Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-21T03:34:50.491Z Has data issue: false hasContentIssue false

16 - Spin and quantum statistics

from Part III - The Discovery of Quantum Mechanics

Published online by Cambridge University Press:  05 February 2013

Malcolm Longair
Affiliation:
University of Cambridge
Get access

Summary

The discovery of the spin of the electron by Uhlenbeck and Goudsmit was a major advance in the understanding of physics at the atomic level. Its discovery coincided with the development of both matrix and wave mechanics and its incorporation into the scheme of quantum mechanics and statistics led to deeper understanding of the underlying structure of quantum mechanics. Almost immediately, Heisenberg and Jordan used the new scheme of matrix mechanics to derive the expression for the g-factor which Landé had derived empirically from a very close study of the anomalous Zeeman effect. An important consequence of these developments was that the different approaches of matrix and wave mechanics were brought together. In particular, the discovery of spin as a new quantum number suggested the possibility of understanding systems containing more than one electron. Heisenberg's analysis of the helium atom was to pave the way for the full incorporation of spin into quantum mechanics and quantum statistics.

Spin and the Landé g-factor

The story of the discovery of the spin of the electron by Uhlenbeck and Goudsmit (1925a) was told in Sect. 8.5. As discussed in that section, their discovery was based upon empirical studies of the regularities observed in the anomalous Zeeman effect, inspired by the intricate analyses of Landé. Although based originally upon the classical concept of a rotating electron, electron spin is a purely quantum mechanical property intrinsic to the electron.

Type
Chapter
Information
Quantum Concepts in Physics
An Alternative Approach to the Understanding of Quantum Mechanics
, pp. 312 - 342
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×