Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-21T10:20:53.620Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2013

Camil Muscalu
Affiliation:
Cornell University, New York
Wilhelm Schlag
Affiliation:
University of Chicago
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Adams, D. R. 1975. A note on Riesz potentials. Duke Math. J. 42, 765–778.CrossRefGoogle Scholar
[2] Alinhac, S. and Gérard, P. 2007. Pseudo-Differential Operators and the Nash-Moser Theorem. Graduate Studies in Mathematics, vol. 82, American Mathematical Society, Providence, RI.Google Scholar
[3] Antonov, N. Yu. 1996. Convergence of Fourier series. In Proc. XX Workshop on Function Theory (Moscow, 1995). East J. Approx. 2, 187–196.Google Scholar
[4] Auscher, P., Hofmann, S., Muscalu, C., Tao, T., and Thiele, C. 2002. Carleson measures, trees, extrapolation, and T(b) theorems. Publ. Mat. 46, 257–325.CrossRefGoogle Scholar
[5] Bahouri, H., Chemin, J. -Y., and Danchin, R. 2001. Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343, Springer, Heidelberg.Google Scholar
[6] Beals, M., Fefferman, C., and Grossman, R. 1983. Strictly pseudoconvex domains in ℂn. Bull. Amer. Math. Soc. (New Series) 8, 125–322.CrossRefGoogle Scholar
[7] Bergh, J. and Löfström, J. 1976. Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223, Springer-Verlag, Berlin–New York.CrossRefGoogle Scholar
[8] Bonami, A. and Demange, B. 2006. Asurvey on uncertainty principles related to quadratic forms. Collect. Math., extra volume, 1–36.Google Scholar
[9] Bony, J.-M. 1981. Calcul symbolique et propagation des singularités pour les équations aux dériveés partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14, 209–246.CrossRefGoogle Scholar
[10] Bourgain, J. 1989. Bounded orthogonal systems and the Λ(p)-set problem. Acta Math. 162, 227–245.CrossRefGoogle Scholar
[11] Bourgain, J., Goldstein, M., and Schlag, W. 2001. Anderson localization for Schrödinger operators on ℤ with potentials given by the skew-shift. Comm. Math. Phys. 220, 583–621.CrossRefGoogle Scholar
[12] Calderón|A.-P. 1958. Uniqueness in the Cauchy problem for partial differential equations. Amer. J. Math. 80, 16–36.CrossRef
[13] Calderón, A.-P. 1966. Singular integrals. Bull. Amer. Math. Soc. 72, 427–465.CrossRefGoogle Scholar
[14] Calderón, A.-P. and Vaillancourt, R. 1972. A class of bounded pseudo-differential operators. Proc. Nat. Acad. Sci. USA 69, 1185–1187.CrossRefGoogle ScholarPubMed
[15] Calderón, A. P. and Zygmund, A. 1952. On the existence of certain singular integrals. Acta Math. 88, 85–139.CrossRefGoogle Scholar
[16] Carleson, L. 1966. On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157.CrossRefGoogle Scholar
[17] Cazenave, T. 2003. Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI.Google Scholar
[18] Chandrasekharan, K. 1989. Classical Fourier Transforms. Universitext, Springer-Verlag, Berlin.CrossRefGoogle Scholar
[19] Chandrasekharan, K. 1996. A Course on Topological Groups. Texts and Readings in Mathematics, vol. 9, Hindustan Book Agency, New Delhi.CrossRefGoogle Scholar
[20] Chow, Y. S. and Teicher, H. 1997. Probability Theory. Independence, Interchangeability, Martingales. Third edition. Springer Texts in Statistics, Springer-Verlag, New York.Google Scholar
[21] Christ, M. 1990. Lectures on Singular Integral Operators. CBMS Regional Conference Series in Mathematics, vol. 77, published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI.Google Scholar
[22] Christ, M. and Fefferman, R. 1983. A note on weighted norm inequalities for the Hardy–Littlewood maximal operator. Proc. Amer. Math. Soc. 87, 447–448.CrossRefGoogle Scholar
[23] Coifman, R. R., Jones, P. W., and Semmes, S. 1989. Two elementary proofs of the L2 boundedness of Cauchy integrals on Lipschitz curves. J. Amer. Math. Soc. 2, 553–564.Google Scholar
[24] Coifman, R. and Meyer, Y. 1997. Wavelets. Calderón–Zygmund and Multilinear Operators. Translated from the 1990 and 1991 French originals by David, Salinger. Cambridge Studies in Advanced Mathematics, vol. 48, Cambridge University Press, Cambridge.Google Scholar
