Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-24T11:20:02.200Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

G. Miller
Affiliation:
University of California, Davis
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–58, 2008.
[2] M., Abramowitz and I. A., Stegun. Handbook of Mathematical Functions. Dover, New York, 1972.Google Scholar
[3] A., Aitken. On Bernoulli's numerical solution of algebraic equations. Proc. Roy. Soc. Edinburgh, 46:289–305, 1926.Google Scholar
[4] A., Arce, J., Martinez-Argeitos, and A., Soto. VLE for water + ethanol + 1-octanol mixtures. Experimental measurements and correlations. Fluid Phase Equil., 122:117–129, 1996.Google Scholar
[5] L., Bairstow. Applied Aerodynamics. Longmans, Green, and Co., New York, 2nd edition, 1939.Google Scholar
[6] F., Bashforth and J. C., Adams. An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid. Cambridge University Press, 1883.Google Scholar
[7] H., Bateman. On a set of Kernels whose determinants form a Sturmian sequence. Bull. Am. Math. Soc., 18(4):175–179, 1912.Google Scholar
[8] F. L., Bauer. Optimally scaled matrices. Numer. Math., 5:73–87, 1963.Google Scholar
[9] F. L., Bauer. Computational graphs and rounding error. SIAM J. Num. Anal., 11(1):87–96, 1974.Google Scholar
[10] G. H., Behforooz. A comparison of the E(3) and not-a-knot cubic splines. Appl. Math. Comput., 72:219–223, 1995.Google Scholar
[11] G. H., Behforooz and N., Papamichael. End conditions for cubic spline interpolation. J. Inst. Maths. Applics., 23:355–366, 1979.Google Scholar
[12] E., Beltrami. On bilinear functions. Giornale di Matematiche, 11, 1893. English translation by D. Boley, 1995, published in 3rd International Workshop on SVD and Signal Processing, Aug. 96, Leuven, Belgium, Elsevier, 1996.Google Scholar
[13] C., Benoit. Note sur une méthode de résolution des équations normales provenant de l'application de la méthode des moindres carrés à un systéme d'équations linéaires en nombre inférieur à celui des inconnues. Application de la méthode à la résolution d'un system déflni d'équations linéaires (procédé du Commandant Cholesky). Bull. Geodesique, 2:67–77, 1924.Google Scholar
[14] N., Berglund and B., Gentz. Beyond the Fokker-Planck equation: pathwise control of noisy bistable systems. J. Phys. A: Math. Gen., 35:2057–2091, 2002.Google Scholar
[15] J.-P., Berrut and L.N., Trefethen. Barycentric Lagrange interpolation. SIAM Rev., 46(31):501–517, 2004.Google Scholar
[16] M., Bhatti and P., Bracken. The calculation of integrals involving B-splines by means of recursion relations. Appl. Math. Comput., 172:91–100, 2006.Google Scholar
[17] A., Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.Google Scholar
[18] F., Black and M., Scholes. The pricing of options and corporate liabilities. J. Pol. Econ., 81:637–654, 1973.Google Scholar
[19] G., Boole. A Treatise on the Calculus of Finite Differences. Macmillan and Co., London, 3rd edition, 1880.Google Scholar
[20] J., Boothroyd. Algorithm 27: Rearrange the elements of an array section according to a permutation of the subscripts. Comp. J., 10(2):310, 1967.Google Scholar
[21] M., Born and R., Oppenheimer. Zur Quantentheorie der Molekeln. Ann. Phys., 84(20):457–484, 1927.Google Scholar
[22] G. E. P., Box and M. E., Muller. A note on the generation of random normal deviates. Ann. Math. Stat., 29(2):610–611, 1958.Google Scholar
[23] S. F., Boys. Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system. Proc. Roy. Soc. London., 200A(1063):542–554, 1950.Google Scholar
[24] A., Brandt. Multi-level adaptive technique (MLAT) for fast numerical solution of boundary-value problems. In H., Cabannes and R., Temam, editors, Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, Paris, 1972. Lecture notes in Physics 18, pages 82–89. Springer, New York, 1973.Google Scholar
[25] A., Brandt. Multi-level adaptive solutions to boundary-value problems. Math. Comp., 31(138):333–390, 1977.Google Scholar
[26] W. L., Briggs, V. E., Henson, and S. F., McCormick. A Multigrid Tutorial. SIAM, 2nd edition, 2000.Google Scholar
[27] R., Brown. A brief account of microscopical observations made in the months of June, July, and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Magazine, 4(21):161–173, 1828.Google Scholar
[28] C. G., Broyden. The convergence of a class of double-rank minimization algorithms 1. General considerations. J. Inst. Math. Applics., 6:76–90, 1970.Google Scholar
[29] R., Bulirsch. Bemerkungen zur Romberg-integration. Numer. Math., 6:6–16, 1964.Google Scholar
[30] R., Bulirsch. Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwert-problemen und Aufgaben der optimalen Steuerung. Report of the Carl-Cranz-Gesellschaft, Oberpfaffenhofen, Germany, 1971.Google Scholar
[31] R., Bulirsch and J., Stoer. Fehleräbschatzungen und extrapolation mit rationalen funktionen bie verfahren vom Richardsontypus. Numer. Math., 6:413–427, 1964.Google Scholar
[32] C. A., Cantrell. Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems. Atmos. Chem. Phys., 8:5477–5487, 2008.Google Scholar
[33] G., Cardan. Artis Magnae, Sive de Regulis Algebraicis Liber Unus. J. Petreius, Nuremberg, 1545.Google Scholar
[34] A. L., Cauchy. Cours d'analyse de l'école royale polytechnique, 1821. In Œuvres Complètes d'Augustin Cauchy. series 2, Vol. 3. Gauthier-Villars, Paris, 1897.Google Scholar
