Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-21T09:22:35.863Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2014

Kurt Jacobs
Affiliation:
University of Massachusetts, Boston
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdo, B., Schackert, F., Hatridge, M., Rigetti, C., and Devoret, M. 2011. Josephson amplifier for qubit readout. Appl. Phys. Lett., 99, 162506.CrossRefGoogle Scholar
Abrikosov, A. A., Gorkov, L. P., and Dzyaloshinski, I. E. 1975. Methods of Quantum Field Theory in Statistical Physics. New York: Dover.Google Scholar
Agarwal, A., and Lang, J. 2005. Foundations of Analog and Digital Electronic Circuits. Burlington: Morgan Kaufmann.Google Scholar
Ahn, C., Doherty, A. C., and Landahl, A. J. 2002. Continuous quantum error correction via quantum feedback control. Phys. Rev. A, 65, 042301.CrossRefGoogle Scholar
Ahn, C., Wiseman, H., and Jacobs, K. 2004. Quantum error correction for continuously detected errors with any number of error channels per qubit. Phys. Rev. A, 70, 024302.CrossRefGoogle Scholar
Alicki, R., Horodecki, M., Horodecki, P., and Horodecki, R. 2004. Thermodynamics of quantum information systems – Hamiltonian description. Open Sys. & Information Dyn., 11, 205–217.CrossRefGoogle Scholar
Altafini, C. 2006. Homogeneous polynomial forms for simultaneous stabilizability of families of linear control systems: A tensor product approach. IEEE T. Automat. Contr., 51, 1566–1571.CrossRefGoogle Scholar
Altafini, C. 2007. Feedback stabilization of isospectral control systems on complex flag manifolds: Application to quantum ensembles. IEEE T. Automat. Contr., 52, 2019–2028.CrossRefGoogle Scholar
Anandan, J., and Aharonov, Y. 1990. Geometry of quantum evolution. Phys. Rev. Lett., 65(Oct), 1697–1700.CrossRefGoogle ScholarPubMed
Anders, F. B., and Schiller, A. 2005. Real-time dynamics in quantum-impurity systems: a time-dependent numerical renormalization-group approach. Phys. Rev. Lett., 95, 196801.CrossRefGoogle ScholarPubMed
Anderson, P. W. 1958. Absence of diffusion in certain random lattices. Phys. Rev., 109(Mar), 1492–1505.CrossRefGoogle Scholar
Ando, T. 1989. Majorizations, doubly stochastic matrices, and comparison of eigenvalues. Linear Algebra Appl., 118, 163–248.CrossRefGoogle Scholar
Andrei, N., Furuya, K., and Lowenstein, J. H. 1983. Solution of the Kondo problem. Rev. Mod. Phys., 55(Apr), 331–402.CrossRefGoogle Scholar
Anetsberger, G., Arcizet, O., Unterreithmeier, Q. P., Rivière, R., Schliesser, A., Weig, E. M., Kotthaus, J. P., and Kippenberg, T. J. 2009. Near-field cavity optomechanics with nanomechanical oscillators. Nature Phys., 5, 909–914.CrossRefGoogle Scholar
Araki, H., and Lieb, E. H. 1970. Entropy inequalities. Commun. Math. Phy., 18(2), 160–170.CrossRefGoogle Scholar
Aravind, P. K. 2002. Bell’s theorem without inequalities and only two distant observers. Found. Phys. Lett., 15, 397–405.CrossRefGoogle Scholar
Aravind, P. K. 2002. A simple demonstration of Bell’s theorem involving two observers and no probabilities or inequalities. Eprint:ArXiv:quant-ph/0206070.
Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M., and Heidmann, A. 2006. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature, 444, 71–74.CrossRefGoogle ScholarPubMed
Armen, M. A., Au, J. K., Stockton, J. K., Doherty, A. C., and Mabuchi, H. 2002. Adaptive homodyne measurement of optical phase. Phys. Rev. Lett., 89, 133602.CrossRefGoogle ScholarPubMed
Armour, A. D., Blencowe, M. P., and Schwab, K. C. 2002. Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. Phys. Rev. Lett., 88, 148301.CrossRefGoogle ScholarPubMed
Arnold, V. I. 1989. Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, Vol. 60). New York: Springer.CrossRefGoogle Scholar
Ashhab, S., and Nori, F. 2010. Control-free control: manipulating a quantum system using only a limited set of measurements. Phys. Rev. A, 82, 062103.CrossRefGoogle Scholar
Aspelmeyer, M., Kippenberg, T. J., and Marquardt, F. 2014. Cavity Optomechanics. Eprint: arXiv:1303.0733.
Astafiev, O., Pashkin, Y. A., Yamamoto, T., Nakamura, Y., and Tsai, J. S. 2004. Single-shot measurement of the Josephson charge qubit. Phys. Rev. B, 69(May), 180507.CrossRefGoogle Scholar
Bagad, V. S. 1978. Linear Systems, Fourier Transforms, and Optics. New York: Wiley-Interscience.Google Scholar
Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S., and Greiner, M. 2009. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature, 462, 74–77.CrossRefGoogle Scholar
Balouchi, A., and Jacobs, K. 2013. Near-optimal measurement-based feedback control for a single qubit. In submission.
Balouchi, A., Nurdin, H., James, M., Strauch, F. W., and Jacobs, K. 2014. Sideband cooling versus measurement-based feedback cooling: a direct comparison in the regime of good control. In preparation.
Barchielli, A. 1993. Stochastic differential-equations and a posteriori states in quantum-mechanics. Int. J. Theor. Phys., 32, 2221.CrossRefGoogle Scholar
Barchielli, A., and Lupieri, G. 2006. Quantum measurements and entropic bounds on information transmission. Quantum Inform. Comput., 6, 16–45.Google Scholar
Bardeen, J., Cooper, L. N., and Schrieffer, J. R. 1957. Microscopic theory of superconductivity. Phys. Rev., 106(Apr), 162–164.CrossRefGoogle Scholar
Bardeen, J., Cooper, L. N., and Schrieffer, J. R. 1957. Theory of superconductivity. Phys. Rev., 108(Dec), 1175–1204.CrossRefGoogle Scholar
Barkeshli, M. M. 2005. Dissipationless information erasure and Landauer’s Principle. Eprint: arXiv:cond-mat/0504323.
Barnett, A. H. 2006. Asymptotic rate of quantum ergodicity in chaotic euclidean billiards. Commun. Pure Appl. Math., 59, 1457–1488.CrossRefGoogle Scholar
Barnum, H. August 2000. Information-disturbance tradeoff in quantum measurement on the uniform ensemble. CSTR-00-013, Department of Computer Science, University of Bristol. Available as Eprint: Arxiv:quant-ph/0205155.
Barnum, H., Nielsen, M. A., and Schumacher, B. 1998. Information transmission through a noisy quantum channel. Phys. Rev. A, 57(Jun), 4153–4175.CrossRefGoogle Scholar
Basché, T., Kummer, S., and Bräuchle, C. 1995. Direct spectroscopic observation of quantum jumps of a single molecule. Nature, 373, 132–134.CrossRefGoogle Scholar
Batchelor, M. T. 2007. The Bethe ansatz after 75 years. Physics Today, 60, 36.CrossRefGoogle Scholar
Bayes, T. 1763. An Essay Towards Solving a Problem in the Doctrine of Chances. Phil. Trans. Roy. Soc., 53, 370.Google Scholar
Beckner, W. 1975. Inequalities in Fourier analysis. Ann. Math., 102, 159–182.CrossRefGoogle Scholar
Belavkin, V. P. 1987. Non-demolition measurement and control in quantum dynamical systems. Pages 331–336 of: Blaquiere, A., Diner, S., and Lochak, G. (eds), Information, Complexity and Control in Quantum Physics. Proceedings of the 4th International Seminar on Mathematical Theory of Dynamical Systems and Microphysics. New York: Springer.Google Scholar
Belavkin, V. P. 1994. Quantum diffusion, measurement and filtering. I. Theor. Prob. Appl., 38(4), 573–585.CrossRefGoogle Scholar
Belavkin, V. P. 1995. Measurement and filtering of quantum diffusion. II. Theor. Prob. Appl., 39(3), 363–378.CrossRefGoogle Scholar
Bell, J. S. 1964. On the Einstein Podolsky Rosen paradox. Physics (N.Y.), 1, 195–200.Google Scholar
Bell, J. S. 1988. Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press.Google Scholar
Bennett, C. H. 1982. The thermodynamics of computation—a review. Int. J. Theor. Phys., 21, 905.CrossRefGoogle Scholar
Bennett, C. H., DiVincenzo, D. P., Fuchs, C. A., Mor, T., Rains, E., Shor, P. W., Smolin, J. A., and Wootters, W. K. 1999. Quantum nonlocality without entanglement. Phys. Rev. A, 59, 1070–1091.CrossRefGoogle Scholar
Bennett, C. H., Shor, P. W., Smolin, J. A., and Thapliyal, A. V. 2002. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theor., 48, 2637.CrossRefGoogle Scholar
Bensoussan, A. 1992. Stochastic Control of Partially Observable Systems. Cambridge University Press.CrossRefGoogle Scholar
Bergeal, N., Vijay, R., Manucharyan, V. E., Siddiqi, I., Schoelkopf, R. J., Girvin, S. M., and Devoret, M. H. 2010. Analog information processing at the quantum limit with a Josephson ring modulator. Nature Phys., 6, 296–302.CrossRefGoogle Scholar
Bergeal, N., Schackert, F., Metcalfe, M., Vijay, R., Manucharyan, V. E., Frunzio, L., Prober, D. E., Schoelkopf, R. J., Girvin, S. M., and Devoret, M. H. 2010. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature, 465, 64–68.CrossRefGoogle ScholarPubMed
Berger, J. O., Bernardo, J. M., and Sun, D. 2009. The formal definition of reference priors. Ann. Statist., 37, 905–938.CrossRefGoogle Scholar
Bergquist, J. C., Hulet, R. G., Itano, W. M., and Wineland, D. J. 1986. Observation of quantum jumps in a single atom. Phys. Rev. Lett., 57, 1699–1702.CrossRefGoogle Scholar
Berry, D. W., and Wiseman, H. M. 2000. Optimal states and almost optimal adaptive measurements for quantum interferometry. Phys. Rev. Lett., 85(Dec), 5098–5101.CrossRefGoogle ScholarPubMed
Berry, D. W., Wiseman, H. M., and Breslin, J. K. 2001. Optimal input states and feedback for interferometric phase estimation. Phys. Rev. A, 63, 053804.CrossRefGoogle Scholar
Berry, D. W., Higgins, B. L., Bartlett, S. D., Mitchell, M. W., Pryde, G. J., and Wiseman, H. M. 2009. How to perform the most accurate possible phase measurements. Phys. Rev. A, 80, 052114.CrossRefGoogle Scholar
Berry, M. V. 1977. Regular and irregular semiclassical wavefunctions. J. Phys. A, 10, 2083–2091.CrossRefGoogle Scholar
Berta, M., Renes, J. M., and Wilde, M. M. 2013. Identifying the information gain of a quantum measurement. arXiv: 1301.1594v1.
Bertet, P., Harmans, C. J. P. M., and Mooij, J. E. 2006. Parametric coupling for superconducting qubits. Phys. Rev. B, 73, 064512.CrossRefGoogle Scholar
Beugeling, W., Moessner, R., and Haque, M. 2013. Finite-size scaling of eigenstate thermalization: Power-law dependence on Hilbert-space dimension. Eprint: arXiv:1308.2862.
Bhatia, R. 1997. Matrix Inequalities. Berlin: Springer.
Bhattacharya, T., Habib, S., and Jacobs, K. 2000. Continuous quantum measurement and the emergence of classical chaos. Phys. Rev. Lett., 85, 4852.CrossRefGoogle ScholarPubMed
Bhattacharya, T., Habib, S., and Jacobs, K. 2003. Continuous quantum measurement and the quantum-to-classical transition. Phys. Rev. A, 67(4), 042103.CrossRefGoogle Scholar
Bialynicki-Birula, I., and Madajczyk, J. 1985. Entropic uncertainty relations for angular distributions. Phys. Lett. A, 108(8), 384–386.CrossRefGoogle Scholar
Bialynicki-Birula, I., and Mycielski, J. 1975. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys., 44, 129.CrossRefGoogle Scholar
Bialynicki-Birula, I. 1984. Entropic uncertainty relations. Phys. Lett. A, 103(5), 253–254.CrossRefGoogle Scholar
Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M., and Schoelkopf, R. J. 2004. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A, 69(6), 062320.CrossRefGoogle Scholar
Blatter, G., Geshkenbein, V. B., and Ioffe, L. B. 2001. Design aspects of superconducting-phase quantum bits. Phys. Rev. B, 63(Apr), 174511.CrossRefGoogle Scholar
Blencowe, M. P., and Buks, E. 2007. Quantum analysis of a linear dc SQUID mechanical displacement detector. Phys. Rev. B, 76, 014511.CrossRefGoogle Scholar
Bohm, D. 1952. A suggested interpretation of the quantum theory in terms of "hidden" variables. I. Phys. Rev., 85(Jan), 166–179.CrossRefGoogle Scholar
Bohm, D. 1952. A suggested interpretation of the quantum theory in terms of "hidden" variables. II. Phys. Rev., 85(Jan), 180–193.CrossRefGoogle Scholar
Boixo, S., Flammia, S. T., Caves, C. M., and Geremia, J. 2007. Generalized limits for single-parameter quantum estimation. Phys. Rev. Lett., 98, 090401.CrossRefGoogle ScholarPubMed
Boixo, S., Datta, A., Flammia, S. T., Shaji, A., Bagan, E., and Caves, C. M. 2008. Quantum-limited metrology with product states. Phys. Rev. A, 77(Jan), 012317.CrossRefGoogle Scholar
Boixo, S., Datta, A., Davis, M. J., Flammia, S. T., Shaji, A., and Caves, C. M. 2008. Quantum metrology: dynamics versus entanglement. Phys. Rev. Lett., 101(Jul), 040403.CrossRefGoogle ScholarPubMed
Bondurant, R. S., and Shapiro, J. H. 1984. Squeezed states in phase-sensing interferometers. Phys. Rev. D, 30, 2548–2556.CrossRefGoogle Scholar
Born, D., Shnyrkov, V. I., Krech, W., Wagner, T., Il’ichev, E., Grajcar, M., Hübner, U., and Meyer, H.-G. 2004. Reading out the state inductively and microwave spectroscopy of an interferometer-type charge qubit. Phys. Rev. B, 70, 180501.CrossRefGoogle Scholar
Bose, S., Jacobs, K., and Knight, P. L. 1997. Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A, 56, 4175.CrossRefGoogle Scholar
Bose, S., Vedral, V., and Knight, P. L. 1998. Multiparticle generalization of entanglement swapping. Phys. Rev. A, 57(Feb), 822–829.CrossRefGoogle Scholar
Bose, S., Jacobs, K., and Knight, P. L. 1999. Scheme to probe the decoherence of a macroscopic object. Phys. Rev. A, 59(May), 3204–3210.CrossRefGoogle Scholar
Boulant, N., Ithier, G., Meeson, P., Nguyen, F., Vion, D., Esteve, D., Siddiqi, I., Vijay, R., Rigetti, C., Pierre, F., and Devoret, M. 2007. Quantum nondemolition readout using a Josephson bifurcation amplifier. Phys. Rev. B, 76, 014525.CrossRefGoogle Scholar
Box, R., and Tiao, G. C. 1973. Bayesian Inference in Statistical Analysis. Sydney: Addison-Wesley.Google Scholar
Boykin, P. O., Mor, T., Roychowdhury, V., Vatan, F., and Vrijen, R. 2002. Algorithmic cooling and scalable NMR quantum computers. Proc. Natl. Acad. Sci., 99, 3388–3393.CrossRefGoogle ScholarPubMed
Braginsky, V. B., Khalili, F. Y., and Thorne, K. S. 1995. Quantum Measurement. Cambridge University Press.Google Scholar
Braginsky, V. B., Vorontsov, Y. I., and Thorne, K. S. 1980. Quantum nondemolition measurements. Science, 209(4456), 547–557.CrossRefGoogle ScholarPubMed
Brakhane, S., Alt, W., Kampschulte, T., Martinez-Dorantes, M., Reimann, R., Yoon, S., Widera, A., and Meschede, D. 2012. Bayesian feedback control of a two-atom spin-state in an atom-cavity system. Phys. Rev. Lett., 109(Oct), 173601.CrossRefGoogle Scholar
Bransden, B., and Joachain, C. 2000. Quantum Mechanics. San Francisco: Benjamin Cummings.Google Scholar
Braunstein, S. L., and Caves, C. M. 1994. Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 72, 3439–3443.CrossRefGoogle ScholarPubMed
Braunstein, S. L., Caves, C. M., and Milburn, G. 1996. Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys., 247(1), 135 – 173.CrossRefGoogle Scholar
Breuer, H.-P., and Petruccione, F. 2007. The Theory of Open Quantum Systems. Oxford University Press.CrossRefGoogle Scholar
Brun, T. A., Percival, I. C., and Schack, R. 1996. Quantum chaos in open systems: a quantum state diffusion analysis. J. Phys. A, 29, 2077.CrossRefGoogle Scholar
Brune, M., Hagley, E., Dreyer, J., Maître, X., Maali, A., Wunderlich, C., Raimond, J. M., and Haroche, S. 1996. Observing the progressive decoherence of the “meter” in a quantum measurement. Phys. Rev. Lett., 77, 4887–4890.CrossRefGoogle Scholar
Buks, E., Arbel-Segev, E., Zaitsev, S., Abdo, B., and Blencowe, M. P. 2008. Quantum nondemolition measurement of discrete Fock states of a nanomechanical resonator. Europhy. Lett., 81, 10001.CrossRefGoogle Scholar