[25] Cóordoba, A. 1979. A note on Bochner–Riesz operators. Duke Math. J. 46, 505–511.CrossRefGoogle Scholar
[26] Cotlar, M. 1955. A combinatorial inequality and its application to L2 spaces. Rev. Math. Guyana 1, 41–55.Google Scholar
[27] David, G. and Journé, J.-L. 1984. A boundedness criterion for generalized Calderón–Zygmund operators. Ann. Math. (2) 120, 371–397.CrossRefGoogle Scholar
[28] Davis, K. M. and Chang, Y.-C. 1987. Lectures on Bochner Riesz Means. London Mathematical Society Lecture Note Series, vol. 114, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[29] Dimassi, M. and Sjóstrand, J. 1999. Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[30] Drury, S. W. 1970. Sur les ensembles de Sidon. C. R. Acad. Sci. Paris Sér. A, B 271, A162–A163.Google Scholar
[31] Duoandikoetxea, J. 2001. Fourier Analysis (English summary). Translated and revised from the 1995 Spanish original by David, Cruz-Uribe. Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI.Google Scholar
[32] Durrett, R. 2010. Probability: Theory and Examples. Fourth edition. Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[33] Dym, H. and McKean, H. P. 1972. Fourier Series and Integrals. Probability and Mathematical Statistics, vol. 14, Academic Press, New York–London.Google Scholar
[34] Evans, L. C. 2010. Partial Differential Equations. Second edition. Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI.Google Scholar
[35] Evans, L. C. and Zworski, M. 2011. Lectures on Semiclassical Analysis, version 0.8, preprint.
[36] Fefferman, C. 1970. Inequalities for strongly singular convolution operators. Acta Math. 124, 9–36.CrossRefGoogle Scholar
[37] Fefferman, C. 1971. The multiplier problem for the ball. Ann. Math. (2) 94, 330–336.CrossRefGoogle Scholar
[38] Fefferman, C. 1983. The uncertainty principle.Bull. Amer. Math. Soc. 9, 129–206.CrossRefGoogle Scholar
[39] Fefferman, C. and Stein, E. M. 1972. Hp spaces of several variables. Acta Math. 129, 137–193.CrossRefGoogle Scholar
[40] Folland, G. B. 1989. Harmonic Analysis in Phase Space. Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ.Google Scholar
[41] Folland, G. B. 1995. Introduction to Partial Differential Equations. Second edition. Princeton University Press, Princeton, NJ.Google Scholar
[42] Frank, R. and Seiringer, R. 2008. Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407–3430.CrossRefGoogle Scholar
[43] Frazier, M., Jawerth, B., and Weiss, G. 1991. Littlewood–Paley Theory and the Study of Function Spaces. CBMS Regional Conference Series in Mathematics, vol. 79, published for the Conference Board of the Mathematical Sciences, Washington, DC by the American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
[44] Füredi, Z. and Loeb, P. 1994. On the best constant for the Besicovitch covering theorem. Proc. Amer. Math. Soc. 121, 1063–1073.CrossRefGoogle Scholar
[45] García-Cuerva, J. and Rubio de Francia, J. 1985. Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, vol. 116; Notas de Matemática, vol. 104, North-Holland, Amsterdam.Google Scholar
[46] Garnett, J. B. 2007. Bounded Analytic Functions. Revised first edition. Graduate Texts in Mathematics. vol. 236, Springer, New York.Google Scholar
[47] Garnett, J. B. and Marshall, D. E. 2008. Harmonic Measure. Reprint of the 2005 original. New Mathematical Monographs, vol. 2, Cambridge University Press, Cambridge.Google Scholar
[48] Gilbarg, D. and Trudinger, N. 1983. Elliptic Partial Differential Equations of Second Order. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin.CrossRefGoogle Scholar
[49] Ginibre, J. and Velo, G. 1979. On a class of nonlinear Schrödinger equation. I. The Cauchy problems; II. Scattering theory, general case. J. Func. Anal. 32, 33–71; 1985. Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. 64, 363–401; 1985. The global Cauchy problem for the nonlinear Klein–Gordon equation. Math. Z. 189, 487–505; 1985. Time decay of finite energy solutions of the nonlinear Klein–Gordon and Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 43, 399–442.