[35] A. L., Cauchy. Résumé des leçons données a l'école royale polytechnique sur le calcul infinitésimal. In Œuvres Complétes d'Augustin Cauchy series. 2, Vol. 4. Gauthier-Villars, Paris, 1899.Google Scholar
[36] P., Chebyshev. Théorie des mécanismes connus sous le nom parallelogrammes. Mémoires des Savants Étrangers Présentes à l'Academie de Saint-Pétersbourg, 7:539–586, 1854.Google Scholar
[37] A. J., Chorin. Hermite expansions in Monte-Carlo computation. J. Comput. Phys., 8:472–482, 1971.Google Scholar
[38] E. B., Christoffel. Sur une classe particulière de fonctions entières et de fractions continues. Ann. Mat. Pura Appi., 8(2):1–10, 1877.Google Scholar
[39] C. W., Clenshaw. Chebyshev series for mathematical functions. In National Physical Laboratory Mathematical Tables, Vol. 5. Her Majesty's Stationery Office, London, 1962.Google Scholar
[40] P., Colella. A direct Eulerian MUSCL scheme for gas dynamics. SIAMJ. Sci. Stat. Comput., 6(1):104–117, 1985.Google Scholar
[41] E. U., Condon. The theory of complex spectra. Phys. Rev., 36(7):1121–1133, 1930.Google Scholar
[42] J. W., Cooley and J. W., Tukey. An algorithm for the machine calculation of complex Fourier series. Math. Comp., 19(90):297–301, 1965.Google Scholar
[43] R., Cotes. Harmonia Mensurarum. Cambridge, 1722.Google Scholar
[44] A. J., Cox and N. J., Higham. Stability of Householder QR factorization for weighted least squares problems. In D. F., Griffiths, D. J., Higham, and G. A., Watson, editors, Numerical Analysis 1977, Proceedings of the 17th Dundee Biennial Conference, pages 57–73. Addison Wesley Longman, Harlow, 1998.Google Scholar
[45] H., Cramer. On some classes of series used in mathematical statistics. In Sixth Scandinavian Mathematical Congress, pages 399–425. Copenhagen, 1925.Google Scholar
[46] J. H., Curry, L., Garnett, and D., Sullivan. On the iteration of a rational function: Computer experiments with Newton's method. Comm. Math. Phys., 91(2):267–277, 1983.Google Scholar
[47] C. F., Curtiss and J. O., Hirschfelder. Integration of stiff equations. Proc. Natl. Acad. Sci., 38:235–243, 1952.Google Scholar
[48] G., Dahlquist. Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand., 4:33–53, 1956.Google Scholar
[49] G. B., Dantzig. Programming of interdependent activities: II mathematical model. Econometrica, 17(3/4):200–211, 1949.Google Scholar
[50] G. B., Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, New Jersey, 1963.Google Scholar
[51] W. C., Davidon. Variable metric method for minimization. Technical report, Argonne National Laboratory, 1959. report ANL-5990 (reprinted as SIAMJ. Opt., 1(1):1–17,1991).Google Scholar
[52] C. H., Davis. Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections: A Translation of Gauss's “Theoria Motus”. Little, Brown and Co., Boston, 1857.Google Scholar
[53] C., de Boor. On calculating with B-splines. J. Approx. Theory, 6:50–62, 1972.Google Scholar
[54] C., de Boor. A Practical Guide to Splines. Springer-Verlag, New York, 1978.Google Scholar
[55] C., de Boor. Convergence of the cubic spline interpolation problem with the not-a-knot condition. Technical report, Mathematics Research Center, University of Wisconsin, Madison, 1984. Technical Summary Report #2876.Google Scholar
[56] J., Demmel, M., Gu, S., Eisenstat, I., Slapnicar, K., Verelic, and Z., Drmac. Computing the singular value decomposition with high relative accuracy. Linear Alg. Appl., 299(1):21–80, 1999.Google Scholar
[57] J., Demmel and K., Veselić. Jacobi's method is more accurate than QR. SIAM J. Matrix Anal. Appl., 13(4):1204–1245, 1992.Google Scholar
[58] C., Eckart and G., Young. The approximation of one matrix by another of lower rank. Psychometrika, 1(3):211–218, 1936.Google Scholar
[59] L., Euler. Methodus generalis summandi progressiones. Comment. Acad. Sci. Imp. Petrop., 6:68–97, 1738.Google Scholar
[60] L., Euler. Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti. Marc-Michel Bousquet, Lausanne & Geneva, 1744.Google Scholar
[61] R. P., Fedorenko. A relaxation method for solving elliptic difference equations. USSR Comp. Math. and Math. Phys., 1(4):1092–1096, 1962. First published in Russian in Zh. Vych. Mat. 1(5):922–927, 1961.Google Scholar
[62] R. P., Fedorenko. The speed of convergence of one iterative process. USSR Comp. Math. and Math. Phys., 4(3):227–235, 1964. First published in Russian in Zh. Vych. Mat. 4(3):559–564, 1964.Google Scholar
[63] L., Feigenbaum. Brook Taylor and the method of increments. Arch. Hist. Ex. Sci., 34(1-2):1–140, 1985.Google Scholar
[64] N., Ferguson. Wall Street lays another egg. Vanity Fair, page 190, December 2008.Google Scholar
[65] R., Fletcher. A new approach to variable metric algorithms. Comput. J., 13(3):317–322, 1970.Google Scholar
[66] R., Fletcher and M. J. D., Powell. A rapidly convergent descent method for minimization. Comput. J., 6(2):163–168, 1963.Google Scholar
[67] V., Fock. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeit. Phys. A, 61(1-2):126–148, 1930.Google Scholar
[68] G. E., Forsythe. Gauss to Gerling on relaxation. Math. Tables Aids Comput., 5(35):255–258, 1951.Google Scholar
[69] G. E., Forsythe and C. B., Moler. Computer Solution of Linear Algebraic Systems. Prentice-Hall, Englewood Cliffs, NJ, 1967.Google Scholar
[70] J. B. J., Fourier. Solution d'une question particuliere au calcul des inégalités, second extrait. Histoire de l'Académie des Sciences pour 1824, pages xlvii–lv. Reprinted in Œuvres de Fourier, ed. G. Darboux, Vol. 2, pp. 325-328. Gauthier-Villars, Paris, 1890.