Bulla, R., Tong, N.-H., and Vojta, M. 2003. Numerical renormalization group for bosonic systems and application to the subohmic spin-boson model. Phys. Rev. Lett., 91, 170601.CrossRefGoogle Scholar
Buscemi, F., Hayashi, M., and Horodecki, M. 2008. Global information balance in quantum measurements. Phys. Rev. Lett., 100(May), 210504.CrossRefGoogle ScholarPubMed
Bushev, P., Rotter, D., Wilson, A., Dubin, F., Becher, C., Eschner, J., Blatt, R., Steixner, V., Rabl, P., and Zoller, P. 2006. Feedback cooling of a single trapped ion. Phys. Rev. Lett., 96, 043003.CrossRefGoogle ScholarPubMed
Büttiker, M. 1987. Zero-current persistent potential drop across small-capacitance Josephson junctions. Phys. Rev. B, 36(Sep), 3548–3555.CrossRefGoogle ScholarPubMed
Caldeira, A. O., and Leggett, A. J. 1983. Path integral approach to quantum Brownian motion. Physica A, 121, 587.CrossRefGoogle Scholar
Caldeira, A. O., and Leggett, A. J. 1983. Quantum tunneling in a dissipative system. Ann. Phys., 149, 374–456.CrossRefGoogle Scholar
Carlini, A., Hosoya, A., Koike, T., and Okudaira, Y. 2006. Time-optimal quantum evolution. Phys. Rev. Lett., 96, 060503.CrossRefGoogle ScholarPubMed
Carmichael, H. 1993. An Open Systems Approach to Quantum Optics. Berlin: Springer.Google Scholar
Carmichael, H. J. 1993. Quantum trajectory theory for cascaded open systems. Phys. Rev. Lett., 70(Apr), 2273–2276.CrossRefGoogle ScholarPubMed
Carvalho, A. R. R., and Hope, J. J. 2007. Stabilizing entanglement by quantum-jump-based feedback. Phys. Rev. A, 76, 010301.CrossRefGoogle Scholar
Castellanos-Beltran, M. A., Irwin, K. D, Vale, L. R., Hilton, G. C., and Lehnert, K. W. 2009. IEEE Trans. Appl. Supercond. 19, 944–947.CrossRef
Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R., and Lehnert, K. W. 2008. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Phys., 4, 929–931.CrossRefGoogle Scholar
Caves, C. M. 1981. Quantum-mechanical noise in an interferometer. Phys. Rev. D, 23, 1693–1708.CrossRefGoogle Scholar
Caves, C. M. 1982. Quantum limits on noise in linear amplifiers. Phys. Rev. D, 26(Oct), 1817–1839.CrossRefGoogle Scholar
Caves, C. M. 1985. Defense of the standard quantum limit for free-mass position. Phys. Rev. Lett., 54, 2465–2468.CrossRefGoogle ScholarPubMed
Caves, C. M. 1990. Quantitative limits on the ability of a Maxwell demon to extract work from heat. Phys. Rev. Lett., 64(Apr), 2111–2114.CrossRefGoogle ScholarPubMed
Caves, C. M. 1993. Information and entropy. Phys. Rev. E, 47, 4010–4017.CrossRefGoogle ScholarPubMed
Caves, C. M., Thorne, K. S., Drever, R. W. P., Sandberg, V. D., and Zimmermann, M. 1980. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle. Rev. Mod. Phys., 52(Apr), 341–392.CrossRefGoogle Scholar
Caves, C. M., Fuchs, C. A., and Schack, R. 2002. Quantum probabilities as Bayesian probabilities. Phys. Rev. A, 65(Jan), 022305.CrossRefGoogle Scholar
Chan, J., Alegre, T. P. M., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Groeblacher, S., Aspelmeyer, M., and Painter, O. 2011. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478, 89–92.CrossRefGoogle ScholarPubMed
Changlani, H. J., Kinder, J. M., Umrigar, C. J., and Chan, G. K.-L. 2009. Approximating strongly correlated wave functions with correlator product states. Phys. Rev. B, 80, 245116.CrossRefGoogle Scholar
Chase, B. A., Landahl, A. J., and Geremia, J. M. 2008. Efficient feedback controllers for continuous-time quantum error correction. Phys. Rev. A, 77, 032304.CrossRefGoogle Scholar
Chaturvedi, S., and Shibata, F. 1979. Time-convolutionless projection operator formalism for elimination of fast variables—applications to Brownian-motion. Z. Phys. B, 35, 297.Google Scholar
Chaudhury, S., Merkel, S., Herr, T., Silberfarb, A., Deutsch, I. H., and Jessen, P. S. 2007. Quantum control of the hyperfine spin of a Cs atom ensemble. Phys. Rev. Lett., 99, 163002.CrossRefGoogle Scholar
Chen, C., Dong, D., Lam, J., Chu, J., and Tarn, T. 2012. Control design of uncertain quantum systems with fuzzy estimators. IEEE Trans. Fuzzy Sys., 20(5), 820–831.CrossRefGoogle Scholar
Chia, A., and Wiseman, H. M. 2011. Complete parametrizations of diffusive quantum monitorings. Phys. Rev. A, 84(Jul), 012119.CrossRefGoogle Scholar
Chia, A., and Wiseman, H. M. 2011. Quantum theory of multiple-input–multiple-output Markovian feedback with diffusive measurements. Phys. Rev. A, 84(Jul), 012120.CrossRefGoogle Scholar
Chin, A. W., Rivas, Á., Huelga, S. F., and Plenio, M. B. 2010. Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials. J. Math. Phys., 51, 092109.CrossRefGoogle Scholar
Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M., and Mooij, J. E. 2003. Coherent quantum dynamics of a superconducting flux qubit. Science, 299(5614), 1869–1871.CrossRefGoogle ScholarPubMed
Chirikov, B. V. 1991. A theory of quantum diffusion localization. Chaos, 1(1), 95.CrossRefGoogle ScholarPubMed
Chiruvelli, A., and Jacobs, K. 2008. Rapid-purification protocols for optical homodyning. Phys. Rev. A, 77, 012102.CrossRefGoogle Scholar
Choi, M.-D. 1975. Completely positive linear maps on complex matrices. Linear Algebra Appl., 10, 285.CrossRefGoogle Scholar
Clerk, A. A., Marquardt, F., and Jacobs, K. 2008. Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New J. Phys., 10, 095010.CrossRefGoogle Scholar
Cohen-Tannoudji, C., Dupont-Roc, J., and Grynberg, G. 1997. Photons and Atoms: Introduction to Quantum Electrodynamics. New York: Wiley-VCH.CrossRefGoogle Scholar
Coles, W. J. 1965. Matrix Riccati differential equations. J. Soc. Ind. Appl. Math., 13(3), 627–634.CrossRefGoogle Scholar
Collett, M. J., and Gardiner, C. W. 1984. Squeezing of intracavity and traveling-wave light fields produced in parametric amplification. Phys. Rev. A, 30(3), 1386–1391.CrossRefGoogle Scholar
Collin, E., Ithier, G., Aassime, A., Joyez, P., Vion, D., and Esteve, D. 2004. NMR-like control of a quantum bit superconducting circuit. Phys. Rev. Lett., 93(Oct), 157005.CrossRefGoogle ScholarPubMed
Combes, J., and Jacobs, K. 2006. Rapid state-reduction of quantum systems using feedback control. Phys. Rev. Lett., 96, 010504.CrossRefGoogle ScholarPubMed
Combes, J., Wiseman, H. M., and Jacobs, K. 2008. Rapid measurement of quantum systems using feedback control. Phys. Rev. Lett., 100, 160503.CrossRefGoogle ScholarPubMed
Combes, J., and Wiseman, H. M. 2011. Maximum information gain in weak or continuous measurements of qudits: complementarity is not enough. Phys. Rev. X, 1, 011012.Google Scholar
Cover, T. M., and Thomas, J. A. 1991. Elements of Information Theory. New York: Wiley.
D’Alessandro, D. 2007. Introduction to Quantum Control and Dynamics. Boca Raton, FL: Chapman and Hall/CRC.CrossRefGoogle Scholar
Daley, A. J., Kollath, C., Schollwoeck, U., and Vidal, G. 2004. Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces. J. Stat. Mech. Theor. Exp., P04005.
Dalibard, J., Castin, Y., and Mølmer, K. 1992. A wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett., 68, 580.CrossRefGoogle ScholarPubMed
Dawson, C. M., and Nielsen, M. A. 2006. The Solovay–Kitaev algorithm. Quant. Inf. Comput., 6, 81–95.Google Scholar
de Verdière, Y. C. 1985. Ergodicitèt fonctions propres du Laplacien. Commun. Math. Phys., 102, 497–502.CrossRefGoogle Scholar
Deffner, S., and Jarzynski, C. 2013. Information processing and the second law of thermodynamics: an inclusive, Hamiltonian approach. Eprint: arXiv:1308.5001.
Deutsch, D. 1983. Uncertainty in quantum measurements. Phys. Rev. Lett., 50(Feb), 631–633.CrossRefGoogle Scholar
Deutsch, J. M. 1991. Quantum statistical mechanics in a closed system. Phys. Rev. A, 43, 2046.CrossRefGoogle Scholar
Devetak, I. 2005. The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory, 51, 44–55.CrossRefGoogle Scholar
Devoret, M. H. 1997. Quantum fluctuations in electrical circuits. Pages 351–386 of: Reynaud, S., Giacobino, E., and Zinn-Justin, J. (eds), Quantum Fluctuations, Les Houches Session LVIII. Amsterdam: Elsevier.Google Scholar
Devoret, M. H., Wallraff, A., and Martinis, J. M. 2004. Superconducting qubits: a short review. Eplint: arXiv:cond-mat/0411174.
Devoret, M. H., Martinis, J. M., and Clarke, J. 1985. Measurements of macroscopic quantum tunneling out of the zero-voltage state of a current-biased Josephson junction. Phys. Rev. Lett., 55(Oct), 1908–1911.CrossRefGoogle ScholarPubMed
DeWitt, B. 1973. The many-universes interpretation of quantum mechanics. Pages 167–218 of: DeWitt, B., and Graham, N. (eds), The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press.Google Scholar
D’Helon, C., and James, M. R. 2006. Stability, gain, and robustness in quantum feedback networks. Phys. Rev. A, 73(5), 053803.Google Scholar
DiCarlo, L., Chow, J. M., Gambetta, J. M., Bishop, L. S., Johnson, B. R., Schuster, D. I., Majer, J., Blais, A., Frunzio, L., Girvin, S. M., and Schoelkopf, R. J. 2009. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature, 460, 240–244.Google Scholar
Diedrich, F., Bergquist, J. C., Itano, W. M., and Wineland, D. J. 1989. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett., 62, 403–406.CrossRefGoogle Scholar
Dijkstra, A. G., and Tanimura, Y. 2010. Non-Markovian entanglement dynamics in the presence of system-bath coherence. Phys. Rev. Lett., 104, 250401.CrossRefGoogle ScholarPubMed
Diosi, L. 1986. Stochastic pure state representation for open quantum systems. Phys. Lett. A, 114, 451.CrossRefGoogle Scholar
Dodonov, V. V. 2002. ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years. J. Opt. B, 4(1), R1.CrossRefGoogle Scholar
Doherty, A. C., and Jacobs, K. 1999. Feedback control of quantum systems using continuous state estimation. Phys. Rev. A, 60, 2700–2711.CrossRefGoogle Scholar
Doherty, A. C., and Wiseman, H. M. 2004. Quantum limits to feedback control of linear systems. Page 322 of: Heszler, P. (ed.), Proceedings of the SPIE Symposium on Fluctuations and Noise in Photonics and Quantum Optics II., vol. 5468. Bellingham, WA: SPIE.Google Scholar
Doherty, A. C., Habib, S., Jacobs, K., Mabuchi, H., and Tan, S. M. 2000. Quantum feedback control and classical control theory. Phys. Rev. A, 62, 012105.CrossRefGoogle Scholar
Doherty, A. C., Jacobs, K., and Jungman, G. 2001. Information, disturbance, and Hamiltonian quantum feedback control. Phys. Rev. A, 63, 062306.CrossRefGoogle Scholar
Dolinar, S. 1973. Tech. Rep. 111, Research Laboratory of Electronics. Cambridge: MIT.Google Scholar
Dong, D. Y., Chen, C. L., Chen, Z. H., and Zhang, C. B. 2006. Estimation-based information acquisition in quantum feedback control. Dynam. Cont. Dis. Ser. B, 13, 1204–1208.Google Scholar
Dowling, J. P. 1998. Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope. Phys. Rev. A, 57, 4736–4746.CrossRefGoogle Scholar
Dowling, J. P. 2008. Quantum optical metrology – the lowdown on high-N00N states. Contemp. Phys., 49, 125–143.CrossRefGoogle Scholar
Dubey, S., Silvestri, L., Finn, J., Vinjanampathy, S., and Jacobs, K. 2012. Approach to typicality in many-body quantum systems. Phys. Rev. E, 85, 011141.CrossRefGoogle ScholarPubMed
Duty, T., Gunnarsson, D., Bladh, K., and Delsing, P. 2004. Coherent dynamics of a Josephson charge qubit. Phys. Rev. B, 69(Apr), 140503.CrossRefGoogle Scholar
Dziarmaga, J., Dalvit, D. A. R., and Zurek, W. H. 2004. Conditional quantum dynamics with several observers. Phys. Rev. A, 69(2), 022109.CrossRefGoogle Scholar
Eckern, U. 1986. Quantum mechanics: is the theory applicable to macroscopic objects?Nature, 319, 726.CrossRefGoogle Scholar
Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J., and Painter, O. 2009. Optomechanical crystals. Nature, 462, 78–82.CrossRefGoogle ScholarPubMed
Eichenfield, M., Camacho, R., Chan, J., Vahala, K. J., and Painter, O. 2009. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature, 459, 550.CrossRefGoogle ScholarPubMed
Eisert, J., Cramer, M., and Plenio, M. B. 2010. Colloquium: Area laws for the entanglement entropy. Rev. Mod. Phys., 82, 277–306.CrossRefGoogle Scholar
Esposito, M., and den Broeck, C. V. 2011. Second law and Landauer principle far from equilibrium. EPL (Europhysics Letters), 95(4), 40004.CrossRefGoogle Scholar
(LIGO Scientific Collaboration). J. Abadie et al. 2011. A gravitational-wave observatory operating beyond the quantum shot-noise limit. Nature Phys., 7, 962.Google Scholar
Everett, H. 1957. "Relative state" formulation of quantum mechanics. Rev. Mod. Phys., 29(Jul), 454–462.CrossRefGoogle Scholar
Everitt, M. J. 2007. Recovery of classical chaotic-like behavior in a conservative quantum three-body problem. Phys. Rev. E, 75, 036217.CrossRefGoogle Scholar
Everitt, M. J. 2009. On the correspondence principle: implications from a study of the chaotic dynamics of a macroscopic quantum device. New J. Phys., 11, 013014.CrossRefGoogle Scholar
Everitt, M. J., Clark, T. D., Stiffell, P. B., Ralph, J. F., Bulsara, A., and Harland, C. 2005. Persistent entanglement in the classical limit. New J. Phys., 7, 64.CrossRefGoogle Scholar
Everitt, M. J., Munro, W., and Spiller, T. 2009. The quantum-classical crossover of a field mode. Phys. Rev. E, 79, 032328.Google Scholar
Fabre, C., Pinard, M., Bourzeix, S., Heidmann, A., Giacobino, E., and Reynaud, S. 1994. Quantum-noise reduction using a cavity with a movable mirror. Phys. Rev. A, 49, 1337–1343.CrossRefGoogle ScholarPubMed
Fedorov, A., Feofanov, A. K., Macha, P., Forn-Díaz, P., Harmans, C. J. P. M., and Mooij, J. E. 2010. Strong coupling of a quantum oscillator to a flux qubit at Its symmetry point. Phys. Rev. Lett., 105, 060503.CrossRefGoogle ScholarPubMed
Feingold, M., and Peres, A. 1986. Distribution of matrix elements of chaotic systems. Phys. Rev. A, 34, 591–595.CrossRefGoogle ScholarPubMed
Finn, J., Jacobs, K., and Sundaram, B. 2009. Comment on “nonmonotonicity in the quantum-classical transition: chaos induced by quantum effects”. Phys. Rev. Lett., 102(Mar), 119401.CrossRefGoogle Scholar
Fischer, T., Maunz, P., Pinkse, P. W. H., Puppe, T., and Rempe, G. 2002. Feedback on the motion of a single atom in an optical cavity. Phys. Rev. Lett., 88, 163002.CrossRefGoogle Scholar
Fleming, C. H., and Cummings, N. I. 2011. Accuracy of perturbative master equations. Phys. Rev. E, 83, 031117.CrossRefGoogle ScholarPubMed
Fleming, W. H., and Rishel, R. W. 1982. Deterministic and Stochastic Optimal Control. New York: Springer.CrossRefGoogle Scholar
Fouquieres, P. D., and Schirmer, S. G. 2013. A closer look at quantum control landscapes and their implication for control optimization. Infin. Dimens. Anal., Quantum Probab. Rela. Top., 16(03), 1350021.Google Scholar
Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K., and Lukens, J. E. 2000. Quantum superposition of distinct macroscopic states. Nature, 406, 43.CrossRefGoogle ScholarPubMed
Frunzio, L., Wallraff, A., Schuster, D., Majer, J., and Schoelkopf, R. 2005. Fabrication and characterization of superconducting circuit QED devices for quantum computation. IEEE Trans. Appl. Supercond., 15, 860–863.CrossRefGoogle Scholar
Fuchs, C. A. 1995. Distinguishability and Accessible Information in Quantum Theory. Ph.D. diss. Albuquerque: UNM.Google Scholar
Fuchs, C. A. 1998. Information gain vs. state disturbance in quantum theory. Fortschr. Phys., 46, 535–565.3.0.CO;2-0>CrossRefGoogle Scholar
Fuchs, C. A. 203. Quantum mechanics as quantum information, mostly. J. Mod. Opt., 50, 987.