[50] Grigis, A. and Sjöstrand, J. 1994. Microlocal Analysis for Differential Operators. An Introduction. London Mathematical Society Lecture Note Series, vol. 196, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[51] Halmos, P. R. 1950. Measure Theory. Van Nostrand, New York.CrossRefGoogle Scholar
[52] Han, Q. and Lin, F. 2011. Elliptic Partial Differential Equations. Second edition. Courant Lecture Notes in Mathematics, vol. 1, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI.Google Scholar
[53] Hassell, A., Tao, T., and Wunsch, J. 2006. Sharp Strichartz estimates on nontrapping asymptotically conic manifolds. Amer. J. Math. 128, 963–1024. 2005. A Strichartz inequality for the Schrödinger equation on nontrapping asymptotically conic manifolds. Comm. Partial Diff. Eqs. 30, 157–205.CrossRefGoogle Scholar
[54] Havin, V. and Jöricke, B. 1994. The Uncertainty Principle in Harmonic Analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3, p. 28. Springer-Verlag, Berlin.CrossRefGoogle Scholar
[55] Hoffman, K. 1988. Banach Spaces of Analytic Functions. Reprint of the 1962 original. Dover Publications, New York.Google Scholar
[56] Hörmander, L. 1990. The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Second edition. Springer Study Edition, Springer-Verlag, Berlin.Google Scholar
[57] Hörmander, L. 2005. The Analysis of Linear Partial Differential Operators. II. Differential Operators with Constant Coefficients. Reprint of the 1983 original. Classics in Mathematics, Springer-Verlag, Berlin.CrossRefGoogle Scholar
[58] Hörmander, L. 2007. The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators. Reprint of the 1994 edition. Classics in Mathematics, Springer, Berlin.CrossRefGoogle Scholar
[59] Hörmander, L. 2009. The Analysis of Linear Partial Differential Operators. IV. Fourier Integral Operators. Reprint of the 1994 edition. Classics in Mathematics, Springer-Verlag, Berlin.CrossRefGoogle Scholar
[60] Jaming, P. 2007. Nazarov's uncertainty principles in higher dimensions. J. Approx. Theory 149, 3041.CrossRefGoogle Scholar
[61] Janson, S. 1978. Mean oscillation and commutators of singular integral operators. Ark. Mat. 16, 263–270.CrossRefGoogle Scholar
[62] Jerison, D. 1990. An elementary approach to local solvability for constant coefficient partial differential equations. Forum Math. 2, 45–50.CrossRefGoogle Scholar
[63] Kahane, J.-P. 1985. Some Random Series of Functions. Second edition. Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge.Google Scholar
[64] Katz, N. unpublished lecture notes.