[71] L., Fox. Romberg integration for a class of singular integrands. Comput. J., 10(1):87–93, 1967.Google Scholar
[72] J. G. F., Francis. The QR transformation: a unitary analogue to the LR transformation - Part 1. Comput. J., 4(3):265–271, 1961.Google Scholar
[73] J. G. F., Francis. The QR transformation – Part 2. Comput. J., 4(4):332–345, 1962.Google Scholar
[74] C. G., Fraser. Isoperimetric problems in the variational calculus of Euler and Lagrange. Historia Mathematica, 19:4–23, 1992.Google Scholar
[75] D. C., Fraser. Newton's Interpolation Formulas. C. & E. Layton, London, 1927.Google Scholar
[76] A., Galantai and C.J., Hegedus. Hyman's method revisited. J. Comp. Appl. Math., 226(2):246–258, 2009.Google Scholar
[77] W., Gander and W., Gautschi. Adaptive quadrature – revisited. BIT, 40(1):84–101, 2000.Google Scholar
[78] C. F., Gauss. Methodus nova integralium valores per approximationem inveniendi. Comment. Soc. Regiae Sci. Gottingensis Recentiores, 3:39–76, 1814. reprinted in Werke, vol 3, pp. 163-196.Google Scholar
[79] C. F., Gauss. Briefwechsel zwischen Carl Friedrich Gauss und Christian Ludwig Gerling. Otto Elsner, Berlin, 1927.Google Scholar
[80] W., Gautschi. Construction of Gauss–Christoffel quadrature formulas. Math. Comp., 22(102):251–270, 1968.Google Scholar
[81] W., Gautschi. On the construction of Gaussian quadrature rules from modified moments. Math. Comp., 24(110):245–260, 1970.Google Scholar
[82] H., Geiringer. On the solution of linear equations by certain iteration methods. In Staff of the Department of Aeronautical Engineering and Applied Mechanics of the Polytechnic Institute of Brooklyn, editor, Reissner Anniversary Volume. Contributions to Applied Mechanics. Edwards Brothers, Ann Arbor, Michigan, 1949.Google Scholar
[83] W. M., Gentleman and G., Sande. Fast Fourier transforms: for fun and profit. In AIEE-IRE Proceedings of the November 7-10, 1966, Fall Joint Computer Conference, pages 563–578, 1966.Google Scholar
[84] S., Gerschgorin. Über die abgrenzung der eigenwerte einer matrix. Izv. Akad. Nauk. SSSR Otd. Fiz.-Mat. Nauk., 7:749–754, 1931.Google Scholar
[85] W., Givens. Computation of plane unitary rotations transforming a general matrix to triangular form. J. SIAM, 6(1):26–50, 1958.Google Scholar
[86] S. K., Godunov. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Math. Sbornik, 47(3):271–306, 1959. Translated from Russian by I. Bohachevsky.Google Scholar
[87] D., Goldfarb. A family of variable-metric methods derived by variational means. Math. Comp., 24(109):23–26, 1970.Google Scholar
[88] D., Goldfarb and A., Idnani. Dual and primal-dual methods for solving strictly convex quadratic programs. In J., Hennart, editor, Numerical Analysis: Proceedings of the Third IIMAS Workshop held at Cocoyoc, Mexico, Jan. 19-23, 1981, pages 226–239. Springer-Verlag, New York, 1982.Google Scholar
[89] D., Goldfarb and A., Idnani. A numerically stable dual method for solving strictly convex quadratic programs. Math. Programming, 27:1–33, 1983.Google Scholar
[90] G., Golub. Numerical methods for solving linear least squares problems. Numer. Math., 7(3):206–216, 1965.Google Scholar
[91] G., Golub and W., Kahan. Calculating the singular values and pseudoinverse of a matrix. J. SIAMB, Num. Anal., 2(2):205–224, 1965.Google Scholar
[92] G. H., Golub and C., Reinsch. Singular value decomposition and least squares solution. Numer. Math., 14(5):403–420, 1970.Google Scholar
[93] G. H., Golub and C.F., van Loan. Matrix Computations. John's Hopkins University Press, Baltimore, 1983.Google Scholar
[94] G. H., Golub and J. H., Welsch. Calculation of Gauss quadrature rules. Math. Comp., 23(106):221–221, 1969.Google Scholar
[95] J. P., Gram. Ueber die entwickelung reeller functionen in reihen mittelst der methode der kleinsten quadrate. J. Reine Angew. Math., 94:41–73, 1883.Google Scholar
[96] F. J., Harris. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE, 66:51–83, 1978.Google Scholar
[97] H.L., Harter. Method of least-squares and some alternatives. Int. Stat. Rev., 42(2):147–174, 1974. continued in 42(3):235-264, 1974; 43(1):1-44, 1975; 43(2):125-190, 1975; 43(3):269-278, 1975; and 44(1):113-159, 1976.Google Scholar
[98] D. R., Hayes and L., Rubin. A proof of the Newton–Cotes quadratures formulas with error term. Amer. Math. Mon., 77(10):1065–1072, 1970.Google Scholar
[99] W. J., Hehre, R. F., Stewart, and J. A., Pople. Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys., 51(6):2657–2664, 1969.Google Scholar
[100] M. T., Heideman, D. H., Johnson, and C. S., Burrus. Gauss and the history of the Fast Fourier Transform. Arch. Hist. Exact Sci., 34(3):265–277, 1985.Google Scholar
