The simplification in the equations, together with the reduction in the number of spatial dimensions, means that the system of spherical equations can be solved more quickly, in terms of both human input and computer time, and with much higher accuracy, than the set required for more general spacetimes. As a result, tackling problems in spherical symmetry provides an excellent starting point for learning how to do numerical relativity. It also serves as a convenient laboratory for experimenting with different gauge choices (coordinates) and for generating high precision, test-bed solutions for numerical codes designed to work in higher dimensions.

Type
Chapter
Information
Numerical Relativity
Solving Einstein's Equations on the Computer
, pp. 253 - 310
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×