[65] Katznelson, Y. 2004. An Introduction to Harmonic Analysis. Third edition. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[66] Keel, M. and Tao, T. 1998. Endpoint Strichartz estimates, Amer. J. Math., 120, pp. 955–980.CrossRefGoogle Scholar
[67] Kenig, C. E., Ponce, G., and Vega, L. 2007. The initial value problem for the general quasi-linear Schrödinger equation. In Recent Developments in Nonlinear Partial Differential Equations, Contemporary Mathematics, vol. 439, Amer. Math. Soc., Providence, RI.Google Scholar
[68] Knapp, A. W. and Stein, E. 1976. Intertwining operators for semi-simple groups. Ann. Math. 93, 489–578.CrossRefGoogle Scholar
[69] Kolmogorov, A. N. 1923. Une série de Fourier–Lebesgue divergente presque partout. Fundamenta Mathematicae 4, 324–328.CrossRefGoogle Scholar
[70] Konyagin, S. V. 2000. On the divergence everywhere of trigonometric Fourier series (in Russian). Mat. Sb. 191, 103–126. Translation in Sb. Math. 191, 97–120.Google Scholar
[71] Koosis, P. 1998. Introduction to Hp Spaces. Second edition. With two appendices by V. P., Havin. Cambridge Tracts in Mathematics, vol. 115, Cambridge University Press, Cambridge.Google Scholar
[72] Kovrijkine, O. 2001. Some results related to the Logvinenko–Sereda theorem. Proc. Amer. Math. Soc. 129, 3037–3047.CrossRefGoogle Scholar
[73] Lebedev, V. and OlevskiẐ, A, . 1994. C1 changes of variable: Beurling–Helson type theorem and Hörmander conjecture on Fourier multipliers. Geom. Funct. Anal. 4, 213–235.CrossRefGoogle Scholar
[74] Lefèvre, P. and Rodríguez-Piazza, L. 2009. Invariant means and thin sets in harmonic analysis with applications to prime numbers. J. Lond. Math. Soc. (2) 80, 72–84.CrossRefGoogle Scholar
[75] Levin, B. Ya. 1996. Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150, American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
[76] Li, D., Queffélec, H., and Rodríguez-Piazza, L. 2002. Some new thin sets of integers in harmonic analysis. J. Anal. Math. 86, 105–138; 2008. On some random thin sets of integers. Proc. Amer. Math. Soc. 136, 141–150.CrossRefGoogle Scholar
[77] Lieb, E. H. and Loss, M. 2001. Analysis. Second edition. Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI.Google Scholar
[78] Lindblad, H. and Sogge, C. D. 1995. On existence and scattering with minimal regularity for semilinear wave equations. J. Funct. Anal. 130, 357–426.CrossRefGoogle Scholar
[79] Marcus, M. B. and Pisier, G. 1981. Random Fourier Series with Applications to Harmonic Analysis. Annals of Mathematics Studies, vol. 101, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo.Google Scholar
[80] Martinez, A. 2002. An Introduction to Semiclassical and Microlocal Analysis. Universitext, Springer-Verlag, New York.CrossRefGoogle Scholar
[81] Marzuola, J., Metcalfe, J., Tataru, D., and Tohaneanu, M. 2010. Strichartz estimates on Schwarzschild black hole backgrounds. Comm. Math. Phys. 293, 37–83.CrossRefGoogle Scholar
[82] Meyer, Y. 1989. Wavelets and Operators. In Analysis at Urbana I. London Mathematical Society Lecture Note Series, vol. 137, Cambridge University Press, Cambridge, pp. 256–365.