[101] C., Hermite. Sur la formulè d'interpolation de Lagrange. J. Reine Angew. Math., 84:70–79, 1878.Google Scholar
[102] G., Herzberg. The dissociation energy of the hydrogen molecule. J. Molec. Spectry., 33(1):147–168, 1970.Google Scholar
[103] M. R., Hestenes and E., Stiefel. Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards, 49(6):409–436, 1952.Google Scholar
[104] N. J., Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, 2nd edition, 2002.Google Scholar
[105] N.J., Higham. The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal., 24(4):547–556, 2004.Google Scholar
[106] N. J., Higham and D. J., Higham. Large growth factors in Gaussian elimination with pivoting. SIAM J. Matrix Anal. Appl., 10(2):155–164, 1989.Google Scholar
[107] E., Hille. A class of reciprocal functions. Ann. Math., 27(4):427–464, 1926.Google Scholar
[108] F. S., Hillier and G. J., Lieberman. Operations Research. Holden-Day, San Francisco, 2nd edition, 1974.Google Scholar
[109] C. A. R., Hoare. Algorithm 64: Quicksort. Comm. ACM, 4(7):321, 1961.Google Scholar
[110] C. A. R., Hoare. Quicksort. Comp. J., 5(1):10–15, 1962.Google Scholar
[111] W. G., Horner. A new method of solving numerical equations of all orders, by continuous approximation. Phil. Trans. Roy. Soc. London, 109:308–335, 1819.Google Scholar
[112] A. S., Householder. Unitary triangularization of a nonsymmetric matrix. J. ACM, 5(4):339–342, 1958.Google Scholar
[113] R. E., Howitt. Agricultural and environmental policy models: calibration, estimation, and optimization. online at http://agecon.ucdavis.edu/people/faculty/richard-howitt/docs/master.pdf, 2005.Google Scholar
[114] J., Hubbard, D., Schleicher, and S., Sutherland. How to find all roots of complex polynomials by Newton's method. Invent. Math., 146:1–33, 2001.Google Scholar
[115] T. E., Hull, T. F., Fairgrieve, and P.-T. P., Tang. Implementing complex elementary functions using exception handling. ACM Trans. Math. Softw., 20(2):215–244, 1994.Google Scholar
[116] M. A., Hyman. Eigenvalues and eigenvectors of general matrices. In 12th National Meeting of the Association for Computing Machinery, Houston, Texas, 1957. (presentation).Google Scholar
[117] K., Itô. On stochastic differential equations. Memoirs Amer. Math. Soc., 4:1–51, 1951.Google Scholar
[118] C. G. J., Jacobi. Über eine neue Auflösungsart der bei der Methode der kleinsten Quadrate vorkommenden lineären Gleichungen. Astron. Nach., 22(20):297–306, 1845. Translated by G. W. Stewart, On a new way of solving the linear equations that arise in the method of least squares, IMA Preprint Series #951, 1992.Google Scholar
[119] C. G. J., Jacobi. Über ein leichtes Verfahren die in der Theorie der Säcularstörungen verommenden Gleichungen numerisch aufzolösen. J. Reine Angew. Math., pages 51–94, 1846.Google Scholar
[120] M., Jankowski and H., Woźniakowski. Iterative refinement implies numerical stability. BIT, 17(3):303–311, 1977.Google Scholar
[121] C., Jordan. Mémoire sur la réduction et la transformation des systèmes quadratiques. J. Math. Pure. Appl., 19:397–422, 1874.Google Scholar
[122] W., Kahan. Interval arithmetic options in the proposed IEEE floating point arithmetic standard. In K. L. E., Nickel, editor, Interval Mathematics 1980, pages 99–128. Academic Press, New York, 1980.Google Scholar
[123] W., Kahan. Mathematics written in sand. Proceedings of the Joint Statistical Meeting of the American Statistical Association, pages 12–26, 1983. Version 22 is available online as http://www.cs.berkeley.edu/~wkahan/MathSand.pdf.Google Scholar
[124] B., Kallemov and G. H., Miller. A second-order strong method for the Langevin equations with holonomic constraints. SIAM J. Sci. Comput., 33(2):653–676, 2011.Google Scholar
[125] L. V., Kantorovich. On an efficient method of solving some classes of extremal problems. Dokl. Akad. Nauk SSSR, 28:212–215, 1940.Google Scholar
[126] L. V., Kantorovich. Functional analysis and applied mathematics. Usp. Mat. Nauk, 3(6):89–185, 1948. (in Russian). Translated by C. D. Benster as National Bureau of Standards report 1509, 1952.Google Scholar
[127] W., Karush. Minima of functions of several variables with inequalities as side conditions. Master's thesis, The University of Chicago, 1939.Google Scholar
[128] A., Khintchine. Korrelationstheorie der stationaren stochsachen Prozesse. Math. Ann., 109(1):604–615, 1934.Google Scholar
[129] J., Kiefer. Sequential mimimax search for a maximum. Proc. Amer. Math. Soc., 4(3):502–506, 1953.Google Scholar
[130] H. F., King and M., Dupuis. Numerical integration using Rys polynomials. J. Comp. Phys., 21(2):144–165, 1976.Google Scholar
[131] P. E., Kloeden and E., Platen. Numerical Solution of Stochastic Differential Equations. Springer, New York, 3rd edition, 1999.Google Scholar