Fuchs, C. A., and Jacobs, K. 2001. Information-tradeoff relations for finite-strength quantum measurements. Phys. Rev. A, 63, 062305.CrossRefGoogle Scholar
Fuchs, C. A., and van de Graaf, J. 1999. Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inform. Theory, 45, 1216–1227.CrossRefGoogle Scholar
Fuchs, C. A., and Caves, C. M. 1994. Ensemble-dependent bounds for accessible information in quantum mechanics. Phys. Rev. Lett., 73, 3047–3050.CrossRefGoogle ScholarPubMed
Fuchs, C. A., Mermin, N. D., and Schack, R. 2013. An introduction to QBism with an application to the locality of quantum mechanics. Eprint: arXiv:1311.5253.
Fujii, M., Furuta, T., Nakamoto, R., and Takahasi, S.-E. 1997. Operator inequalities and covariance in noncommutative probability. Math. Japon., 46, 317–320.Google Scholar
Gallop, J. C. 1991. SQUIDs, the Josephson Effects and Superconducting Electronics. New York: Taylor & Francis.Google Scholar
Gambetta, J. M., and Wiseman, H. M. 2005. Stochastic simulations of conditional states of partially observed systems, quantum and classical. J. Opt. B: Quantum Semiclass. Opt., 7, S250.CrossRefGoogle Scholar
Gambetta, J., and Wiseman, H. M. 2001. State and dynamical parameter estimation for open quantum systems. Phys. Rev. A, 64, 042105.CrossRefGoogle Scholar
Gambetta, J., Blais, A., Boissonneault, M., Houck, A. A., Schuster, D. I., and Girvin, S. M. 2008. Quantum trajectory approach to circuit QED: quantum jumps and the Zeno effect. Phys. Rev. A, 77, 012112.CrossRefGoogle Scholar
Gardiner, C. W. 1985. Handbook of Stochastic Methods. Berlin: Springer.Google Scholar
Gardiner, C. W. 1993. Driving a quantum system with the output field from another driven quantum system. Phys. Rev. Lett., 70(Apr), 2269–2272.CrossRefGoogle ScholarPubMed
Gardiner, C. W., and Collett, M. J. 1985. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A, 31(6), 3761–3774.CrossRefGoogle ScholarPubMed
Gardiner, C. W., Parkins, A. S., and Zoller, P. 1992. Wave-function quantum stochastic differential equations and quantum-jump simulation methods. Phys. Rev. A, 46(Oct), 4363–4381.CrossRefGoogle ScholarPubMed
Gardiner, C., and Zoller, P. 2010. Quantum Noise. New York: Springer.Google Scholar
Garraway, B. M., and Knight, P. L. 1994. Comparison of quantum-state diffusion and quantum-jump simulations of 2-photon processes in a dissipative environment. Phys. Rev. A, 50, 2548–2563.CrossRefGoogle Scholar
Gaspard, P., and Nagaoka, M. 1999. Slippage of initial conditions for the Redfield master equation. J. Chem. Phys., 111, 5668.CrossRefGoogle Scholar
Genes, C., Vitali, D., Tombesi, P., Gigan, S., and Aspelmeyer, M. 2008. Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A, 77, 033804.CrossRefGoogle Scholar
Genes, C., Vitali, D., Tombesi, P., Gigan, S., and Aspelmeyer, M. 2009. Erratum: Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes [Phys. Rev. A 77, 033804 (2008)]. Phys. Rev. A, 79, 039903.CrossRefGoogle Scholar
Ghose, S., Alsing, P., Deutsch, I., Bhattacharya, T., Habib, S., and Jacobs, K. 2003. Recovering classical dynamics from coupled quantum systems through continuous measurement. Phys. Rev. A, 67, 052102.CrossRefGoogle Scholar
Ghose, S., Alsing, P., Deutsch, I., Bhattacharya, T., and Habib, S. 2004. Transition to classical chaos in a coupled quantum system through continuous measurement. Phys. Rev. A, 69(5), 052116.CrossRefGoogle Scholar
Ghose, S., Alsing, P. M., Sanders, B. C., and Deutsch, I. H. 2005. Entanglement and the quantum-to-classical transition. Phys. Rev. A, 72(1), 014102.CrossRefGoogle Scholar
Gillett, G. G., Dalton, R. B., Lanyon, B. P., Almeida, M. P., Barbieri, M., Pryde, G. J., O’Brien, J. L., Resch, K. J., Bartlett, S. D., and White, A. G. 2010. Experimental feedback control of quantum systems using weak measurements. Phys. Rev. Lett., 104(Feb), 080503.CrossRefGoogle ScholarPubMed
Gilmore, R. 1974. Baker–Campbell–Hausdorff formulas. J. Math Phys., 15, 2090.CrossRefGoogle Scholar
Giovannetti, V., and Vitali, D. 2001. Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion. Phys. Rev. A, 63, 023812.CrossRefGoogle Scholar
Gisin, N. 1984. A model for the macroscopic description and continual observations in quantum mechanics. Phys. Rev. Lett., 52, 1657.Google Scholar
Gleyzes, S., Kuhr, S., Guerlin, C., Bernu, J., Deléglise, S., Hoff, U. B., Brune, M., Raimond, J.-M., and Haroche, S. 2007. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature, 446, 297.CrossRefGoogle ScholarPubMed
Gnutzmann, S., and Haake, F. 1996. Positivity violation and initial slips in open systems. Z. Phys. B, 101, 263.CrossRefGoogle Scholar
Goan, H.-S., and Milburn, G. J. 2001. Dynamics of a mesoscopic qubit under continuous quantum measurement. Phys. Rev. B, 64, 235307.CrossRefGoogle Scholar
Goetsch, P., and Graham, R. 1994. Linear stochastic wave-equations for continuously measured quantum systems. Phys. Rev. A, 50, 5242.CrossRefGoogle ScholarPubMed
Gogolin, C., Müller, M. P., and Eisert, J. 2011. Absence of thermalization in nonintegrable systems. Phys. Rev. Lett., 106(Jan), 040401.CrossRefGoogle ScholarPubMed
Goldstein, S., Lebowitz, J. L., Tumulka, R., and Zanghì, N. 2006. Canonical typicality. Phys. Rev. Lett., 96, 050403.CrossRefGoogle ScholarPubMed
Goldstein, S., Lebowitz, J. L., Mastrodonato, C., Tumulka, R., and Zanghi, N. 2010. Approach to thermal equilibrium of macroscopic quantum systems. Phys. Rev. E, 81(1), 011109.CrossRefGoogle ScholarPubMed
Goldstein, S., Lebowitz, J. L., Mastrodonato, C., Tumulka, R., and Zanghì, N. 2010. Normal typicality and von Neumann’s quantum ergodic theorem. Proc. Roy. Soc. A, 466, 3203–3224.CrossRefGoogle Scholar
Gorkov, L. P. 1959. Microscopic derivation of the Ginzburg–Landau equations in the theory of superconductivity. J. Exp. Theor. Phys. (U.S.S.R.), 36, 1918–1923.Google Scholar
Gough, J., and James, M. 2009. Quantum feedback networks: Hamiltonian formulation. Commun. Mathe. Phys., 287(3), 1109–1132.CrossRefGoogle Scholar
Gough, J., and James, M. 2009. The series product and its application to quantum feedforward and feedback networks. IEEE Trans. Automat. Contr., 54(11), 2530–2544.CrossRefGoogle Scholar
Gozzi, F., Swiech, A., and Zhou, X. Y. 2005. A corrected proof of the stochastic verification theorem within the framework of viscosity solutions. SIAM J. Control. Optim., 43, 2009–2019.CrossRefGoogle Scholar
Grajcar, M., Izmalkov, A., van der Ploeg, S. H. W., Linzen, S., Plecenik, T., Wagner, T., Hübner, U., Il’ichev, E., Meyer, H.-G., Smirnov, A. Y., Love, P. J., Maassen van den Brink, A., Amin, M. H. S., Uchaikin, S., and Zagoskin, A. M. 2006. Four-qubit device with mixed couplings. Phys. Rev. Lett., 96, 047006.CrossRefGoogle ScholarPubMed
Grajcar, M., Liu, Y.-x., Nori, F., and Zagoskin, A. M. 2006. Switchable resonant coupling of flux qubits. Phys. Rev. B, 74(Nov), 172505.CrossRefGoogle Scholar
Greenbaum, B. D., Jacobs, K., and Sundaram, B. 2007. Conditions for the quantum-to-classical transition: trajectories versus phase-space distributions. Phys. Rev. E, 76, 036213.CrossRefGoogle ScholarPubMed
Griffith, E. J., Hill, C. D., Ralph, J. F., Wiseman, H. M., and Jacobs, K. 2007. Rapid state purification in a superconducting charge qubit. Phys. Rev. B, 75, 014511.Google Scholar
Gröblacher, S., Hertzberg, J. B., Vanner, M. R., Cole, G. D., Gigan, S., Schwab, K. C., and Aspelmeyer, M. 2009. Demonstration of an ultra-cold micro-optomechanical oscillator in a cryogenic cavity. Nature Phys., 5, 485–488.CrossRefGoogle Scholar
Gröblacher, S., Hammerer, K., Vanner, M. R., and Aspelmeyer, M. 2009. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature, 460, 724–727.CrossRefGoogle ScholarPubMed
Groenewold, H. J. 1971. A problem of information gain by quantum measurements. Int. J. Theor. Phys., 4, 327.CrossRefGoogle Scholar
Grudinin, I. S., Lee, H., Painter, O., and Vahala, K. J. 2010. Phonon laser action in a tunable two-level system. Phys. Rev. Lett., 104(Feb), 083901.CrossRefGoogle Scholar
Guerlin, C., Bernu, J., Deléglise, S., Sayrin, C., Gleyzes, S., Kuhr, S., Brune, M., Raimond, J.-M., and Haroche, S. 2007. Progressive field-state collapse and quantum non-demolition photon counting. Nature, 448, 889–893.CrossRefGoogle ScholarPubMed
Guhr, T., Müller-Groeling, A., and Weidenmüller, H. A. 1998. Random matrix theories in quantum physics: common concepts. Phys. Rep., 299, 189–425.CrossRefGoogle Scholar
Habib, S. 2004. Gaussian dynamics is classical dynamics. Eprint: avXiv: quant-ph/0406011.
Habib, S., and Ryne, R. D. 1995. Symplectic calculation of Lyapunov exponents. Phys. Rev. Lett., 74(1), 70–73.CrossRefGoogle ScholarPubMed
Habib, S., Jacobs, K., and Shizume, K. 2006. Emergence of chaos in quantum systems far from the classical limit. Phys. Rev. Lett., 96, 010403.CrossRefGoogle ScholarPubMed
Hall, M. J. W. 1995. Information exclusion principle for complementary observables. Phys. Rev. Lett., 74, 3307.CrossRefGoogle ScholarPubMed
Hall, M. J. W. 1997. Quantum information and correlation bounds. Phys. Rev. A, 55, 100–113.CrossRefGoogle Scholar
Hamerly, R., and Mabuchi, H. 2012. Advantages of coherent feedback for cooling quantum oscillators. Phys. Rev. Lett., 109(Oct), 173602.CrossRefGoogle ScholarPubMed
Hamerly, R., and Mabuchi, H. 2013. Coherent controllers for optical-feedback cooling of quantum oscillators. Phys. Rev. A, 87(Jan), 013815.CrossRefGoogle Scholar
Hasegawa, H.-H., Ishikawa, J., Takara, K., and Driebe, D. 2010. Generalization of the second law for a nonequilibrium initial state. Phys. Lett. A, 374, 1001–1004.CrossRefGoogle Scholar
Hatridge, M., Vijay, R., Slichter, D. H., Clarke, J., and Siddiqi, I. 2011. Dispersive magnetometry with a quantum limited SQUID parametric amplifier. Phys. Rev. B, 83(Apr), 134501.CrossRefGoogle Scholar
Haus, H. A., and Mullen, J. A. 1962. Quantum noise in linear amplifiers. Phys. Rev., 128, 2407–2413.CrossRefGoogle Scholar
Hegerfeldt, G. C., and Wilser, T. S. 1992. Ensemble or individual system, collapse or no collapse: a description of a single radiating atom. Pages 104–115 of: Doebner, H. D., Scherer, W., and Schroeck, F. (eds), Classical and Quantum Systems, Proceedings of the Second International Wigner Symposium. Singapore: World Scientific.Google Scholar
Heller, E. J., and Landry, B. R. 2007. Statistical properties of many-particle eigenfunctions. J. Phys. A, 40, 9259–9274.CrossRefGoogle Scholar
Hellwig, K., and Kraus, K. 1970. Operations and Measurements. II. Commun. Math. Phys., 16, 142.CrossRefGoogle Scholar
Helstrom, C. W. 1976. Quantum Detection and Estimation Theory. Mathematics in Science and Egineering, vol. 123. New York: Academic Press.Google Scholar
Hepp, K. 1972. Quantum theory of measurement and macroscopic observables. Helv. Phys. Acta, 45, 237.Google Scholar
Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M., and Pryde, G. J. 2007. Entanglement-free Heisenberg-limited phase estimation. Nature, 450, 393–396.CrossRefGoogle ScholarPubMed
Hill, C., and Ralph, J. F. 2007. Weak measurement and rapid state reduction in entangled bipartite quantum systems. New J. Phys, 9, 151.CrossRefGoogle Scholar
Hillery, M., O’Connel, R. F., Scully, M. O., and Wigner, E. P. 1984. Distribution-functions in physics—fundamentals. Phys. Rep., 106, 121–167.CrossRefGoogle Scholar
Hills, R. L. 1996. Power From Wind: A History of Windmill Technology. Cambridge University Press.Google Scholar
Hime, T., Reichardt, P. A., Plourde, B. L. T., Robertson, T. L., Wu, C.-E., Ustinov, A. V., and Clarke, J. 2006. Solid-state qubits with current-controlled coupling. Science, 314(5804), 1427–1429.CrossRefGoogle ScholarPubMed
Hirschman, I. I. 1957. A note on entropy. Am. J. Math., 79, 152–156.CrossRefGoogle Scholar
Hofheinz, M., Wang, H., Ansmann, M., Bialczak, R. C., Lucero, E., Neeley, M., O’Connell, A. D., Sank, D., Wenner, J., Martinis, J. M., and Cleland, A. N. 2009. Synthesizing arbitrary quantum states in a superconducting resonator. Nature, 459, 546–549.CrossRefGoogle Scholar
Holevo, A. S. 1973. Statistical decision theory for quantum systems. J. Multivariate Anal., 3, 337.CrossRefGoogle Scholar
Holevo, A. S. 1973. Statistical problems in quantum physics. Pages 104–119 of: Maruyama, G., and Prokhorov, J. V. (eds), Proceedings of the Second Japan–USSR Symposium on Probability Theory, Lecture Notes in Mathematics, vol. 330. Berlin: Springer.Google Scholar
Holevo, A. S. 1982. Probabitistic and Statistical Aspects of Quantum Theory. Amsterdam: North-Holland.Google Scholar
Holevo, A. S. 2002. On entanglement-assisted classical capacity. J. Math. Phys., 43, 4326.CrossRefGoogle Scholar
Holevo, A. S. 2012. Information capacity of quantum observable. Prob. Inf. Transmiss, 48, 1.Google Scholar
Holland, M. J., and Burnett, K. 1993. Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett., 71(Aug), 1355–1358.CrossRefGoogle ScholarPubMed
Hong, C. K., Ou, Z. Y., and Mandel, L. 1987. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett., 59(Nov), 2044–2046.CrossRefGoogle ScholarPubMed
Hopkins, A., Jacobs, K., Habib, S., and Schwab, K. 2003. Feedback cooling of a nanomechanical resonator. Phys. Rev. B, 68, 235328.CrossRefGoogle Scholar
Horn, A. 1954. Doubly stochastic matrices and the diagonal of a rotation matrix. Am. J. Math., 76, 620–630.CrossRefGoogle Scholar
Horn, R. A., and Johnson, C. R. 1985. Matrix Analysis. Cambridge University Press.CrossRefGoogle Scholar
Horodecki, R., Horodecki, P., Horodecki, M., and Horodecki, K. 2009. Quantum entanglement. Rev. Mod. Phys., 81, 865–942.CrossRefGoogle Scholar
Horowitz, J. M., and Parrondo, J. M. R. 2011. Thermodynamic reversibility in feedback processes. EPL (Europhysics Letters), 95(1), 10005.CrossRefGoogle Scholar
Horowitz, J. M., Sagawa, T., and Parrondo, J. M. R. 2013. Imitating chemical motors with optimal information motors. Phys. Rev. Lett., 111(Jul), 010602.CrossRefGoogle ScholarPubMed
Houck, A. A., Schuster, D. I., Gambetta, J. M., Schreier, J. A., Johnson, B. R., Chow, J. M., Frunzio, L., Majer, J., Devoret, M. H., Girvin, S. M., and Schoelkopf, R. J. 2007. Generating single microwave photons in a circuit. Nature, 449, 328–331.CrossRefGoogle Scholar
Howard, R. M. 1872. Theory of Heat. New York: D. Appleton & Co.Google Scholar
Howard, R. M. 2002. Principles of Random Signal Analysis and Low Noise Design: The Power Spectral Density and its Applications. New York: Wiley-IEEE Press.CrossRefGoogle Scholar
Hu, B. L., Paz, J. P., and Zhang, Y. 1992. Quantum Brownian motion in a dissipative environment: exact master equation with nonlocal dissipation and colored noise. Phys. Rev. D, 45, 2843.CrossRefGoogle Scholar
Hudson, R. L. 1974. When is the Wigner quasi-probability density non-negative?Rep. Math. Phys., 6, 249.CrossRefGoogle Scholar
Hudson, R. L., and Parthasarathy, K. R. 1984. Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys., 93, 301–323.CrossRefGoogle Scholar
Hughston, L. P., Jozsa, R., and Wootters, W. K. 1993. A complete characterization of quantum ensembles having a given density-matrix. Phys. Lett. A, 183, 14.CrossRefGoogle Scholar
Hush, M. R., Carvalho, A. R. R., and Hope, J. J. 2009. Scalable quantum field simulations of conditioned systems. Eprint: arXiv:0901.4391.