[83] Mockenhaupt, G., Seeger, A., and Sogge, C. D. 1992. Wave front sets, local smoothing and Bourgain's circular maximal theorem. Ann. Math. (2) 136, 207–218.CrossRefGoogle Scholar
[84] Montgomery, H. L. 1994. Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis. CMBS Lectures, vol. 84, American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
[85]Müller, P. F. X. 2005. Isomorphisms between H1 Spaces. Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences Mathematical Monographs (New Series)], vol. 66, Birkhäuser, Basel.Google Scholar
[86] Nakanishi, K. and Schlag, W. 2011. Invariant Manifolds and Dispersive Hamiltonian Evolution Equations. European Mathematical Society.CrossRefGoogle Scholar
[87] Nazarov, F. L. 1993. Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type. Algebra i Analiz 5, 3–66; 1994. Translation in St Petersburg Math. J. 5, 663–717.Google Scholar
[88] Nirenberg, L. 1972. Lectures on Linear PartialDifferential Equations. Expository lectures from the CBMS Regional Conference held at the Texas Technological University, Lubbock, 22–26 May.Google Scholar
[89] Opic, B. and Kufner, A. 1990. Hardy-type Inequalities. Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific & Technical.Google Scholar
[90] Paley, R. E. A. C., Wiener, N., and Zygmund, A. 1933. Notes on random functions. Math. Z. 37, 647–668.CrossRefGoogle Scholar
[91] Pommerenke, Ch. 1977. Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation. Comment. Math. Helv. 52, 591–602.CrossRefGoogle Scholar
[92] Rider, D. 1966. Gap series on groups and spheres. Can. J. Math. 18, 389–398.CrossRefGoogle Scholar
[93] Rider, D. 1975. Randomly continuous functions and Sidon sets. Duke Math. J. 42, 759–764.CrossRefGoogle Scholar
[94] Rudin, W. 1960. Trigonometric series with gaps. J. Math. Mech. 9, 203–227.Google Scholar
[95] Rudin, W. 1962. Fourier Analysis on Groups. Interscience Tracts in Pure and Applied Mathematics, vol. 12, Interscience Publishers (a division of John Wiley and Sons), New York–London.Google Scholar
[96] Rudin, W. 1987. Real and Complex Analysis. Third edition. McGraw-Hill, New York.Google Scholar
[97] Rudin, W. 1991. Functional Analysis. Second edition. International Series in Pure and Applied Mathematics, McGraw-Hill, New York.Google Scholar
[98] Segovia, C. and Torrea, J. 1991. Weighted inequalities for commutators of fractional and singular integrals. In Proc. Conf. on Mathematical Analysis (El Escorial, 1989), Publ. Mat. 35, 209–235.Google Scholar
[99] Semmes, S. 1994. A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller. Comm. Partial Diff. Eqs. 19, 277–319.CrossRefGoogle Scholar
[100] Shatah, J. and Struwe, M. 1998. Geometric Wave Equations. Courant Lecture Notes in Mathematics, vol. 2, American Mathematical Society, Providence, RI.Google Scholar
[101] Sinai, Y. G. 1992. Probability Theory. An Introductory Course. Translated from the Russian and with a preface by D., Haughton. Springer Textbook, Springer-Verlag, Berlin.Google Scholar
[102] Sjölin, P. 1969. An inequality of Paley and convergence a.e. of Walsh–Fourier series. Ark. Mat. 7, 551–570.CrossRefGoogle Scholar
[103] Slavin, L. and Volberg, Al. 2007. Bellman function and the H1-BMO duality. In Harmonic Analysis, Partial Differential Equations, and Related Topics, Contemporary Mathematics, vol. 428, American Mathematical Society, Providence, RI, pp. 113–126.CrossRefGoogle Scholar
[104] Sogge, C. D. 1991. Propagation of singularities and maximal functions in the plane. Invent. Math. 104, 349–376.CrossRefGoogle Scholar
[105] Sogge, C. D. 1993. Fourier Integrals in Classical Analysis. Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge.