[132] T., Kojima. On the limits of the roots of an algebraic equation. Tohoku Math J., 11:119–127, 1917.Google Scholar
[133] W., Kolos and L., Wolniewicz. Improved theoretical ground-state energy of the hydrogen molecule. J. Chem. Phys., 49(1):404–410, 1968.Google Scholar
[134] D., König. Vonalrendszerek és determinánsok. Math. és Term. tud. Ért., 33:433–444, 1915.Google Scholar
[135] H. W., Kuhn and A. W., Tucker. Nonlinear programming. In Proceedings of the Second Berkeley Symposium on Mathematics, Statistics, and Probability, pages 481–492. University of California Press, 1981.Google Scholar
[136] R., Kupferman, G. A., Pavliotis, and A. M., Stuart. Itô versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise. Phys. Rev. E, 70(037120):1–9, 2004.Google Scholar
[137] W., Kutta. Beitrag zur naherungsweisen Integration totaler Differentialgleichungen. Z. Math. und Phys., 46:435–453, 1901.Google Scholar
[138] J. L., Lagrange. Lecon sur le calcul des fonctions, 1806. In J.-A., Serret, editor, Œuvres de Lagrange, Vol. 10. Gauthier-Villars, Paris, 1867.Google Scholar
[139] J. L., Lagrange. Théorie des fonctions analytiques, contenant les principles du calcul différentiel, degagés de tout considération d'infiniment petits, d'évanouissans, de limites et de fluxions, et réduits à l'analyse algébrique des quantités finies, 1797. In J.-A., Serret, editor, Œuvres de Lagrange, Vol. 9 Gauthier-Villars, Paris, 1867.Google Scholar
[140] J. L., Lagrange. Leçons élémentaires sur les mathématiques données a l'École Normale, 1795. In J.-A., Serret, editor, Œuvres de Lagrange, Vol. 7. Gauthier-Villars, Paris, 1877.Google Scholar
[141] P., Langevin. Sur la théorie du mouvement Brownien. C. R. Hebdomadaires des Séances de l'Académie des Sciences, 146:530–533, 1908.Google Scholar
[142] P., Lauchli. Jordan-Elimination und Ausgleichung nach kleinsten Quadraten. Numer. Math., 3:226–240, 1961.Google Scholar
[143] C. L., Lawson and R. J., Hanson. Solving Least Squares Problems. SIAM, Philadelphia, 1995.Google Scholar
[144] G. W., Leibniz. Mathematische Schriften, Vol. 2. Georg Olms Verlag, Hildesheim, Germany, 1849. reprinted in 1962. Letter to the Marquis de l'Hôpital dated April 28, 1693, pages 236–241.Google Scholar
[145] F., Leja. Sur certaines suites liées aux ensembles plans et leur application à la représentatton conforme. Ann. Polon. Math., 4:8–13, 1957.Google Scholar
[146] R. J., LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002.Google Scholar
[147] P., Levy. Wiener's random function, and other Laplacian random functions. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pages 171–187. University of California Press, 1951.Google Scholar
[148] R., Lipschitz. De explicatione per series trigonometricas instituenda functionum unius vari-ablis arbitrariarum, et praecipue earum, quae per variablis spatium finitum valorum maxi-morum et minimorum numerum habent infintum disquisitio. Z. Angew. Math., 63:296–308, 1864.Google Scholar
[149] P.-O., Löwdin. On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys., 18(3), 1950.Google Scholar
[150] J. N., Lyness. Notes on the adaptive Simpson quadrature routine. J. ACM, 16(3):483–495, 1969.Google Scholar
[151] J. K. L., MacDonald. Successive approximations by the Rayleigh–Ritz variation method. Phys. Rev., 43(10):830–833, 1933.Google Scholar
[152] H., Maehly. Zur iterativen Auflösung algebraischer Gleichungen. Z. Agnew. Math. Physik, 5:260–263, 1954.Google Scholar
[153] P. C., Mahalanobis. On the generalized distance in statistics. Proc. Nat. Inst. Sci. India, 2:49–55, 1936.Google Scholar
[154] G., Marsaglia and T. A., Bray. A convenient method for generating normal variables. SIAM Rev., 6(3):260–264, 1964.Google Scholar
[155] S. F., McCormick. An algebraic interpretation of multigrid methods. SIAMJ. Num. Anal., 19(3):558–560, 1982.Google Scholar
[156] W. M., McKeeman. Algorithm 145: Adaptive numerical integration by Simpson's rule. Comm. ACM, 5(12):604, 1962.Google Scholar
[157] W. M., McKeeman. Certification of algorithm 145 adaptive numerical integration by Simpson's rule. Comm. ACM, 6(4):167–168, 1963.Google Scholar
[158] L. E., McMurchie and E. R., Davidson. One- and two-electron integrals over Cartesian Gaussian functions. J. Comp. Phys., 26(2):218–231, 1978.Google Scholar
[159] D., McQuarrie. Quantum Chemistry. University Science Books, Mill Valley, California, 1983.Google Scholar
[160] E., Meijering. A chronology of interpolation: from ancient astronomy to modern signal and image processing. Proc. IEEE, 90(3), 2002.Google Scholar
[161] A., Melman. Modified Gershgorin disks for companion matrices. SIAM Rev., 54:355–373, 2012.Google Scholar
