Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-07T13:20:42.680Z Has data issue: false hasContentIssue false

8 - Stellar stability and hydrodynamics

Published online by Cambridge University Press:  05 June 2012

William K. Rose
Affiliation:
University of Maryland, College Park
Get access

Summary

Pulsational instability

In Chapter 1 we discussed some of the observational properties of periodic variable stars. The instability that drives pulsations in RR Lyrae variables, Cepheids and long-period variables is associated with hydrogen and helium ionization zones. The large heat capacity of these ionization zones causes the phase of maximum luminosity to be delayed by approximately 90° as compared to the phase of minimum radius. Thermonuclear reactions can also cause stars to become pulsationally unstable. Very massive stars and white dwarfs in which thermonuclear runaways are caused by mass accretion from a binary companion become pulsationally unstable as the result of their hydrogen-burning sources. To determine whether a particular star is pulsationally unstable one first determines the structure of the star (i.e. r = r(Mr), P = P(Mr), ρ = ρ(Mr), Lr = Lr(Mr)) and then solves the linearized equation of motion for the oscillatory modes. It is usually adequate to assume that stellar oscillations are adiabatic. If the oscillatory modes of a star have been determined we can evaluate a stability integral which will be derived below. The sign of this stability integral determines whether a particular stellar model is unstable to self-excited oscillations at a particular frequency (eigenmode). We are usually interested only in radial modes of oscillation and in most circumstances only the longest period mode is pulsationally unstable. In β Canis Majoris stars (also known as β Cepheid variables) nonradial oscillatory modes can also become excited.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×