Ishizaki, A., and Tanimura, Y. 2005. Quantum dynamics of system strongly coupled to low-temperature colored noise bath: reduced hierarchy equations approach. J. Phys. Soc. Jpn., 74, 3131.CrossRefGoogle Scholar
Ishizaki, A., and Fleming, G. R. 2009. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J. Chem. Phys., 130, 234111.Google ScholarPubMed
Ivonovic, I. D. 1981. Geometrical description of quantal state determination. J. Phys. A: Mathe. Gen., 14(12), 3241.CrossRefGoogle Scholar
Iwasawa, K., Makino, K., Yonezawa, H., Tsang, M., Davidovic, A., Huntington, E., and Furusawa, A. 2013. Quantum-limited mirror-motion estimation. Phys. Rev. Lett., 111, 163602.CrossRefGoogle ScholarPubMed
Jacobs, K. 1998. Topics in Quantum Measurement and Quantum Noise. Ph.D. diss. London: Imperial College.Google Scholar
Jacobs, K. 2003. Efficient measurements, purification, and bounds on the mutual information. Phys. Rev. A, 68, 054302.CrossRefGoogle Scholar
Jacobs, K. 2003. How to project qubits faster using quantum feedback. Phys. Rev. A, 67, 030301(R).CrossRefGoogle Scholar
Jacobs, K. 2005. Deriving Landauer’s erasure principle from statistical mechanics. Eprint: arXiv:quant-ph/0512105.
Jacobs, K. 2006. A bound on the mutual information, and properties of entropy reduction, for quantum channels with inefficient measurements. J. Math. Phys., 47, 012102.CrossRefGoogle Scholar
Jacobs, K. 2007. Feedback control for communication with non-orthogonal states. Quantum Inform. Comput., 7, 127–138.Google Scholar
Jacobs, K. 2010. Stochastic Processes for Physicists: Understanding Noisy Systems. Cambridge University Press.CrossRefGoogle Scholar
Jacobs, K. 2010. Wave-function Monte Carlo method for simulating conditional master equations. Phys. Rev. A, 81, 042106.CrossRefGoogle Scholar
Jacobs, K., and Knight, P. L. 1998. Linear quantum trajectories: applications to continuous projection measurements. Phys. Rev. A, 57, 2301.CrossRefGoogle Scholar
Jacobs, K., and Lund, A. P. 2007. Feedback control of nonlinear quantum systems: a rule of thumb. Phys. Rev. Lett., 99, 020501.CrossRefGoogle ScholarPubMed
Jacobs, K., and Steck, D. A. 2011. Engineering quantum states, nonlinear measurements and anomalous diffusion by imaging. New J. Phys., 13, 013016.CrossRefGoogle Scholar
Jacobs, K., and Wiseman, H. M. 2005. An entangled web of crime: Bell’s theorem as a short story. Am. J. Phys., 73, 932.CrossRefGoogle Scholar
Jacobs, K., Tombesi, P., Collett, M. J., and Walls, D. F. 1994. Quantum-nondemolition measurement of photon number using radiation pressure. Phys. Rev. A, 49, 1961–1966.CrossRefGoogle ScholarPubMed
Jacobs, K., Tittonen, I., Wiseman, H. M., and Schiller, S. 1999. Quantum noise in the position measurement of a cavity mirror undergoing Brownian motion. Phys. Rev. A, 60, 538.CrossRefGoogle Scholar
Jacobs, K., Lougovski, P., and Blencowe, M. P. 2007. Continuous measurement of the energy eigenstates of a nanomechanical resonator without a nondemolition probe. Phys. Rev. Lett., 98, 147201.CrossRefGoogle ScholarPubMed
Jacobs, K., Jordan, A. N., and Irish, E. K. 2008. Energy measurements and preparation of canonical phase states of a nanomechanical resonator. Europhys. Lett., 82, 18003.CrossRefGoogle Scholar
Jacobs, K., Silvestri, L., Dunjko, V., and Olshanii, M. 2011. Typical, finite baths as a means of exact simulation of open quantum systems. Phys. Rev. E. In press.
Jacobs, K. 2009. Second law of thermodynamics and quantum feedback control: Maxwell’s demon with weak measurements. Phys. Rev. A, 80(Jul), 012322.CrossRefGoogle Scholar
Jacobs, K. 2010. Feedback control using only quantum back-action. New J. Phys., 12(4), 043005.CrossRefGoogle Scholar
Jacobs, K. 2012. Quantum measurement and the first law of thermodynamics: The energy cost of measurement is the work value of the acquired information. Phys. Rev. E, 86, 040106.CrossRefGoogle ScholarPubMed
Jacobs, K., and Landahl, A. J. 2009. Engineering giant nonlinearities in quantum nanosystems. Phys. Rev. Lett., 103(Aug), 067201.CrossRefGoogle ScholarPubMed
Jacobs, K., and Lougovski, P. 2007. Emergent quantum jumps in a nano-electro-mechanical system. J. Phys. A: Math. Theor., 40, F987–F993.CrossRefGoogle Scholar
Jacobs, K., Tian, L., and Finn, J. 2009. Engineering superposition states and tailored probes for nanoresonators via open-loop control. Phys. Rev. Lett., 102, 057208.CrossRefGoogle ScholarPubMed
Jacobs, K., Finn, J., and Vinjanampathy, S. 2011. Real-time feedback control of a mesoscopic superposition. Phys. Rev. A, 83, 041801.CrossRefGoogle Scholar
Jaekel, M. T., and Reynaud, S. 1990. Quantum limits in interferometric measurements. Europhys. Lett., 13(4), 301–306.CrossRefGoogle Scholar
James, M. R. 2004. Risk-sensitive optimal control of quantum systems. Phys. Rev. A, 69, 032108.CrossRefGoogle Scholar
James, M., and Gough, J. 2010. Quantum dissipative systems and feedback control design by interconnection. IEEE Trans. Automat. Contr., 55(8), 1806–1821.CrossRefGoogle Scholar
Jayich, A. M., Sankey, J. C., Zwickl, B. M., Yang, C., Thompson, J. D., Girvin, S. M., Clerk, A. A., Marquardt, F., and Harris, J. G. E. 2008. Dispersive optomechanics: a membrane inside a cavity. New J. Phys., 10(9), 095008.CrossRefGoogle Scholar
Jaynes, E. T. 1957. Information theory and statistical mechanics II. Phys. Rev., 108, 171.CrossRefGoogle Scholar
Jaynes, E. T. 2003. Probability Theory: The Logic of Science. Cambridge University Press.CrossRefGoogle Scholar
Jeffreys, H. 1931. Scientific Inference. Cambridge University Press.Google Scholar
Jeffreys, H. 1931. Theory of Probability. Oxford: Clarendon Press.Google Scholar
Jeffreys, H. 1932. On the theory of errors and least squares. Proc. Roy. Soc., 138, 48–55.CrossRefGoogle Scholar
Johnson, J. 1928. Thermal agitation of electricity in conductors. Phys. Rev., 32, 97.CrossRefGoogle Scholar
Jones, K. R. W. 1994. Fundamental limits upon the measurement of state vectors. Phys. Rev. A, 50(Nov), 3682–3699.CrossRefGoogle ScholarPubMed
Joos, E., and Zeh, H. D. 1985. The emergence of classical properties through interaction with the environment. Z. Phys. B, 59, 223–243.CrossRefGoogle Scholar
Jordan, A. N., and Korotkov, A. N. 2006. Qubit feedback and control with kicked quantum nondemolition measurements: a quantum Bayesian analysis. Phys. Rev. B, 74(Aug), 085307.CrossRefGoogle Scholar
Jordan, A. N., and Korotkov, A. N. 2010. Uncollapsing the wavefunction by undoing quantum measurements. Contemp. Phys., 51(2), 125–147.CrossRefGoogle Scholar
Jozsa, R. 1995. Fidelity for mixed quantum states. J. Mod. Opt., 41, 2315.Google Scholar
Jozsa, R., Robb, D., and Wootters, W. K. 1994. Lower bound for accessible information in quantum mechanics. Phys. Rev. A, 49, 668–677.CrossRefGoogle ScholarPubMed
Jungmam, G. 2011. Private communication.
Kac, M. 1959. Statistical Independence in Probability, Analysis, and Number Theory. New York: Wiley.Google Scholar
Kalman, R., and Bucy, R. 1961. New results in linear filtering and prediction theory. J. Basic Eng., 82, 34–45.Google Scholar
Kapulkin, A., and Pattanayak, A. K. 2008. Nonmonotonicity in the quantum-classical transition: chaos induced by quantum effects. Phys. Rev. Lett., 101(Aug), 074101.CrossRefGoogle ScholarPubMed
Karbach, M., and Müller, G. 1997. Introduction to the Bethe ansatz I. Comput. Phys., 11, 36–43.CrossRefGoogle Scholar
Kenyon, I. 2011. The Light Fantastic: A Modern Introduction to Classical and Quantum Optics. Oxford University Press.Google Scholar
Kerckhoff, J., and Lehnert, K. W. 2012. Superconducting microwave multivibrator produced by coherent feedback. Phys. Rev. Lett., 109(Oct), 153602.CrossRefGoogle ScholarPubMed
Kerckhoff, J., Nurdin, H. I., Pavlichin, D. S., and Mabuchi, H. 2010. Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction. Phys. Rev. Lett., 105(Jul), 040502.CrossRefGoogle ScholarPubMed
Kerckhoff, J., Andrews, R. W., Ku, H. S., Kindel, W. F., Cicak, K., Simmonds, R. W., and Lehnert, K. W. 2013. Tunable coupling to a mechanical oscillator circuit using a coherent feedback network. Phys. Rev. X, 3, 021013.Google Scholar
Khalili, F. Y. 2010. Optimal configurations of filter cavity in future gravitational-wave detectors. Phys. Rev. D, 81, 122002.CrossRefGoogle Scholar
Kieu, T. D. 2004. The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett., 93, 140403.CrossRefGoogle ScholarPubMed
Kimble, H. J., Levin, Y., Matsko, A. B., Thorne, K. S., and Vyatchanin, S. P. 2001. Conversion of conventional gravitational-wave interferometers into quantum non-demolition interferometers by modifying their input and/or output optics. Phys. Rev. D, 65, 022002.CrossRefGoogle Scholar
Kinion, D., and Clarke, J. 2008. Microstrip superconducting quantum interference device radio-frequency amplifier: Scattering parameters and input coupling. Appl. Phys. Lett., 92, 172503.CrossRefGoogle Scholar
Kirk, D. E. 2004. Optimal Control Theory: An Introduction. Mineola: Dover.Google Scholar
Kleckner, D., and Bouwmeester, D. 2006. Sub-kelvin optical cooling of a micromechanical resonator. Nature, 444, 75.CrossRefGoogle ScholarPubMed
Kleiner, R., Koelle, D., Ludwig, F., and Clarke, J. 2004. Superconducting quantum interference devices: state of the art and applications. Proc. IEEE, 92(10), 1534–1548.CrossRefGoogle Scholar
Kloeden, P. E., and Platen, E. 1992. Numerical Solution of Stochastic Differential Equations. Berlin: Springer.CrossRefGoogle Scholar
Koch, J., Yu, T. M., Gambetta, J., Houck, A. A., Schuster, D. I., Majer, J., Blais, A., Devoret, M. H., Girvin, S. M., and Schoelkopf, R. J. 2007. Charge-insensitive qubit design derived from the Cooper-pair box. Phys. Rev. A, 76, 042319.CrossRefGoogle Scholar
Koch, M., Sames, C., Kubanek, A., Apel, M., Balbach, M., Ourjoumtsev, A., Pinkse, P. W., and Rempe, G. 2010. Feedback cooling of a single neutral atom. Phys. Rev. Lett., 105, 173003.CrossRefGoogle ScholarPubMed
Kok, P., and Lovett, B. W. 2010. Introduction to Optical Quantum Information Processing. Cambridge University Press.CrossRefGoogle Scholar
Kok, P., Munro, W. J., Nemoto, K., Ralph, T. C., Dowling, J. P., and Milburn, G. J. 2007. Linear optical quantum computing. Rev. Mod. Phys., 79, 135–174.CrossRefGoogle Scholar
Korotkov, A.N. 2001. Selective quantum evolution of a qubit state due to continuous measurement. Phys. Rev. B, 63, 115403.CrossRefGoogle Scholar
Korotkov, A. N., and Jordan, A. N. 2006. Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett., 97(Oct), 166805.CrossRefGoogle ScholarPubMed
Kraus, K. 1983. States, Effects and Operations: Fundamental Notions of Quantum Theory. Lecture Notes in Physics, Vol. 190. Berlin: Springer.CrossRefGoogle Scholar
Kraus, K. 1987. Complementary observables and uncertainty relations. Phys. Rev. D, 35(May), 3070–3075.CrossRefGoogle ScholarPubMed
Kubanek, A., Koch, M., Sames, C., Ourjoumtsev, A., Pinkse, P. W. H., Murr, K., and Rempe, G. 2009. Photon-by-photon feedback control of a single-atom trajectory. Nature, 462, 898.CrossRefGoogle ScholarPubMed
Kumar, S., and DiVincenzo, D. P. 2010. Exploiting Kerr cross nonlinearity in circuit quantum electrodynamics for nondemolition measurements. Phys. Rev. B, 82(Jul), 014512.CrossRefGoogle Scholar
LaHaye, M. D., Buu, O., Camarota, B., and Schwab, K. C. 2004. Approaching the quantum limit of a nanomechanical resonator. Science, 304, 74.CrossRefGoogle ScholarPubMed
Laloe, F. 2001. Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems. Am. J. Phy., 69(6), 655–701.CrossRefGoogle Scholar
Landau, L. 1995. Das Dämpfungsproblem in der Wallenmechanik. Z. Phys., 45, 430–441.CrossRefGoogle Scholar
Landauer, R. 1961. Irreversibility and heat generation in the computing process. IBM J. Res. Dev., 5, 183.CrossRefGoogle Scholar
Lanford, O. E., and Robinson, D. 1968. Mean entropy of states in quantum-statistical mechanics. J. Math. Phys., 9, 1120–1125.CrossRefGoogle Scholar
Langevin, P. 1908. On the theory of Brownian motion. C. R. Acad. Sci. (Paris), 146, 530–533.Google Scholar
Law, C. K. 1994. Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium. Phys. Rev. A, 49, 433–437.CrossRefGoogle Scholar
Law, C. K. 1995. Interaction between a moving mirror and radiation pressure: a Hamiltonian formulation. Phys. Rev. A, 51, 2537–2541.CrossRefGoogle ScholarPubMed
Law, C. K., and Eberly, J. H. 1996. Arbitrary control of a quantum electromagnetic field. Phys. Rev. Lett., 76, 1055.CrossRefGoogle ScholarPubMed
Leff, H. S., and Rex, A. F. 1994. Entropy of measurement and erasure—Szilard’s membrane model revisited. Am. J. Phys., 62, 994–1000.CrossRefGoogle Scholar
Leff, H. S., and Rex, A. F. (eds). 2002. Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing. New York: CRC Press.Google Scholar
Leff, H., and Rex, A. (eds). 1990. Maxwell’s Demon: Entropy, Information, Computing. New Jersey: Princeton University Press.CrossRefGoogle Scholar
Leggett, A. J. 1980. Macroscopic quantum systems and the quantum theory of measurement. 1980. Prog. Theor. Phys. (Suppl.) 69, 80; made freely available by Oxford Journals at . Accessed 11 April 2014.CrossRefGoogle Scholar
Leggett, A. J., and Garg, A. 1985. Quantum mechanics versus macroscopic realism: is the flux there when nobody looks?Phys. Rev. Lett., 54(Mar), 857–860.CrossRefGoogle ScholarPubMed
Lehmann, E. L., and Casella, G. 1998. Theory of Point Estimation. New York: Springer.Google Scholar
Leibfried, D., Blatt, R., Monroe, C., and Wineland, D. 2003. Quantum dynamics of single trapped ions. Rev. Mod. Phys., 75, 281–324.CrossRefGoogle Scholar
Leifer, M. S., and Spekkens, R. W. 2013. Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A, 88, 052130.CrossRefGoogle Scholar
Leroux, I. D., Schleier-Smith, M. H., and Vuletić, V. 2010. Implementation of cavity squeezing of a collective atomic spin. Eprint: arXiv:0911.4065.