[162] A., Miele, E. E., Cragg, R. R., Iyer, and A. V., Levy. Use of the augmented penalty function in mathematical programming problems, part1. J. Opt. Theory. Appl., 8(2):115–130, 1971.Google Scholar
[163] G. N., Mil'shtein. A theorem on the order of convergence of mean-square approximations of solutions of system of stochastic differential equations. TheoryProb. Appl., 32:738–741, 1988.Google Scholar
[164] G. N., Milstein and M. V., Tretyakov. Stochastic Numerics for Mathematical Physics. Springer, New York, 2004.Google Scholar
[165] E. H., Moore. On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc., 26(9):394–395, 1920.Google Scholar
[166] G. E., Moore. Cramming more components onto integrated circuits. Electronics, 38(8):114–117, 1965.Google Scholar
[167] D. D., Morrison, J. D., Riley, and J. F., Zancarano. Multiple shooting method for two-point boundary value problems. Comm. ACM, 5(12):613–614, 1962.Google Scholar
[168] F. R., Moulton. New Methods in Exterior Ballistics. The University of Chicago Press, Chicago, 1926.Google Scholar
[169] P., Munz, I., Hudea, J., Imad, and R. J., Smith. When zombies attack! Mathematical modeling of an outbreak of zombie infection. In T. M., Tchuenche and C., Chiyaka, editors, Infectious Disease Modelling Research Progress, pages 133–150. Nova Science, Hauppauge, NY, 2010.Google Scholar
[170] L., Neal and G., Poole. A geometric analysis of Gaussian elimination. II. Linear Alg. Appl., 173:239–264, 1992.Google Scholar
[171] E. H., Neville. Iterative interpolation. J. Indian Math. Soc., 20:87–120, 1933.Google Scholar
[172] S. S., Oren. Self-scaling variable metric (SSVM) algorithms. Part II: Implementation and experiments. Management Sci., 20(5):863–874, 1974.Google Scholar
[173] S. S., Oren and D. G., Luenberger. Self-scaling variable metric (SSVM) algorithms. Part I: Criteria and sufficient conditions for scaling a class of algorithms. Management Sci., 20(5):845–862, 1974.Google Scholar
[174] S. S., Oren and E., Spedicato. Optimal conditioning of self-scaling variable metric algorithms. Math. Programming, 10:70–90, 1976.Google Scholar
[175] E. E., Osborne. On the least squares solutions of linear equations. J. ACM, 8(4):628–636, 1961.Google Scholar
[176] Paramésvara. Siddhāntadīpikā. ca. 1380/1460. Reprinted in T. S. Kuppanna, Sastri, Mahābhāskarīya of Bhāskarācārya with the Bhāsya of Godindasvāmin and the supercommentary Siddhāntadipikā of Parameśvara, Government Oriental Library, Madras, 1957.Google Scholar
[177] W., Pauli. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Zeit. Phys., 31(1):765–783, 1925.Google Scholar
[178] G., Peano. Residuo in formulas de quadratura. Mathesis, Quatrième Série, 4:5–10, 1914.Google Scholar
[179] K., Pearson. On lines and planes of closest fit to systems of points in space. Phil. Mag. Series 6, 2:559–572, 1901.Google Scholar
[180] R., Penrose. A generalized inverse for matrices. Math. Proc. Cambridge Phil. Soc., 51(3):406–413, 1955.Google Scholar
[181] G., Peters and J.H., Wilkinson. Practical problems arising in the solution of polynomial equations. J. Inst. Math. Applies., 8(1):16–35, 1971.Google Scholar
[182] E., Platen and W., Wagner. On a Taylor formula for a class of Ito processes. Prob. Math. Stat., 3(1):37–51, 1982.Google Scholar
[183] K., Plofker. The secant method of iterative approximation in a fifteenth-century Sanskrit text. Historia Mathematica, 23:246–256, 1996.Google Scholar
[184] G., Poole and L., Neal. A geometric analysis of Gaussian elimination. I. Linear Alg. Appl., 149:249–272, 1991.Google Scholar
[185] G., Poole and L., Neal. The rook's pivoting strategy. J. Comp. Appl. Math., 123:353–369, 2000.Google Scholar
[186] M. J. D., Powell and J. K., Reid. On applying Householder transformations to linear least squares problems. Technical report, Mathematics Branch, Theoretical Physics Division, Atomic Energy Research Establishment, Hartwell, 1968. T.P. 322.Google Scholar
[187] J., Raphson. Analysis Æquationum Universalis, seu, Ad Æquationes Algebraicas Resol-vendas Methodus Generalis, et Expedita: ex Nova Infinitarum Serierum Doctrina Deducta ac Demonstrata. Abel Swale, London, 1690.Google Scholar
[188] L., Rayleigh. On the calculation of Chladni's figures for a square plate. Phil. Mag. Series 6, 22(128):225–229, 1911.Google Scholar
[189] H. H., Reamer, R. H., Olds, B. H., Sage, and W. N., Lacey. Phase equilibria in hydrocarbon systems: methane-carbon dioxide system in the gaseous region. Ind. Eng. Chem., 36:88–90, 1944.Google Scholar
[190] L., Reichel. Newton interpolation at Leja points. BIT, 30:332–346, 1990.Google Scholar