Levitin, L. B. 1995. Optimal quantum measurements for two pure and mixed states. Pages 439–448 of: Belavkin, V. P., Hirota, O., and Hudson, R. L. (eds), Quantum Communications and Measurement. New York: Plenum.Google Scholar
Levy, B. C. 2008. Principles of Signal Detection and Parameter Estimation. New York: Springer.CrossRefGoogle Scholar
Li, H., Shabani, A., Sarovar, M., and Whaley, K. B. 2013. Optimality of qubit purification protocols in the presence of imperfections. Phys. Rev. A, 87(Mar), 032334.CrossRefGoogle Scholar
Lieb, E. H. 1973. Convex trace functions and the Wigner-Yanase-Dyson conjective. Ad. Math., 11, 267.Google Scholar
Lieb, E. H., and Ruskai, M. B. 1973. A fundamental property of quantum-mechanical entropy. Phys. Rev. Lett., 30, 434.CrossRefGoogle Scholar
Lieb, E. H., and Ruskai, M. B. 1973. Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys., 14, 1938.CrossRefGoogle Scholar
Likharev, K. K. 1986. Dynamics of Josephson Junctions and Circuits. New York: CRC Press.Google Scholar
Lindblad, G. 1976. On the generators of quantum dynamical semigroups. Commun. Math. Phys., 48, 119.CrossRefGoogle Scholar
Linden, N., Popescu, S., Short, A. J., and Winter, A. 2009. Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E, 79, 061103.CrossRefGoogle ScholarPubMed
Lloyd, S., Landahl, A. J., and Slotine, J.-J. E. 2004. Universal quantum interfaces. Phys. Rev. A, 69, 012305.CrossRefGoogle Scholar
Lloyd, S. 1995. Almost any quantum logic gate is universal. Phys. Rev. Lett., 75, 346–349.CrossRefGoogle ScholarPubMed
Lloyd, S. 2000. Coherent quantum feedback. Phys. Rev. A, 62(Jul), 022108.CrossRefGoogle Scholar
Ludwig, G. 1968. Attempt of an axiomatic foundation of quantum mechanics and more general theories III. Commun. Math. Phys., 9, 1.CrossRefGoogle Scholar
Luis, A., and Sánchez-Soto, L. L. 1992. Multimode quantum analysis of an interferometer with moving mirrors. Phys. Rev. A, 45, 8228–8234.CrossRefGoogle ScholarPubMed
Maalouf, A., and Petersen, I. 2011. Coherent H∞ control for a class of annihilation operator linear quantum systems. IEEE Trans. Automat. Contr., 56(2), 309–319.CrossRefGoogle Scholar
Maassen, H., and Uffink, J. B. M. 1988. Generalized entropic uncertainty relations. Phys. Rev. Lett., 60, 1103.CrossRefGoogle ScholarPubMed
Mabuchi, H., and Wiseman, H. M. 1998. Retroactive quantum jumps in a strongly coupled atom-field system. Phys. Rev. Lett., 81, 4620.CrossRefGoogle Scholar
Mabuchi, H. 2008. Coherent-feedback quantum control with a dynamic compensator. Phys. Rev. A, 78(Sep), 032323.CrossRefGoogle Scholar
Mabuchi, H. 2011. Coherent-feedback control strategy to suppress spontaneous switching in ultralow-power optical bistability. Appl. Phys. Lett., 98, 193109.CrossRefGoogle Scholar
Machnes, S., Plenio, M. B., Reznik, B., Steane, A. M., and Retzker, A. 2010. Superfast laser cooling. Phys. Rev. Lett., 104(May), 183001.CrossRefGoogle ScholarPubMed
Machnes, S., Sander, U., Glaser, S. J., de Fouquières, P., Gruslys, A., Schirmer, S., and Schulte-Herbrüggen, T. 2011. Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework. Phys. Rev. A, 84, 022305.CrossRefGoogle Scholar
Machnes, S., Cerrillo, J., Aspelmeyer, M., Wieczorek, W., Plenio, M. B., and Retzker, A. 2012. Pulsed laser cooling for cavity optomechanical resonators. Phys. Rev. Lett., 108(Apr), 153601.CrossRefGoogle ScholarPubMed
Majer, J., Chow, J. M., Gambetta, J. M., Koch, J., Johnson, B. R., Schreier, J. A., Frunzio, L., Schuster, D. I., Houck, A. A., Wallraff, A., Blais, A., Devoret, M. H., Girvin, S. M., and Schoelkopf, R. J. 2007. Coupling superconducting qubits via a cavity bus. Nature, 449, 443.CrossRefGoogle Scholar
Majer, J. B., Paauw, F. G., ter Haar, A. C. J., Harmans, C. J. P. M., and Mooij, J. E. 2005. Spectroscopy on two coupled superconducting flux qubits. Phys. Rev. Lett., 94, 090501.CrossRefGoogle ScholarPubMed
Makhlin, Y., Schon, G., and Shnirman, A. 1999. Josephson-junction qubits with controlled couplings. Nature, 398, 305–307.CrossRefGoogle Scholar
Makhlin, Y., Schön, G., and Shnirman, A. 2001. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys., 73, 357.CrossRefGoogle Scholar
Makri, N. 1995. Numerical path integral techniques for long time dynamics of quantum dissipative systems. J. Math. Phys., 36, 2430.CrossRefGoogle Scholar
Makri, N., and Makarov, D. E. 1995. Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory. J. Chem. Phys., 102, 4600.Google Scholar
Makri, N., and Makarov, D. E. 1995. Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology. J. Chem. Phys., 102, 4611.Google Scholar
Mancini, S. 2006. Markovian feedback to control continuous variable entanglement. Phys. Rev. A, 73, 010304(R).CrossRefGoogle Scholar
Mancini, S., Man’ko, V. I., and Tombesi, P. 1997. Ponderomotive control of quantum macroscopic coherence. Phys. Rev. A, 55, 3042–3050.CrossRefGoogle Scholar
Mancini, S., Vitali, D., and Tombesi, P. 1998. Optomechanical cooling of a macroscopic oscillator by homodyne feedback. Phys. Rev. Lett., 80, 688.CrossRefGoogle Scholar
Mandal, D., and Jarzynski, C. 2012. Work and information processing in a solvable model of Maxwell’s demon. PNAS, 109, 11641.CrossRefGoogle Scholar
Mandal, D., Quan, H. T., and Jarzynski, C. 2013. Maxwell’s refrigerator: an exactly solvable model. Phys. Rev. Lett., 111(Jul), 030602.CrossRefGoogle Scholar
Margolus, N., and Levitin, L. B. 1998. The maximum speed of dynamical evolution. Physica D: Nonlinear Phenomena, 120, 188–195.CrossRefGoogle Scholar
Maroney, O. J. E. 2009. Generalizing Landauer’s principle. Phys. Rev. E, 79, 031105.CrossRefGoogle ScholarPubMed
Marquardt, F., Chen, J. P., Clerk, A. A., and Girvin, S. M. 2007. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett., 99, 093902.CrossRefGoogle ScholarPubMed
Marshall, A. W., and Olkin, I. 1979. Inequalities: Theory of Majorization and Its Applications. New York: Academic Press.Google Scholar
Marshall, W., Simon, C., Penrose, R., and Bouwmeester, D. 2003. Towards quantum superpositions of a mirror. Phys. Rev. Lett., 91(Sep), 130401.CrossRefGoogle ScholarPubMed
Marti, K. H., Bauer, B., Reiher, M., Troyer, M., and Verstraete, F. 2010. Complete-graph tensor network states: a new fermionic wave function ansatz for molecules. New J. Phys., 12(10), 103008.CrossRefGoogle Scholar
Martin, I., and Zurek, W. H. 2007. Measurement of energy eigenstates by a slow detector. Phys. Rev. Lett., 98, 120401.CrossRefGoogle ScholarPubMed
Martinis, J. M., Devoret, M. H., and Clarke, J. 1985. Energy-level quantization in the zero-voltage state of a current-biased Josephson junction. Phys. Rev. Lett., 55(Oct), 1543–1546.CrossRefGoogle ScholarPubMed
Martinis, J. M., Nam, S., Aumentado, J., and Urbina, C. 2002. Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett., 89(Aug), 117901.CrossRefGoogle Scholar
Massel, F., Heikkilä, T. T., Pirkkalainen, J.-M., Cho, S. U., Saloniemi, H., Hakonen, P. J., and Sillanpää, M. A. 2011. Microwave amplification with nanomechanical resonators. Nature, 480, 351–354.CrossRefGoogle ScholarPubMed
Massel, F., Cho, S. U., Pirkkalainen, J.-M., Hakonen, P. J., Heikkilä, T. T., and Sillanpää, M. A. 2012. Multimode circuit optomechanics near the quantum limit. Nature Commun., 3, 987.CrossRefGoogle ScholarPubMed
Maurer, P. C., Kucsko, G., Latta, C., Jiang, L., Yao, N. Y., Bennett, S. D., Pastawski, F., Hunger, D., Chisholm, N., Markham, M., Twitchen, D. J., Cirac, J. I., and Lukin, M. D. 2012. Room-temperature quantum bit memory exceeding one second. Science, 336, 1283–1286.CrossRefGoogle ScholarPubMed
Maxwell, J. C. 1868. On governors. Proc. Roy. Soc. London, 16, 270–283.CrossRefGoogle Scholar
Maybeck, P. S. 1982. Stochastic Models, Estimation and Control. Vols. I and II. New York: Academic Press.Google Scholar
McDermott, R., Simmonds, R. W., Steffen, M., Cooper, K. B., Cicak, K., Osborn, K. D., Oh, S., Pappas, D. P., and Martinis, J. M. 2005. Simultaneous state measurement of coupled Josephson phase qubits. Science, 307, 1299.Google Scholar
McDonough, R. N., and Whalen, A. D. 1995. Detection of Signals in Noise. New York: Academic Press.Google Scholar
McKenzie, K., Shaddock, D. A., McClelland, D. E., Buchler, B. C., and Lam, P. K. 2002. Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection. Phys. Rev. Lett., 88, 231102.Google Scholar
Mehmet, M., Vahlbruch, H., Lastzka, N., Danzmann, K., and Schnabel, R. 2010. Observation of squeezed states with strong photon-number oscillations. Phys. Rev. A, 81(Jan), 013814.CrossRefGoogle Scholar
Mehta, M. L. 1967. Random Matrices and the Statistical Theory of Energy Levels. New York: Academic Press.Google Scholar
Mehta, M. L. 2004. Random Matrices. Boston: Academic Press.Google Scholar
Mermin, N. D. 1993. Hidden variables and the two theorems of John Bell. Rev. Mod. Phys., 65(Jul), 803–815.CrossRefGoogle Scholar
Metcalfe, M., Boaknin, E., Manucharyan, V., Vijay, R., Siddiqi, I., Rigetti, C., Frunzio, L., Schoelkopf, R. J., and Devoret, M. H. 2007. Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier. Phys. Rev. B, 76(Nov), 174516.CrossRefGoogle Scholar
Metz, J., Trupke, M., and Beige, A. 2006. Robust entanglement through macroscopic quantum jumps. Phys. Rev. Lett., 97, 040503.CrossRefGoogle ScholarPubMed
Mirrahimi, M., Rouchon, P., and Turinici, G. 2005. Lyapunov control of bilinear Schrödinger equations. Automatica, 41, 1987–1994.CrossRefGoogle Scholar
Mirrahimi, M., Turinici, G., and Rouchon, P. 2005. Reference trajectory tracking for locally designed coherent quantum controls. J. Phys. Chem. A, 109, 2631–2637.CrossRefGoogle ScholarPubMed
Mirrahimi, M., and vanHandel, R. 2007. Stabilizing feedback controls for quantum systems. SIAM J. Control Optim., 46, 445–467.CrossRefGoogle Scholar
Monroe, C., Meekhof, D. M., King, B. E., and Wineland, D. J. 1996. A “Schrödinger cat” superposition state of an atom. Science, 272(5265), 1131–1136.CrossRefGoogle ScholarPubMed
Montinaro, M., Mehlin, A., Solanki, H. S., Peddibhotla, P., Mack, S., Awschalom, D. D., and Poggio, M. 2012. Feedback cooling of cantilever motion using a quantum point contact transducer. Appl. Phys. Lett., 101, 133104.CrossRefGoogle Scholar
Mooij, J. E., Orlando, T. P., Levitov, L. S., Tian, L., van der Wal, C. H., and Lloyd, S. 1999. Josephson persistent-current qubit. Science, 285, 1036.CrossRefGoogle ScholarPubMed
Moore, K. W., and Rabitz, H. 2012. Exploring constrained quantum control landscapes. J. Chem. Phys., 137, 134113.CrossRefGoogle ScholarPubMed
Morrow, N. V., Dutta, S. K., and Raithel, G. 2002. Feedback control of atomic motion in an optical lattice. Phys. Rev. Lett., 88, 093003.CrossRefGoogle Scholar
Motzoi, F., Gambetta, J. M., Rebentrost, P., and Wilhelm, F. K. 2009. Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett., 103, 110501.CrossRefGoogle ScholarPubMed
Movshovich, R., Yurke, B., Kaminsky, P. G., Smith, A. D., Silver, A. H., Simon, R. W., and Schneider, M. V. 1990. Observation of zero-point noise squeezing via a Josephson-parametric amplifier. Phys. Rev. Lett., 65, 1419–1422.CrossRefGoogle Scholar
Murch, K. W., Moore, K. L., Gupta, S., and Stamper-Kurn, D. M. 2008. Observation of quantum-measurement back-action with an ultracold atomic gas. Nature Phys., 4, 561–564.CrossRefGoogle Scholar
Murg, V., Verstraete, F., and Cirac, J. I. 2007. Variational study of hard-core bosons in a two-dimensional optical lattice using projected entangled pair states. Phys. Rev. A, 75, 033605.CrossRefGoogle Scholar
Nagourney, W., Sandberg, J., and Dehmelt, H. 1986. Shelved optical electron amplifier: observation of quantum jumps. Phys. Rev. Lett., 56, 2797–2799.CrossRefGoogle ScholarPubMed
Naik, A., Buu, O., LaHaye, M. D., Armour, A. D., Clerk, A. A., Blencowe, M. P., and Schwab, K. C. 2006. Cooling a nanomechanical resonator with quantum back-action. Nature, 443, 193–196.CrossRefGoogle Scholar
Nakajima, S. 1958. On quantum theory of transport phenomena. Prog. Theor. Phys., 20, 948.CrossRefGoogle Scholar
Nakamura, Y., Pashkin, Y. A., and Tsai, J. S. 1999. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature, 398, 786.CrossRefGoogle Scholar
Narnhofer, H., and Thirring, W. 1985. From relative entropy to entropy. Fizika, 17, 257–265.Google Scholar
Natarajan, C. M., Tanner, M. G., and Hadfield, R. H. 2012. Superconducting nanowire single-photon detectors: physics and applications. Supercondr. Sci. and Technolo., 25, 063001.Google Scholar
Nelson, R. J., Weinstein, Y., Cory, D., and Lloyd, S. 2000. Experimental demonstration of fully coherent quantum feedback. Phys. Rev. Lett., 85, 3045–3048.CrossRefGoogle ScholarPubMed
Neuenhahn, C., and Marquardt, F. 2012. Thermalization of interacting fermions and delocalization in Fock space. Phys. Rev. E, 85, 060101.CrossRefGoogle ScholarPubMed
Neumann, P., Beck, J., Steiner, M., Rempp, F., Fedder, H., Hemmer, P. R., Wrachtrup, J., and Jelezko, F. 2010. Single-shot readout of a single nuclear spin. Science, 329, 542–544.CrossRefGoogle ScholarPubMed
Nielsen, M. A. 2000. Probability distributions consistent with a mixed state. Phys. Rev. A, 62, 052308.CrossRefGoogle Scholar
Nielsen, M. A. 2001. Characterizing mixing and measurement in quantum mechanics. Phys. Rev. A, 63, 022114.CrossRefGoogle Scholar
Nielsen, M. A., and Chuang, I. L. 2000. Quantum Computation and Quantum Information. Cambridge University Press.Google Scholar
Nielsen, M. A., and Petz, D. 2005. A simple proof of the strong subadditivity inequality. Quantum Inform. Comput., 5, 507.Google Scholar
Nielsen, M. A. 2002. A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A, 303(4), 249–252.CrossRefGoogle Scholar
Niskanen, A. O., Nakamura, Y., and Tsai, J.-S. 2006. Tunable coupling scheme for flux qubits at the optimal point. Phys. Rev. B, 73(Mar), 094506.CrossRefGoogle Scholar
Nocedal, J., and Wright, S. J. 2006. Numerical Optimization. New York: Springer.Google Scholar
Nurdin, H. I., James, M. R., and Petersen, I. R. 2009. Coherent quantum LQG control. Automatica, 45(8), 1837–1846.CrossRefGoogle Scholar
Nurdin, H. I., James, M. R., and Doherty, A. C. 2009. Network synthesis of linear dynamical quantum stochastic systems. SIAM J. Control Optim., 48(4), 2686–2718.CrossRefGoogle Scholar
Nyquist, H. 1928. Thermal agitation of electric charge in conductors. Phys. Rev., 32, 110.CrossRefGoogle Scholar
Ocone, D., and Pardoux, E. 1996. Asymptotic stability of the optimal filter with respect to its initial condition. SIAM J. Control Optim., 34, 226–243.CrossRefGoogle Scholar
Oreshkov, O., and Brun, T. A. 2005. Weak measurements are universal. Phys. Rev. Lett., 95(Sep), 110409.CrossRefGoogle ScholarPubMed
Orlando, T. P., Mooij, J. E., Tian, L., van der Wal, C. H., Levitov, L. S., Lloyd, S., and Mazo, J. J. 1999. Superconducting persistent-current qubit. Phys. Rev. B, 60, 15398–15413.CrossRefGoogle Scholar
Ozawa, M. 1986. On information gain by quantum measurements of continuous observables. J. Math. Phys., 27, 759–763.CrossRefGoogle Scholar
Ozawa, M. 2003. Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Phys. Rev. A, 67(Apr), 042105.CrossRefGoogle Scholar
Ozawa, M. 2004. Uncertainty relations for noise and disturbance in generalized quantum measurements. Ann. Phys., 311(2), 350–416.CrossRefGoogle Scholar
O’Connell, A. D., Hofheinz, M., Ansmann, M., Bialczak, R. C., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis, J. M., and Cleland, A. N. 2010. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 464, 697–703.CrossRefGoogle ScholarPubMed
Pace, A. F., Collett, M. J., and Walls, D. F. 1993. Quantum limits in interferometric detection of gravitational radiation. Phys. Rev. A, 47, 3173–3189.CrossRefGoogle ScholarPubMed
Paik, H., Schuster, D. I., Bishop, L. S., Kirchmair, G., Catelani, G., Sears, A. P., Johnson, B. R., Reagor, M. J., Frunzio, L., Glazman, L. I., Girvin, S. M., Devoret, M. H., and Schoelkopf, R. J. 2011. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett., 107(Dec), 240501.CrossRefGoogle Scholar
Pal, A., and Huse, D. A. 2010. Many-body localization phase transition. Phys. Rev. B, 82(Nov), 174411.CrossRefGoogle Scholar
Palomaki, T. A., Harlow, J. W., Teufel, J. D., Simmonds, R. W., and Lehnert, K. W. 2013. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature, 495, 210–214.CrossRefGoogle Scholar
Paris, M. G. A. 2009. Quantum estimation for quantum technology. Int. J. Quantum. Inform., 7, 125.CrossRefGoogle Scholar
Partovi, M. H. 1983. Entropic formulation of uncertainty for quantum measurements. Phys. Rev. Lett., 50(Jun), 1883–1885.CrossRefGoogle Scholar
Pashkin, Y. A., Yamamoto, T., Astafiev, O., Nakamura, Y., Averin, D. V., and Tsai, J. S. 2003. Quantum oscillations in two coupled charge qubits. Nature, 421, 823.CrossRefGoogle ScholarPubMed
Pavon, M., and D’Alessandro, D. 1997. Families of solutions of matrix Riccati differential equations. SIAM J. Control Optim., 35(1), 194.CrossRefGoogle Scholar
Pechen, A., Il’in, N., Shuang, F., and Rabitz, H. 2006. Quantum control by von Neumann measurements. Phys. Rev. A, 74(Nov), 052102.CrossRefGoogle Scholar
Pegg, D. T., and Barnett, S. M. 1988. Unitary phase operator in quantum mechanics. Europhy. Lett., 6, 483.CrossRefGoogle Scholar
Pegg, D. T., and Barnett, S. M. 1989. Phase properties of the quantized single-mode electromagnetic-field. Phys. Rev. A, 39, 1665.CrossRefGoogle ScholarPubMed
Peil, S., and Gabrielse, G. 1999. Observing the quantum limit of an electron cyclotron: QND measurements of quantum jumps between Fock states. Phys. Rev. Lett., 83, 1287–1290.CrossRefGoogle Scholar
Perales, A., and Vidal, G. 2008. Entanglement growth and simulation efficiency in one-dimensional quantum lattice systems. Phys. Rev. A, 78, 042337.CrossRefGoogle Scholar
Percival, I. C. 1999. Quantum State Diffusion. Cambridge University Press.Google Scholar
Percival, I. C., and Strunz, W. T. 1998. Classical dynamics of quantum localization. J. Phys. A, 31, 1815.CrossRefGoogle Scholar
Percival, I. C., and Strunz, W. T. 1998. Classical mechanics from quantum state diffusion – a phase-space approach. J. Phys. A, 31, 1801.Google Scholar
Peres, A. 1988. Quantum limitations on measurement of magnetic flux. Phys. Rev. Lett., 61(Oct), 2019–2021.CrossRefGoogle ScholarPubMed
Perron, F., and Marchand, E. 2002. On the minimax estimator of a bounded normal mean. Stat. Probabil. Lett., 58, 327–333.Google Scholar
Petz, D. 1986. Complementarity in quantum systems. Rep. Math. Phys., 23, 57.Google Scholar
Piechocinska, B. 2000. Information erasure. Phys. Rev. A, 61, 062314.CrossRefGoogle Scholar
Piilo, J., Maniscalco, S., Härkönen, K., and Suominen, K.-A. 2008. Non-Markovian quantum jumps. Phys. Rev. Lett., 100, 180402.CrossRefGoogle ScholarPubMed
Plenio, M. B., and Vitelli, V. 2001. The physics of forgetting: Landauer’s erasure principle and information theory. Contemp. Phys., 42, 25–60.CrossRefGoogle Scholar
Plenio, M. B., and Vedral, V. 1998. Entanglement in quantum information theory. Contemp. Phys., 39, 431–466.CrossRefGoogle Scholar
Poggio, M., Degen, C. L., Mamin, H. J., and Rugar, D. 2007. Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett., 99, 017201.CrossRefGoogle ScholarPubMed
Poot, M., and van der Zant, H. S. J. 2012. Mechanical systems in the quantum regime. Phys. Rep., 511, 273–335.CrossRefGoogle Scholar
Popescu, S., Short, A. J., and Winter, A. 2006. Entanglement and foundations of statistical mechanics. Nature Phys., 2, 754.CrossRefGoogle Scholar
Pozar, D. M. 2011. Microwave Engineering. New York: Wiley.Google Scholar
Prance, R. J., Long, A. P., Clark, T. D., Widom, A., Mutton, J. E., Sacco, J., Potts, M. W., Megaloudis, G., and Goodall, F. 1981. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature, 289, 543.Google Scholar
Prance, R. J., Clark, T. D., Mutton, J. E., Prance, H., Spiller, T. P., and Nest, R. 1985. Localization of pair charge states in a superconducting weak link constriction ring. Phys. Lett. A, 107, 133–138.CrossRefGoogle Scholar
Prather, D. W., Sharkawy, A., Shi, S., Murakowski, J., and Schneider, G. 2009. Photonic Crystals: Theory, Applications and Fabrication. New York: Wiley.Google Scholar
Pregnell, K. L., and Pegg, D. T. 2002. Single-shot measurement of quantum optical phase. Phys. Rev. Lett., 89, 173601.CrossRefGoogle ScholarPubMed
Prior, J., Chin, A. W., Huelga, S. F., and Plenio, M. B. 2010. Efficient simulation of strong system–environment interactions. Phys. Rev. Lett., 105, 050404.CrossRefGoogle ScholarPubMed
Prober, D., Teufel, J., Wilson, C., Frunzio, L., Shen, M., Schoelkopf, R., Stevenson, T., and Wollack, E. 2007. Ultrasensitive quantum-limited far-infrared STJ detectors. IEEE Trans. Appl. Supercond., 17(2), 241–245.CrossRefGoogle Scholar
Purdy, T. P., Brooks, D. W. C., Botter, T., Brahms, N., Ma, Z.-Y., and Stamper-Kurn, D. M. 2010. Tunable cavity optomechanics with ultracold atoms. Phys. Rev. Lett., 105, 133602.CrossRefGoogle ScholarPubMed
Qi, B., Pan, H., and Guo, L. 2013. Further results on stabilizing control of quantum systems. IEEE Trans. Automat. Contr., 58(5), 1349–1354.CrossRefGoogle Scholar
Quan, H. T., Wang, Y. D., Xi Liu, Y., Sun, C. P., and Nori, F. 2006. Maxwell’s demon-assisted thermodynamic cycle in superconducting quantum circuits. Phys. Rev. Lett., 97, 180402.CrossRefGoogle Scholar
Raimond, J. M., Brune, M., and Haroche, S. 2001. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys., 73, 565–582.CrossRefGoogle Scholar
Ralph, J. F., Griffith, E. J., Clark, T. D., and Everitt, M. J. 2004. Guidance and control in a Josephson charge qubit. Phys. Rev. B, 70, 214521.CrossRefGoogle Scholar
Ralph, J. F., Jacobs, K., and Hill, C. D. 2009. Frequency tracking and parameter estimation for robust quantum state-estimation. Eprint: arXiv:0907.5034.
Ralph, J., Clark, T., Prance, R., and Prance, H. 1996. Self-capacitance of the superconducting condensate. Physica B: Condensed Matter, 226(4), 355–362.CrossRefGoogle Scholar
Rangarajan, G., Habib, S., and Ryne, R. D. 1998. Lyapunov exponents without rescaling and reorthogonalization. Phys. Rev. Lett., 80(17), 3747–3750.CrossRefGoogle Scholar
Raynal, P., Lü, X., and Englert, B.-G. 2011. Mutually unbiased bases in six dimensions: the four most distant bases. Phys. Rev. A, 83, 062303.CrossRefGoogle Scholar
Redfield, A. G. 1957. On the theory of relaxation processes. IBM J. Res. Dev., 1, 19–31.CrossRefGoogle Scholar
Redfield, A. G. 1965. On the theory of relaxation processes. Reprinted in: Adv. Magn. Reson., 1, 1–32.Google Scholar
Reed, M., and Simon, B. 1972. Methods of Modern Mathematical Physics—Part I: Functional Analysis. New York: Academic Press.Google Scholar
Regal, C. A., Teufel, J. D., and Lehnert, K. W. 2008. Measuring nanomechanical motion with a microwave cavity interferometer. Nature Phys., 4, 555.CrossRefGoogle Scholar
Reid, W. T. 1972. Riccati Differential Equations. Waltham: Academic Press.Google Scholar
Reimann, P. 2008. Foundation of statistical mechanics under experimentally realistic conditions. Phys. Rev. Lett., 101(19), 190403.CrossRefGoogle ScholarPubMed
Reinsch, M. W. 2000. A simple expression for the terms in the Baker-Campbell-Hausdorff series. J. Math. Phys., 41, 2434.CrossRefGoogle Scholar
Renes, J. M., Blume-Kohout, R., Scott, A. J., and Caves, C. M. 2004. Symmetric informationally complete quantum measurements. J. Math. Phys., 45(6), 2171–2180.CrossRefGoogle Scholar
Richtmyer, R. D., and Greenspan, S. 1965. Expansion of the Barker–Campbell–Hausdorff formula by computer. Commun. Pure Appl. Math., 18, 107–108.CrossRefGoogle Scholar
Riera, A., Gogolin, C., and Eisert, J. 2011. Thermalization in nature and on a quantum computer. Eprint: arXiv:1102.2389.
Rigol, M., and Santos, L. F. 2010. Quantum chaos and thermalization in gapped systems. Phys. Rev. A, 82(Jul), 011604.CrossRefGoogle Scholar
Rigol, M., Dunjko, V., Yurovsky, V., and Olshanii, M. 2007. Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett., 98, 050405.CrossRefGoogle Scholar
Rigol, M., Dunjko, V., and Olshanii, M. 2008. Thermalization and its mechanism for generic isolated quantum systems. Nature, 452, 854.CrossRefGoogle ScholarPubMed
Ristè, D., Bultink, C. C., Lehnert, K. W., and DiCarlo, L. 2012. Feedback control of a solid-state qubit using high-fidelity projective measurement. Phys. Rev. Lett., 109(Dec), 240502.Google Scholar
Ristè, D., van Leeuwen, J. G., Ku, H.-S., Lehnert, K. W., and DiCarlo, L. 2012. Initialization by measurement of a superconducting quantum bit circuit. Phys. Rev. Lett., 109(Aug), 050507.Google Scholar
Rivas, A., Douglas, A., Plato, K., Huelga, S. F., and Plenio, M. B. 2010. Markovian master equations: a critical study. New J. Phys., 12(11), 113032.CrossRefGoogle Scholar
Robertson, H. P. 1929. The uncertainty principle. Phys. Rev., 34, 163–164.CrossRefGoogle Scholar
Robinson, D. W., and Ruelle, D. 1967. Mean entropy of states in classical statistical mechanics. Commun. Math. Phys., 5, 288.CrossRefGoogle Scholar
Rosenkrantz, R. D. 1989. E.T. Jaynes: Papers on Probability, Statistics, and Statistical Physics. New York: Springer.Google Scholar
Ruskai, M. B. 2007. Another short and elementary proof of strong subadditivity of quantum entropy. Rep. Math. Phys., 60, 1–12.CrossRefGoogle Scholar
Ruskov, R., and Korotkov, A. N. 2002. Quantum feedback control of a solid-state qubit. Phys. Rev. B, 66, 041401.CrossRefGoogle Scholar
Ruskov, R., Combes, J., Mølmer, K., and Wiseman, H. M. 2012. Qubit purification speed-up for three complementary continuous measurements. Phil. Trans. Roy. Soc. A, 370, 5291–5307.CrossRefGoogle ScholarPubMed
Ruskov, R., Schwab, K., and Korotkov, A. N. 2005. Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback. Phys. Rev. B, 71, 235407.CrossRefGoogle Scholar
Safavi-Naeini, A. H., Alegre, T. P. M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J. T., Chang, D., and Painter, O. 2011. Electromagnetically induced transparency and slow light with optomechanics. Nature, 472, 69–73.CrossRefGoogle ScholarPubMed
Sagawa, T., and Ueda, M. 2008. Second law of thermodynamics with discrete quantum feedback control. Phys. Rev. Lett., 100, 080403.CrossRefGoogle ScholarPubMed
Sagawa, T., and Ueda, M. 2009. Minimal energy cost for thermodynamic information processing: measurement and information erasure. Phys. Rev. Lett., 102, 250602.CrossRefGoogle ScholarPubMed
Sagawa, T., and Ueda, M. 2010. Generalized Jarzynski equality under nonequilibrium feedback control. Phys. Rev. Lett., 104(Mar), 090602.CrossRefGoogle ScholarPubMed
Saito, S., Thorwart, M., Tanaka, H., Ueda, M., Nakano, H., Semba, K., and Takayanagi, H. 2004. Multiphoton transitions in a macroscopic quantum two-state system. Phys. Rev. Lett., 93(Jul), 037001.CrossRefGoogle Scholar
Santos, L. F., and Rigol, M. 2010. Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization. Phys. Rev. E, 81, 036206.CrossRefGoogle ScholarPubMed
Santos, L. F., Polkovnikov, A., and Rigol, M. 2012. Weak and strong typicality in quantum systems. Phys. Rev. E, 86(Jul), 010102.CrossRefGoogle ScholarPubMed
Sarovar, M., Ahn, C., Jacobs, K., and Milburn, G. J. 2004. Practical scheme for error control using feedback. Phys. Rev. A, 69(May), 052324.CrossRefGoogle Scholar
Sauter, T., Neuhauser, W., Blatt, R., and Toschek, P. E. 1986. Observation of quantum jumps. Phys. Rev. Lett., 57(Oct), 1696–1698.CrossRefGoogle ScholarPubMed
Sayrin, C., Dotsenko, I., Zhou, X., Peaudecerf, B., Théo Rybarczyk, S. G., Rouchon, P., Mirrahimi, M., Amini, H., Brune, M., Raimond, J.-M., and Haroche, S. 2011. Real-time quantum feedback prepares and stabilizes photon number states. Nature, 477, 73–77.CrossRefGoogle ScholarPubMed
Schack, R., Brun, T. A., and Percival, I. C. 1995. Quantum state diffusion, localization and computation. J. Phys. A, 28, 5401.CrossRefGoogle Scholar
Schirmer, S. G., and de Fouquieres, P. 2011. Efficient algorithms for optimal control of quantum dynamics: the Krotov method unencumbered. New J. Phy., 13(7), 073029.Google Scholar
Schleier-Smith, M., Leroux, I. D., and Vuletić, V. 2009. Implementation of cavity squeezing of a collective atomic spin. Eprint: arXiv:0810.2582v2.
Schleier-Smith, M. H., Leroux, I. D., and Vuletić, V. 2010. Squeezing the collective spin of a dilute atomic ensemble by cavity feedback. Eprint: arXiv:0911.3936.