[191] L. F., Richardson. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Phil. Trans. Roy. Soc. London, 210:307–357, 1911.Google Scholar
[192] L. F., Richardson. The deferred approach to the limit. Part I – Single lattice. Phil. Trans. Roy. Soc. London A, 226:299–349, 1927.Google Scholar
[193] W., Ritz. Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. Reine Angew. Math., 135(1):1–61, 1909.Google Scholar
[194] J. J., Rodriguez. An improved bit-reversal algorithm for the fast Fourier transform. In IEEE International Conference on Acoustics, Speech, and Signal Processing, 1988, Vol. 3, pages 1407–1410, 1988.Google Scholar
[195] M., Rolle. Démonstration d'une Méthode Pour Résoudre les Égalités de Tous les Degrés, Suivies de Deux Autres Méthodes, Dont la Premiére Donne les Moyens de Résoudre ces Mêmes Égalités par la Géométrie, et al Second pour Résoudre Plusieurs Questions de Diophante qui n'ont point été Résolues. Paris, 1691.Google Scholar
[196] W., Romberg. Vereinfachte numerische Integration. Det Kongelige Norske Videnskabers Selskab Forhandlinger (Trondheim), 28(7):30–37, 1955.Google Scholar
[197] C. C. J., Roothaan. New developments in molecular orbital theory. Rev. Mod. Phys., 23(2):69–89, 1951.Google Scholar
[198] C. C. J., Roothaan and P. S., Bagus. Atomic self-consistent field calculations by the expan-sion method. In B., Alder, S., Fernbach, and M., Rotenberg, editors, Methods in Computational Physics, Vol. 2, pages 47–94. Academic Press, New York, 1963.Google Scholar
[199] B. J., Rosenberg, W. C., Ermler, and I., Shavitt. Ab initio SCF and CI studies on the ground state of the water molecule. II. Potential energy and property surfaces. J. Chem. Phys., 65(10):4072–4080, 1976.Google Scholar
[200] B. J., Rosenberg and I., Shavitt. Ab initio SCF and CI studies on the ground state of the water molecule. I. Comparison of the CGTO and STO basis sets near the Hartree-Fock limit. J. Chem. Phys., 63(5):2162–2174, 1975.Google Scholar
[201] H. H., Rosenbrock. An automatic method for finding the greatest or least value of a function. Comput. J., 3(3):175–184, 1960.Google Scholar
[202] E., Rouché. Mémoire sur la série de Lagrange. J. de l'École Polytechnique, Paris, 39:217–219, 1862.Google Scholar
[203] C., Runge. Über die numerische AufLösung von Differentialgleichungen. Math. Ann., 46(2):167–178, 1895.Google Scholar
[204] C., Runge. Über empirische Funktionen und die Interpolation zwischen aquidistanten Ordinaten. Z. Math. Phys., 46:224–243, 1901.Google Scholar
[205] T. W. F., Russell and M. M., Denn. Introduction to Chemical Engineering Analysis. Wiley, New York, 1972.Google Scholar
[206] H., Rutishauser. Solution of eigenvalue problems with the LR-transformation. Nat. Bur. Standards Appl. Math. Ser., 49:47–81, 1958.Google Scholar
[207] J., Rys, M., Dupuis, and H. F., King. Computation of electron repulsion integrals using the Rys quadrature method. J. Comp. Chem., 4(2):154–157, 1983.Google Scholar
[208] R. A., Sack and A. F., Donovan. An algorithm for Gaussian quadrature given modified moments. Numer. Math., 18(5):465–478, 1972.Google Scholar
[209] H. B., Schlegel and J. J. W., McDouall. Do you have SCF stability and convergence problems? In C., Ögretir and I. G., Csizmadia, editors, Computational Advances in Organic Chemistry, pages 167–185. Kluwer Academic, Netherlands, 1991.Google Scholar
[210] E., Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math. Ann., 63:433–476, 1907.Google Scholar
[211] H., Schnieder. The concepts of irreducibility and full indecomposability of a matrix in the works of Frobenius, Konig and Markov. Linear Alg. Appl., 18(2):139–162, 1977.Google Scholar
[212] I. J., Schoenberg. Contributions to the problem of approximation of equidistant data by analytic functions. Quart. Appl. Math., 4:45–99, 112-141, 1946.Google Scholar
[213] E., Schrodinger. An undulatory theory of the mechanics of atoms and molecules. Phys. Rev., 28(6):1029–1070, 1926.Google Scholar
[214] L., Seidel. Über ein Verfahren, die Gleichungen, auf welche die Methode der kleinsten Quadrate führt, sowie lineare Gleichungen uberhaupt, durch successive Annäherung aufzulösen. Abh. Math.-Phys. Cl. Kön. Bayr. Akad. Wiss., 11(3):81–108, 1873.Google Scholar
[215] D. F., Shanno. Conditioning of quasi-Newton methods for function minimization. Math. Comp., 24(111):647–656, 1970.Google Scholar
[216] I., Shavitt. The Gaussian function in calculations of statistical mechanics and quantum mechanics. In B., Alder, S., Fernbach, and M., Rotenberg, editors, Methods in Computational Physics, Vol. 2, pages 1–45. Academic Press, New York, 1963.Google Scholar
[217] T., Simpson. Mathematical Dissertations on a Variety of Physical and Analytical Subjects. T. Woodward, London, 1743.Google Scholar