Schleier-Smith, M. H., Leroux, I. D., and Vuletić, V. 2010. Squeezing the collective spin of a dilute atomic ensemble by cavity feedback. Phys. Rev. A, 81, 021804.CrossRefGoogle Scholar
Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O., and Kippenberg, T. J. 2008. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys., 5, 415–419.CrossRefGoogle Scholar
Schliesser, A., Arcizet, O., Rivière, R., Anetsberger, G., and Kippenberg, T. J. 2009. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature Phys., 5, 509–514.CrossRefGoogle Scholar
Schollwöck, U. 2005. The density-matrix renormalization group. Rev. Mod. Phys., 77, 259–315.CrossRefGoogle Scholar
Schrader, D., Dotsenko, I., Khudaverdyan, M., Miroshnychenko, Y., Rauschenbeutel, A., and Meschede, D. 2004. Neutral atom quantum register. Phys. Rev. Lett., 93(Oct), 150501.CrossRefGoogle ScholarPubMed
Schulman, L. J., and Vazirani, U. 1999. Molecular scale heat engines and scalable quantum computation. Pages 322–329 of: Proceedings of the Thirty-First Annual ACM Symposium on the Theory of Computing. New York: ACM.Google Scholar
Schulman, L. J., Mor, T., and Weinstein, Y. 2005. Physical limits of heat-bath algorithmic cooling. Phys. Rev. Lett., 94(Apr), 120501.CrossRefGoogle ScholarPubMed
Schumacher, B., Westmoreland, M., and Wootters, W. K. 1996. Limitation on the amount of accessible information in a quantum channel. Phys. Rev. Lett., 76, 3452.CrossRefGoogle Scholar
Schumacher, B. 1995. Quantum coding. Phys. Rev. A, 51, 2738–2747.CrossRefGoogle ScholarPubMed
Schumacher, B. 1996. Sending entanglement through noisy quantum channels. Phys. Rev. A, 54(Oct), 2614–2628.CrossRefGoogle ScholarPubMed
Schumacher, B., and Nielsen, M. A. 1996. Quantum data processing and error correction. Phys. Rev. A, 54(Oct), 2629–2635.CrossRefGoogle ScholarPubMed
Schuster, D. I., Houck, A. A., Schreier, J. A., Wallraff, A., Gambetta, J. M., Blais, A., Frunzio, L., Majer, J., Johnson, B., Devoret, M. H., Girvin, S. M., and Schoelkopf, R. J. 2007. Resolving photon number states in a superconducting circuit. Nature, 445, 515–518.CrossRefGoogle Scholar
Scott, A. J., and Milburn, G. J. 2001. Quantum nonlinear dynamics of continuously measured systems. Phys. Rev. A, 63, 042101.CrossRefGoogle Scholar
Shabani, A., and Jacobs, K. 2008. Locally optimal control of quantum systems with strong feedback. Phys. Rev. Lett., 101, 230403.CrossRefGoogle ScholarPubMed
Shaiju, A. J., and Petersen, I. 2012. A frequency domain condition for the physical realizability of linear quantum systems. IEEE Trans. Automat. Contr., 57(8), 2033–2044.CrossRefGoogle Scholar
Shannon, C. E., and Weaver, W. 1963. The Mathematical Theory of Communication. Chicago: University of Illinois Press.Google Scholar
Shen, Z., Hsieh, M., and Rabitz, H. 2006. Quantum optimal control: Hessian analysis of the control landscape. J. Chem. Phys., 124, 204106.CrossRefGoogle ScholarPubMed
Shizume, K. 1995. Heat-generation required by information erasure. Phys. Rev. E, 52, 3495.CrossRefGoogle ScholarPubMed
Shnirelman, A. I. 1974. Ergodic properties of eigenfunctions. Usp. Mat. Nauk, 29, 181–182.Google Scholar
Shnirman, A., Schön, G., and Hermon, Z. 1997. Quantum manipulations of small Josephson junctions. Phys. Rev. Lett., 79(Sep), 2371–2374.CrossRefGoogle Scholar
Shor, P. 2004. unpublished presentation.
Short, A. J., and Farrelly, T. C. 2012. Quantum equilibration in finite time. New J. Phys., 14, 013063.CrossRefGoogle Scholar
Shuang, F., Zhou, M., Pechen, A., Wu, R., Shir, O. M., and Rabitz, H. 2008. Control of quantum dynamics by optimized measurements. Phys. Rev. A, 78(Dec), 063422.CrossRefGoogle Scholar
Silberfarb, A., Jessen, P. S., and Deutsch, I. H. 2005. Quantum state reconstruction via continuous measurement. Phys. Rev. Lett., 95, 030402.CrossRefGoogle ScholarPubMed
Simmonds, R. W., Lang, K. M., Hite, D. A., Nam, S., Pappas, D. P., and Martinis, J. M. 2004. Decoherence in Josephson phase qubits from junction resonators. Phys. Rev. Lett., 93(Aug), 077003.CrossRefGoogle ScholarPubMed
Smith, G. A., Chaudhury, S., Silberfarb, A., Deutsch, I. H., and Jessen, P. S. 2004. Continuous weak measurement and nonlinear dynamics in a cold spin ensemble. Phys. Rev. Lett., 93, 163602.CrossRefGoogle Scholar
Smith, W. P., Reiner, J. E., Orozco, L. A., Kuhr, S., and Wiseman, H. M. 2002. Capture and release of a conditional state of a cavity QED system by quantum feedback. Phys. Rev. Lett., 89, 133601.CrossRefGoogle ScholarPubMed
Spekkens, R. W. 2007. Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A, 75(Mar), 032110.CrossRefGoogle Scholar
Spietz, L., Irwin, K., and Aumentado, J. 2008. Input impedance and gain of a gigahertz amplifier using a dc superconducting quantum interference device in a quarter wave resonator. Appl. Phy. Lett., 93, 082506.CrossRefGoogle Scholar
Spiller, T. P., and Ralph, J. F. 1994. The emergence of chaos in an open quantum system. Phys. Lett. A, 194, 235.CrossRefGoogle Scholar
Spiller, T. P., Clark, T. D., Prance, R. J., and Widom, A. 1992. Chapter 4: Quantum phenomena in circuits at low temperatures. In: Brewer, D. F. (ed), Progress in Low Temperature Physics, vol. 13. Amsterdam: Elsevier.Google Scholar
Srednicki, M. 1994. Chaos and quantum thermalization. Phys. Rev. E, 50, 888.CrossRefGoogle ScholarPubMed
Srinivas, M. D., and Davies, E. B. 1981. Photon-counting probabilities in quantum optics. Optica Acta, 28, 981.CrossRefGoogle Scholar
Steck, D., Jacobs, K., Mabuchi, H., Bhattacharya, T., and Habib, S. 2004. Quantum feedback control of atomic motion in an optical cavity. Phys. Rev. Lett., 92, 223004.CrossRefGoogle Scholar
Steck, D., Jacobs, K., Mabuchi, H., Habib, S., and Bhattacharya, T. 2006. Feedback cooling of atomic motion in cavity QED. Phys. Rev. A, 74, 012322.CrossRefGoogle Scholar
Steffen, M., Ansmann, M., Bialczak, R. C., Katz, N., Lucero, E., McDermott, R., Neeley, M., Weig, E. M., Cleland, A. N., and Martinis, J. M. 2006. Measurement of the entanglement of two superconducting qubits via state tomography. Science, 313, 1423.CrossRefGoogle ScholarPubMed
Steixner, V., Rabl, P., and Zoller, P. 2005. Quantum feedback cooling of a single trapped ion in front of a mirror. Phys. Rev. A, 72, 043826.CrossRefGoogle Scholar
Stockton, J. K., van Handel, R., and Mabuchi, H. 2004. Deterministic Dickestate preparation with continuous measurement and control. Phys. Rev. A, 70, 022106.CrossRefGoogle Scholar
Stockton, J. K., Geremia, J. M., Doherty, A. C., and Mabuchi, H. 2004. Robust quantum parameter estimation: coherent magnetometry with feedback. Phys. Rev. A, 69, 032109.CrossRefGoogle Scholar
Strauch, F. W. 2012. All-resonant control of superconducting resonators. Phys. Rev. Lett., 109, 210501.CrossRefGoogle ScholarPubMed
Strunz, W. T., and Yu, T. 2004. Convolutionless non-Markovian master equations and quantum trajectories: Brownian motion. Phys. Rev. A, 69, 052115.CrossRefGoogle Scholar
Suzuki, H., and Fujitani, Y. 2012. Numerical study on the generalized second law for a Brownian particle under the linear feedback control. J. Phys. Soc. Jpn., 81(8), 084003.CrossRefGoogle Scholar
Szilárd, L. 1929. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys., 53, 840–856.CrossRefGoogle Scholar
Szorkovszky, A., Doherty, A. C., Harris, G. I., and Bowen, W. P. 2011. Mechanical squeezing via parametric amplification and weak measurement. Phys. Rev. Lett., 107, 213603.CrossRefGoogle ScholarPubMed
Szorkovszky, A., Doherty, A. C., Harris, G. I., and Bowen, W. P. 2012. Position estimation of a parametrically driven optomechanical system. New J. Phys., 14(9), 095026.CrossRefGoogle Scholar
Szorkovszky, A., Brawley, G. A., Doherty, A. C., and Bowen, W. P. 2013. Strong thermomechanical squeezing via weak measurement. Phys. Rev. Lett., 110, 184301.CrossRefGoogle ScholarPubMed
Tabor, M. 1989. Chaos and Integrability in Nonlinear Dynamics: An Introduction. Hoboken: Wiley-Interscience.Google Scholar
Takano, T., Fuyama, M., Namiki, R., and Takahashi, Y. 2009. Spin squeezing of a cold atomic ensemble with the nuclear spin of one-half. Eprint: arXiv:0808.2353.
Takano, T., Tanaka, S., Namiki, R., and Takahashi, Y. 2010. Manipulation of non-classical atomic spin states. Eprint: arXiv:0909.2423.
Takara, K., Hasegawa, H.-H., and Driebe, D. 2010. Generalization of the second law for a transition between nonequilibrium states. Phys. Lett. A, 375(2), 88–92.CrossRefGoogle Scholar
Tan, S. M. 1996. Linear Systems. This text is made freely available by the author at: . Accessed March 10, 2014.
Tan, S. M., Fox, C., and Nicholls, G. 1996. Inverse Problems. This text is freely available at: . Accessed March 10, 2014.
Tanaka, S., and Yamamoto, N. 2012. Robust adaptive measurement scheme for qubit-state preparation. Phys. Rev. A, 86(Dec), 062331.CrossRefGoogle Scholar
Tesche, C. D. 1990. Can a noninvasive measurement of magnetic flux be performed with superconducting circuits?Phys. Rev. Lett., 64, 2358–2361.CrossRefGoogle ScholarPubMed
Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W., and Lehnert, K. W. 2009. Nanomechanical motion measured with precision beyond the standard quantum limit. Nature Nanotechnol., 4, 820–823.CrossRefGoogle Scholar
Teufel, J. D., Li, D., Allman, M. S., Cicak, K., Sirois, A. J., Whittaker, J. D., and Simmonds, R. W. 2011. Circuit cavity electromechanics in the strong-coupling regime. Nature, 471, 204–208.CrossRefGoogle ScholarPubMed
Teufel, J. D., Donner, T., Li, D., Harlow, J. W., Allman, M. S., Cicak, K., Sirois, A. J., Whittaker, J. D., Lehnert, K. W., and Simmonds, R. W. 2011. Sideband cooling of micromechanical motion to the quantum ground state. Nature, 475, 359–363.CrossRefGoogle ScholarPubMed
Thacker, H. B. 1981. Exact integrability in quantum field theory and statistical systems. Rev. Mod. Phys., 53(Apr), 253–285.CrossRefGoogle Scholar
Thompson, J. D., Zwickl, B. M., Jayich, A. M., Marquardt, F., Girvin, S. M., and Harris, J. G. E. 2008. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 452, 72.CrossRefGoogle ScholarPubMed
Thomsen, L. K., Mancini, S., and Wiseman, H. M. 2002. Spin squeezing via quantum feedback. Phys. Rev. A, 65, 061801.CrossRefGoogle Scholar
Thorwart, M., Reimann, P., Jung, P., and Fox, R. F. 1998. Quantum hysteresis and resonant tunneling in bistable systems. Chem. Phys., 235(1-3), 61–80.CrossRefGoogle Scholar
Thorwart, M., Eckel, J., Reina, J., Nalbach, P., and Weiss, S. 2009. Enhanced quantum entanglement in the non-Markovian dynamics of biomolecular excitons. Chem. Phys. Lett., 478(4-6), 234–237.CrossRefGoogle Scholar
Tian, L. 2007. Correcting low-frequency noise with continuous measurement. Phys. Rev. Lett., 98, 153602.CrossRefGoogle ScholarPubMed
Tian, L. 2009. Ground state cooling of a nanomechanical resonator via parametric linear coupling. Phys. Rev. B, 79, 193407.CrossRefGoogle Scholar
Tian, L., Allman, M. S., and Simmonds, R. W. 2008. Parametric coupling between macroscopic quantum resonators. New J. Phys., 10, 115001.CrossRefGoogle Scholar
Ticozzi, F., Nishio, K., and Altafini, C. 2013. Stabilization of stochastic quantum dynamics via open- and closed-loop control. IEEE Trans. Automat. Contr., 58(1), 74–85.CrossRefGoogle Scholar
Ticozzi, F., and Viola, L. 2008. Quantum Markovian subsystems: invariance, attractivity, and control. IEEE Trans. Automat. Contr., 53, 2048–2063.CrossRefGoogle Scholar
Tittonen, I., Breitenbach, G., Kalkbrenner, T., Müller, T., Conradt, R., Schiller, S., Steinsland, E., Blanc, N., and de Rooij, N. F. 1999. Interferometric measurements of the position of a macroscopic body: towards observation of quantum limits. Phys. Rev. A, 59, 1038–1044.CrossRefGoogle Scholar
Tolman, R. C. 2010. The Principles of Statistical Mechanics. New York: Dover.Google Scholar
Truitt, P. A., Hertzberg, J. B., Huang, C. C., Ekinci, K. L., and Schwab, K. C. 2007. Efficient and sensitive capacitive readout of nanomechanical resonator arrays. Nano Lett, 7(1), 120–126.CrossRefGoogle ScholarPubMed
Tsang, M. 2013. Testing quantum mechanics. Eprint: arXiv:1306.2699.
Tsang, M. 2009. Time-symmetric quantum theory of smoothing. Phys. Rev. Lett., 102, 250403.CrossRefGoogle ScholarPubMed
Tsang, M. 2012. Continuous quantum hypothesis testing. Phys. Rev. Lett., 108(Apr), 170502.CrossRefGoogle ScholarPubMed
Tsang, M., and Nair, R. 2012. Fundamental quantum limits to waveform detection. Phys. Rev. A, 86(Oct), 042115.CrossRefGoogle Scholar
Tsang, M., Wiseman, H. M., and Caves, C. M. 2011. Fundamental quantum limit to waveform estimation. Phys. Rev. Lett., 106(Mar), 090401.CrossRefGoogle ScholarPubMed
Turgut, S. 2009. Relations between entropies produced in nondeterministic thermo-dynamic processes. Phys. Rev. E, 79(Apr), 041102.CrossRefGoogle Scholar
Tyson, J. 2010. Estimates of non-optimality of quantum measurements and a simple iterative method for computing optimal measurements. Eprint: arXiv:0902.0395.
Tyson, J. 2010. Two-sided bounds on minimum-error quantum measurement, on the reversibility of quantum dynamics, and on maximum overlap using directional iterates. Eprint: arXiv:0907.3386.
Uhlmann, A. 2006. The ‘transmission probability’ in the state space of a *-algebra. Rep. Math. Phys., 9, 273–279.CrossRefGoogle Scholar
Unruh, W. G. 1982. Page 647 of: Meystre, P., and Scully, M. O. (eds), Quantum Optics, Experimental Gravitation, and Measurement Theory. New York: Plenum.Google Scholar
von Neumann, J. 1955. Mathematical Foundations of Quantum Mechanics. Princeton University Press.Google Scholar
Vamivakas, A. N., Lu, C.-Y., Matthiesen, C., Zhao, Y., Fält, S., Badolato, A., and Atatüre, M. 2010. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature, 467, 297–300.CrossRefGoogle ScholarPubMed
van den Brink, A. M., Schön, G., and Geerligs, L. J. 1991. Combined single-electron and coherent-Cooper-pair tunneling in voltage-biased Josephson junctions. Phys. Rev. Lett., 67(Nov), 3030–3033.CrossRefGoogle ScholarPubMed
van der Ploeg, S., Izmalkov, A., van den Brink, A. M., Huebner, U., Grajcar, M., Il’ichev, E., Meyer, H.-G., and Zagoskin, A. 2007. Controllable coupling of superconducting flux qubits. Phys. Rev. Lett., 98, 057004.Google ScholarPubMed
van der Wal, C. H., ter Haar, A. C. J., Wilhelm, F. K., Schouten, R. N., Harmans, C. J. P. M., Orlando, T. P., Lloyd, S., and Mooij, J. E. 2000. Quantum superposition of macroscopic persistent-current states. Science, 290(5492), 773–777.Google ScholarPubMed
van Handel, R. 2009. The stability of quantum Markov filters. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12, 153–172.CrossRefGoogle Scholar
Van Trees, H. L. 2001. Detection, Estimation, and Modulation Theory, Parts I – III. New York: Wiley.Google Scholar
vanHandel, R., and Mabuchi, H. 2005. Quantum projection filter for a highly nonlinear model in cavity QED. J. Opt. B: Quantum Semiclass. Opt., 7, S226–S236.CrossRefGoogle Scholar
vanHandel, R., Stockton, J. K., and Mabuchi, H. 2005. Feedback control of quantum state reduction. IEEE Trans. Automat. Contr., 50, 768–780.CrossRefGoogle Scholar
Vanner, M. R. 2011. Selective linear or quadratic optomechanical coupling via measurement. Phys. Rev. X, 1(Nov), 021011.Google Scholar
Vedral, V. 2007. Introduction to Quantum Information Science. Oxford University Press.Google Scholar
Verstraete, F., Doherty, A. C., and Mabuchi, H. 2001. Sensitivity optimization in quantum parameter estimation. Phys. Rev. A, 64, 032111.CrossRefGoogle Scholar
Verstraete, F., Cirac, J. I., and Murg, V. 2008. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys., 57, 143.CrossRefGoogle Scholar
Vidal, G. 2008. Class of quantum many-body states that can be efficiently simulated. Phys. Rev. Lett., 101(11), 110501.CrossRefGoogle ScholarPubMed
Vidal, G. 2003. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett., 91, 147902.CrossRefGoogle ScholarPubMed
Vidal, G. 2004. Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett., 93, 040502.CrossRefGoogle ScholarPubMed
Vijay, R., Slichter, D. H., and Siddiqi, I. 2011. Observation of quantum jumps in a superconducting artificial atom. Phys. Rev. Lett., 106, 110502.CrossRefGoogle Scholar
Vijay, R., Macklin, C., Slichter, D. H., Weber, S. J., Murch, K. W., Naik, R., Korotkov, A. N., and Siddiqi, I. 2012. Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback. Nature, 490, 77–80.CrossRefGoogle Scholar
Vion, D. 2004. Josephson quantum bits based on a Cooper-pair box. Pages 521–560 of: Esteve, D., Raimond, J.-M., and Dalibard, J. (eds), Quantum Entanglement and Information Processing, Lecture Notes of the Les Houches Summer School 2003. Amsterdam: Elsevier.Google Scholar
Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., and Devoret, M. H. 2002. Manipulating the quantum state of an electrical circuit. Science, 296, 886.CrossRefGoogle ScholarPubMed
Vitali, D., Zippilli, S., Tombesi, P., and Raimond, J.-M. 2004. Decoherence control with fully quantum feedback schemes. J. Mod. Opt., 51(6-7), 799–809.CrossRefGoogle Scholar
von Neumann, J. 1927. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Göttinger Nachrichten, 245–272.Google Scholar
Voros, A. 1979. Stochastic Behavior in Classical and Quantum Hamiltonian Systems. Berlin: Springer.Google Scholar
Žnidarič, M., Prosen, T., and Prelovšek, P. 2008. Many-body localization in the Heisenberg XXZ magnet in a random field. Phys. Rev. B, 77(Feb), 064426.Google Scholar
Wallraff, A., Schuster, D. I., Blais, A., Frunzio, L., Majer, J., Devoret, M. H., Girvin, S. M., and Schoelkopf, R. J. 2005. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett., 95(Aug), 060501.CrossRefGoogle ScholarPubMed
Wang, S. K., Jin, J. S., and Li, X. Q. 2007. Continuous weak measurement and feedback control of a solid-state charge qubit: a physical unravelling of non-Lindblad master equation. Phys. Rev. B, 75, 155304.Google Scholar
Wang, X. 2014 in preparation.
Wang, X., Allegra, M., Mohseni, M., Lloyd, S., Jacobs, K., and Lupo, C. 2014. A numerical method to solve the quantum brachistochrone equation: obtaining exact control protocols for maximum-speed quantum gates, in preparation.
Wang, X., and Jacobs, K. 2013. Coherent feedback that beats all measurement-based feedback protocols. Eprint: arXiv: 1211.1724.
Wang, X., Vinjanampathy, S., Strauch, F. W., and Jacobs, K. 2011. Ultraefficient cooling of resonators: beating sideband cooling with quantum control. Phys. Rev. Lett., 107(Oct), 177204.CrossRefGoogle ScholarPubMed
Wang, X., Vinjanampathy, S., Strauch, F. W., and Jacobs, K. 2013. Absolute dynamical limit to cooling weakly coupled quantum systems. Phys. Rev. Lett., 110(Apr), 157207.CrossRefGoogle ScholarPubMed
Washburn, S., Webb, R. A., Voss, R. F., and Faris, S. M. 1985. Effects of dissipation and temperature on macroscopic quantum tunneling. Phys. Rev. Lett., 54(Jun), 2712–2715.CrossRefGoogle ScholarPubMed
Wehrl, A. 1978. General properties of entropy. Rev. Mod. Phys., 50, 221–260.CrossRefGoogle Scholar
Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., and Kippenberg, T. J. 2010. Optomechanically induced transparency. Science, 330, 1520–1523.CrossRefGoogle ScholarPubMed
Wheatley, T. A., Berry, D. W., Yonezawa, H., Nakane, D., Arao, H., Pope, D. T., Ralph, T. C., Wiseman, H. M., Furusawa, A., and Huntington, E. H. 2010. Adaptive optical phase estimation using time-symmetric quantum smoothing. Phys. Rev. Lett., 104, 093601.CrossRefGoogle ScholarPubMed
Whittle, P. 1981. Risk-sensitive linear/quadratic/Gaussian control. Adv. Appl. Prob., 13, 764–777.CrossRefGoogle Scholar
Whittle, P. 1991. A risk-sensitive maximum principle: the case of imperfect state observation. IEEE Trans. Automat. Contr., 36(7), 793–801.CrossRefGoogle Scholar
Whittle, P. 1996. Optimal Control. Chichester: Wiley.Google Scholar
Widom, A. 1979. Quantum electrodynamic circuits at ultralow temperature. J. Low Temp. Phys., 37, 449–460.CrossRefGoogle Scholar
Widom, A., Megaloudis, G., Clark, T. D., Prance, H., and Prance, R. J. 1982. Quantum electrodynamic charge space energy bands in singly connected superconducting weak links. J. Phys. A: Math. Gen., 15(12), 3877.CrossRefGoogle Scholar
Wilcox, R. M. 1967. Exponential operators and parameter differentiation in quantum physics. J. Math. Phys., 8, 962.CrossRefGoogle Scholar
Wilson, K. G. 1975. The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys., 47, 773–840.CrossRefGoogle Scholar
Wilson, S. D., Carvalho, A. R. P., Hope, J. J., and James, M. R. 2007. Effects of measurement back-action in the stabilization of a Bose-Einstein condensate through feedback. Phys. Rev. A, 76, 013610.CrossRefGoogle Scholar
Wilson-Rae, I., Nooshi, N., Zwerger, W., and Kippenberg, T. J. 2007. Theory of ground state cooling of a mechanical oscillator using dynamical back-action. Phys. Rev. Lett., 99, 093901.CrossRefGoogle Scholar
Wineland, D., and Dehmelt, H. 1975. Proposed 1014Δν < ν laser fluorescence spectroscopy on Tl+ mono-ion oscillator. Bull. Am. Phys. Soc., 20, 637.Google Scholar
Wineland, D. J., Britton, J., Epstein, R. J., Leibfried, D., Blakestad, R. B., Brown, K., Jost, J. D., Langer, C., Ozeri, R., Seidelin, S., and Wesenberg, J. 2006. Cantilever cooling with radio frequency circuits. Eprint: arXiv:quant-ph/0606180.
Winter, A. 2004. Extrinsic and intrinsic data in quantum measurements: asymptotic convex decomposition of positive operator valued measures. Commun. Math. Phys., 244, 157–185.CrossRefGoogle Scholar
Wiseman, H. M. 1994. Quantum theory of continuous feedback. Phys. Rev. A, 49(Mar), 2133–2150.CrossRefGoogle ScholarPubMed
Wiseman, H. M. 1994. Quantum Trajectories and Feedback. Ph.D. diss. Brisbane: The University of Queensland.Google Scholar
Wiseman, H. M. 1995. Adaptive phase measurements of optical modes: going beyond the marginal Q distribution. Phys. Rev. Lett., 75, 4587–4590.CrossRefGoogle ScholarPubMed
Wiseman, H. M. 1995. Using feedback to eliminate back-action in quantum measurements. Phys. Rev. A, 51, 2459–2468.CrossRefGoogle ScholarPubMed
Wiseman, H. M. 1995. Feedback in open quantum-systems. Mod. Phys. Lett., B9, 629–654.CrossRefGoogle Scholar
Wiseman, H. M. 1996. Quantum trajectories and quantum measurement theory. Quantum Semiclass. Opt., 8, 205.CrossRefGoogle Scholar
Wiseman, H. M. 2007. Grounding Bohmian mechanics in weak values and Bayesianism. New J. Phys., 9(6), 165.CrossRefGoogle Scholar
Wiseman, H. M., and Bouten, L. 2008. Optimality of feedback control strategies for qubit purification. Quantum. Inform. Process, 7, 71–83.CrossRefGoogle Scholar
Wiseman, H. M., and Diosi, L. 2001. Complete parameterization, and invariance, of diffusive quantum trajectories for Markovian open systems. Chem. Phys., 91, 268.Google Scholar
Wiseman, H. M., and Doherty, A. C. 2005. Optimal unravellings for feedback control in linear quantum systems. Phys. Rev. Lett., 94(7), 070405.CrossRefGoogle ScholarPubMed
Wiseman, H. M., and Killip, R. B. 1998. Adaptive single-shot phase measurements: the full quantum theory. Phys. Rev. A, 57, 2169.CrossRefGoogle Scholar
Wiseman, H. M., and Milburn, G. J. 1993. Quantum theory of field-quadrature measurements. Phys. Rev. A, 47, 642.CrossRefGoogle ScholarPubMed
Wiseman, H. M., and Milburn, G. J. 1993. Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. Phys. Rev. A, 47, 1652.CrossRefGoogle ScholarPubMed
Wiseman, H. M., and Milburn, G. J. 1993. Quantum theory of optical feedback via homodyne detection. Phys. Rev. Lett., 70(Feb), 548–551.CrossRefGoogle ScholarPubMed
Wiseman, H. M., and Milburn, G. J. 1994. All-optical versus electro-optical quantum-limited feedback. Phys. Rev. A, 49(May), 4110–4125.CrossRefGoogle ScholarPubMed
Wiseman, H. M., and Milburn, G. J. 1994. Squeezing via feedback. Phys. Rev. A, 49(Feb), 1350–1366.CrossRefGoogle ScholarPubMed
Wiseman, H. M., and Ralph, J. F. 2006. Reconsidering rapid qubit purification by feedback. New. J. Phys, 8, 90.CrossRefGoogle Scholar
Wiseman, H. M., Harrison, F. E., Collett, M. J., Tan, S. M., Walls, D. F., and Killip, R. B. 1997. Nonlocal momentum transfer in Welcher Weg measurements. Phys. Rev. A, 56, 55–75.CrossRefGoogle Scholar
Wiseman, H. M., and Milburn, G. J. 2010. Quantum Measurement and Control. Cambridge University Press.Google Scholar
Witschel, W. 1975. Ordered operator expansions by comparison. J. Phys. A: Math. Gen., 8, 143.CrossRefGoogle Scholar
Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A. 1985. Determining Lyapunov exponents from a time-series. Physica D, 16, 285.CrossRefGoogle Scholar
Wootters, W. K., and Fields, B. D. 1989. Optimal state determination by mutually unbiased measurements. Ann. Phys., 191(2), 363–381.CrossRefGoogle Scholar
Xiang, G. Y., Higgins, B. L., Berry, D. W., Wiseman, H. M., and Pryde, G. J. 2011. Entanglement-enhanced measurement of a completely unknown phase. Nature Photonics, 5, 43.Google Scholar
Xue, S.-B., Wu, R.-B., Zhang, W.-M., Zhang, J., Li, C.-W., and Tarn, T.-J. 2012. Decoherence suppression via non-Markovian coherent feedback control. Phys. Rev. A, 86(Nov), 052304.CrossRefGoogle Scholar
Yamamoto, N. 2006. Robust observer for uncertain linear quantum systems. Pages 3138–3143 of: 2006 45th IEEE Conference on Decision and Control. Washington DC: IEEE.Google Scholar
Yamamoto, N., and Bouten, L. 2009. Quantum risk-sensitive estimation and robustness. IEEE Trans. Automat. Contr., 54(1), 92–107.CrossRefGoogle Scholar
Yamamoto, N., Tsumura, K., and Hara, S. 2007. Feedback control of quantum entanglement in a two-spin system. Automatica, 43, 981–992.CrossRefGoogle Scholar
Yamamoto, N. 2005. Parametrization of the feedback Hamiltonian realizing a pure steady state. Phys. Rev. A, 72, 024104.CrossRefGoogle Scholar
Yamamoto, T., Pashkin, Y. A., Astafiev, O., Nakamura, Y., and Tsai, J. S. 2003. Demonstration of conditional gate operation using superconducting charge qubits. Nature, 425, 941.CrossRefGoogle ScholarPubMed
Yamamoto, T., Inomata, K., Watanabe, M., Matsuba, K., Miyazaki, T., Oliver, W. D., Nakamura, Y., and Tsai, J. S. 2008. Flux-driven Josephson parametric amplifier. Appl. Phys. Lett., 93, 042510.CrossRefGoogle Scholar
Yanagisawa, M., and Kimura, H. 1998. A control problem for Gaussian states. Pages 249–313 of: Yamamoto, Y., and Hara, S. (eds), Learning, Control and Hybrid Systems, Lecture Notes in Control and Information Sciences, vol. 241. New York: Springer.Google Scholar
Yanagisawa, M., and Kimura, H. 2003. Transfer function approach to quantum control – Part I: Dynamics of quantum feedback systems. IEEE Trans. Automat. Contr., 48, 2107–2120.CrossRefGoogle Scholar
Yanagisawa, M., and Kimura, H. 2003. Transfer function approach to quantum control – Part II: control concepts and applications. IEEE Trans. Automat. Contr., 48, 2121–2132.CrossRefGoogle Scholar
You, J. Q., Hu, X., Ashhab, S., and Nori, F. 2007. Low-decoherence flux qubit. Phys. Rev. B, 75(Apr), 140515.CrossRefGoogle Scholar
Yu, Y., Han, S., Chu, X., Chu, S.-I., and Wang, Z. 2002. Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science, 296(5569), 889–892.CrossRefGoogle Scholar
Yu, Y., Zhu, S.-L., Sun, G., Wen, X., Dong, N., Chen, J., Wu, P., and Han, S. 2008. Quantum jumps between macroscopic quantum states of a superconducting qubit coupled to a microscopic two-level system. Phys. Rev. Lett., 101, 157001.CrossRefGoogle ScholarPubMed
Yuen, H. P., Kennedy, R. S., and Lax, M. 1975. Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inf. Theory, IT-21, 125.Google Scholar
Yurke, B. 1986. Input states for enhancement of fermion interferometer sensitivity. Phys. Rev. Lett., 56, 1515–1517.CrossRefGoogle ScholarPubMed
Yurke, B., and Stoler, D. 1986. Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett., 57, 13–16.CrossRefGoogle ScholarPubMed
Yurke, B., Kaminsky, P. G., Miller, R. E., Whittaker, E. A., Smith, A. D., Silver, A. H., and Simon, R. W. 1988. Observation of 4.2-K equilibrium-noise squeezing via a Josephson-parametric amplifier. Phys. Rev. Lett., 60, 764–767.CrossRefGoogle Scholar
Yurke, B., Corruccini, L. R., Kaminsky, P. G., Rupp, L. W., Smith, A. D., Silver, A. H., Simon, R. W., and Whittaker, E. A. 1989. Observation of parametric amplification and deamplification in a Josephson parametric amplifier. Phys. Rev. A, 39, 2519–2533.CrossRefGoogle Scholar
Yurke, B., and Denker, J. S. 1984. Quantum network theory. Phys. Rev. A, 29, 1419–1437.CrossRefGoogle Scholar
Zelditch, S. 1987. Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J., 55, 919–941.CrossRefGoogle Scholar
Zhang, G., and James, M. 2011. Direct and indirect couplings in coherent feedback control of linear quantum systems. IEEE Trans. Automat. Contr., 56(7), 1535–1550.CrossRefGoogle Scholar
Zhang, J., Liu, Y.-x., and Nori, F. 2009. Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control. Phys. Rev. A, 79, 052102.CrossRefGoogle Scholar
Zhang, J., Wu, R.-B., Li, C.-W., and Tarn, T. 2010. Protecting coherence and entanglement by quantum feedback controls. IEEE Trans. Automat. Contr., 55(3), 619–633.CrossRefGoogle Scholar
Zhang, J., Wu, R.-B., Liu, Y., Li, C.-W., and Tarn, T. 2012. Quantum coherent nonlinear feedback with applications to quantum optics on chip. IEEE Trans. Automat. Contr., 57(8), 1997–2008.CrossRefGoogle Scholar
Zhang, J., Liu, Y.-x., Wu, R.-B., Jacobs, K., and Nori, F. 2013. Non-Markovian quantum input-output networks. Phys. Rev. A, 87(Mar), 032117.CrossRefGoogle Scholar
Zhou, K., and Doyle, J. C. 1997. Essentials of Robust Control. Englewood Clifts: Prentice Hall.Google Scholar
Zhou, K., Doyle, J. C., and Glover, K. 1995. Robust and Optimal Control. Englewood Cliffts: Prentice Hall.Google Scholar
Zhou, X. Y., Yong, J., and Li, X. 1997. Stochastic verification theorems within the framework of viscosity solutions. SIAM J. Control. Optim., 35, 243–253.CrossRefGoogle Scholar
Zhou, X., and Mizel, A. 2006. Nonlinear coupling of nanomechanical resonators to Josephson quantum circuits. Phys. Rev. Lett., 97, 267201.CrossRefGoogle ScholarPubMed
Zhu, X., Kemp, A., Saito, S., and Semba, K. 2010. Coherent operation of a gap-tunable flux qubit. Appl. Phys. Lett., 97, 102503.CrossRefGoogle Scholar
Zurek, W. H. 1981. Pointer basis of quantum apparatus: into what mixture does the wave packet collapse?Phys. Rev. D, 24(Sep), 1516–1525.CrossRefGoogle Scholar
Zurek, W. H. 1982. Environment-induced superselection rules. Phys. Rev. D, 26(Oct), 1862–1880.CrossRefGoogle Scholar
Zurek, W. H. 1984. Szilard’s engine, Maxwell’s demon and quantum measurements. In: More, G. T., and Scully, M. O. (eds), Frontiers of Non-Equilibrium Statistical Physics. New York: Plenum.Google Scholar
Zurek, W. H., and Paz, J. P. 1994. Decoherence, chaos, and the second law. Phys. Rev. Lett., 72(Apr), 2508–2511.CrossRefGoogle ScholarPubMed
Zwanzig, R. 1960. Ensemble method in the theory of irreversibility. J. Chem. Phys., 33, 1338.CrossRefGoogle Scholar
Zwanzig, R. 1961. Memory effects in irreversible thermodynamics. Phys. Rev., 124, 983–992.CrossRefGoogle Scholar
Zwolak, M., and Vidal, G. 2004. Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. Phys. Rev. Lett., 93, 207205.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Kurt Jacobs, University of Massachusetts, Boston
  • Book: Quantum Measurement Theory and its Applications
  • Online publication: 05 September 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139179027.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Kurt Jacobs, University of Massachusetts, Boston
  • Book: Quantum Measurement Theory and its Applications
  • Online publication: 05 September 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139179027.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Kurt Jacobs, University of Massachusetts, Boston
  • Book: Quantum Measurement Theory and its Applications
  • Online publication: 05 September 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139179027.018
Available formats
×