[218] J.C., Slater. The theory of complex spectra. Phys. Rev., 34(10):1293–1322, 1929.Google Scholar
[219] J. C., Slater. Atomic shielding constants. Phys. Rev., 36(1):57–64, 1930.Google Scholar
[220] S., Smale. Newton's method estimates from data at one point. In R., Ewing, K., Gross, and C., Martin, editors, The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics, pages 185–196. Springer-Verlag, New York, 1986.Google Scholar
[221] D. E., Smith. A Source Book in Mathematics. Dover, New York, 1959.Google Scholar
[222] P., Stein and R. L., Rosenberg. On the solution of linear simultaneous equations by iteration. J. London Math. Soc., 1(2):111–118, 1948.Google Scholar
[223] G. W., Stewart. On the early history of the singular value decomposition. SIAM Rev., 35(4):551–566, 1993.Google Scholar
[224] T. J., Stieltjes. Quelques recherches sur la théorie des quadratures dites méchaniques. Ann. Sci. École Norm. Paris Sér. 3, 1:409–426, 1884. Reprinted in Oeuvres, vol I, pp. 377-396.Google Scholar
[225] J., Stoer and R., Bulirsch. Introduction to Numerical Analysis. Springer, New York, 2nd edition, 1993.Google Scholar
[226] C., Störmer. Methode d'intégration numerique des équations différentielles ordinaires. Comptes Rendus du Congres International des Mathématiciens, Strasbourg, 22-30 Step. 1920, pages 243–257, 1921.Google Scholar
[227] G., Strang. Linear Algebra and its Applications. Academic Press, New York, 2nd edition, 1980.Google Scholar
[228] H., Taketa, S., Huzinaga, and K., O-Ohata. Gaussian-expansion method for molecular integrals. J. Phys. Soc. Japan, 21(11):2313–2324, 1966.Google Scholar
[229] D., Talay and L., Tubaro. Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl., 8(4):483–509, 1990.Google Scholar
[230] B., Taylor. Methodus Incrementorum Directa et Inversa. London, 1715.Google Scholar
[231] R. S., Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1962.Google Scholar
[232] S., Venit. The convergence of Jacobi and Gauss-Seidel iteration. Math. Mag., 48(3):163–167, 1975.Google Scholar
[233] L., Verlet. Computer “experiments” on classical fluids. I. Thermodynamic properties of Lennard-Jones molecules. Phys. Rev., 159(1):98–103, 1967.Google Scholar
[234] R., von Mises and H., Pollaczek-Geiringer. Praktische Verfahren der GleichungsaufLösung. Z. Angew. Math. Mech., 9(1&2):58-77, 152–164, 1929.Google Scholar
[235] W., Wagner and E., Platen. Approximation of Ito integral equations. Preprint ZIMM, Akad. Wissenschaften, DDR, Berlin, 1978.Google Scholar
[236] E., Waring. Problems concerning interpolations. Phil. Trans. Roy. Soc. London, 69:59–67, 1779.Google Scholar
[237] T., Weddle. On a new and simple rule for approximating to the area of a figure by means of seven equidistant ordinates. Cambridge and Dublin Math. J., 9:79–80, 1854.Google Scholar
[238] H., Wielandt. Das Iterationsverfahren bei nicht selbstadjungierten linearen Eigenwertaufgaben. Math. Z., 50(1), 1944.Google Scholar
[239] N., Wiener. Generalized harmonic analysis. ActaMath., 55(1):117–258, 1930.Google Scholar
[240] N., Wiener. The homogeneous chaos. Am. J. Math., 60(4):897–936, 1938.Google Scholar
[241] H. S., Wilf. Finite Sections of Some Classical Inequalities. Springer-Verlag, New York, 1970.Google Scholar
[242] J. H., Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, Englewood Cliffs, NJ, 1963.Google Scholar
[243] J. H., Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.Google Scholar
[244] J. H., Wilkinson. The perfidious polynomial. In G. H., Golub, editor, Studies in Numerical Analysis, Vol. 24. Mathematics Association of America, Washington, DC, 1984.Google Scholar
[245] E. B., Wilson, J. C., Decius, and P. C., Cross. Molecular Vibrations: the Theory ofInfrared and Raman Vibrational Spectra. McGraw-Hill, New York, 1955.Google Scholar
[246] D., York. Least-squares fitting of a straight line. Can. J. Phys., 44:1079–1086, 1966.Google Scholar
[247] T. J., Ypma. Historical development of the Newton-Raphson method. SIAM Rev., 37:531–551, 1995.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • G. Miller, University of California, Davis
  • Book: Numerical Analysis for Engineers and Scientists
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139108188.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • G. Miller, University of California, Davis
  • Book: Numerical Analysis for Engineers and Scientists
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139108188.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • G. Miller, University of California, Davis
  • Book: Numerical Analysis for Engineers and Scientists
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139108188.017
Available formats
×