[106] Sogge, C.D. 2008. Lectures on Non-Linear Wave Equations. Second edition. International Press, Boston, MA.Google Scholar
[107] Stein, E. M. 1961. On limits of sequences of operators. Ann. Math. (2) 74, 140–170.CrossRefGoogle Scholar
[108] Stein, E. M. 1970. Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ.Google Scholar
[109] Stein, E. M. 1970. Topics in Harmonic Analysis Related to the Littlewood–Paley Theory. Annals of Mathematics Studies, vol. 63, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo.Google Scholar
[110] Stein, E. M. 1986. Oscillatory integrals in Fourier analysis. In Beijing Lectures in Harmonic Analysis, Beijing, 1984, Annals of Mathematical Studies, vol. 112, Princeton University Press, Princeton, NJ, pp. 307–355.
[111] Stein, E. M. 1993. Harmonic Analysis: Real-VariableMethods, Orthogonality, and Oscillatory Integrals. With the assistance of T. S., Murphy. Princeton Mathematical Series, vol. 43, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ.Google Scholar
[112] Stein, E. M. and Weiss, G. 1971. Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, NJ.Google Scholar
[113] Strichartz, R. S. 1977. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705–714.CrossRefGoogle Scholar
[114] Sulem, C. and Sulem, P-L. 1999. The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York.Google Scholar
[115] Tao, T. 2004. Some recent progress on the restriction conjecture. In Applied Numerical Harmonic Analysis, Birkhäuser, Boston, MA, pp. 217–243.
[116] Tao, T. 2006. Nonlinear Dispersive Equations. Local and Global Analysis. CBMS Regional Conference Series in Mathematics, vol. 106, American Mathematical Society, Providence, RI.
[117] Tataru, D. 2002. On the Fefferman–Phong inequality and related problems. Comm. Partial Diff. Eqs. 27, 2101–2138.CrossRefGoogle Scholar
[118] Tataru, D. 2004. Phase Space Transforms and Microlocal Analysis. Phase Space Analysis of Partial Differential Equations, Vol. II, pp. 505–524, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa.Google Scholar
[119] Tataru, D. 2008. Parametrices and dispersive estimates for Schrödinger operators with variable coefficients. Amer. J. Math. 130, 571–634.CrossRefGoogle Scholar
[120] Taylor, M. E. 1981. Pseudodifferential Operators. Princeton Mathematical Series, vol. 34, Princeton University Press, Princeton, NJ.Google Scholar
[121] Taylor, M. E. 1991. Pseudodifferential Operators and Nonlinear PDEs. Progress in Mathematics, vol. 100, Birkhäuser, Boston, MA.CrossRefGoogle Scholar
[122] Taylor, M. E. 2000. Tools for PDEs. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials. Mathematical Surveys and Monographs, vol. 81, American Mathematical Society, Providence, RI.Google Scholar
[123] Torchinsky, A. 1986. Real-Variable Methods in Harmonic Analysis. Pure and Applied Mathematics, vol. 123, Academic Press, Orlando, FL.Google Scholar
[124] Uchiyama, A. 1982. A constructive proof of the Fefferman–Stein decomposition of BMO(Rn). Acta Math. 148, 215–241.CrossRefGoogle Scholar
[125] Wojtaszczyk, P. 1991. Banach Spaces for Analysts. Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[126] Wolf, J. A. 2007. Harmonic Analysis on Commutative Spaces. Mathematical Surveys and Monographs, vol. 142, American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
[127] Wolff, T. H. 2001. A sharp bilinear cone restriction estimate. Ann. Math. (2) 153, 661–698.CrossRef
[128] Wolff, T. H. 2003. Lectures on Harmonic Analysis. With a foreword by C., Fefferman and preface by I., Łaba. (eds. I., Łaba and C., Shubin). University Lecture Series, vol. 29, American Mathematical Society, Providence, RI.Google Scholar
[129] Yafaev, D. 1999. Sharp constants in the Hardy–Rellich inequalities. J. Funct. Anal. 168, 121–144.CrossRefGoogle Scholar
[130] Zworski, M. 2012. Semiclassical Analysis, Graduate Studies in Mathematics, vol.138, American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
[131] Zygmund, A. 1971. Intégrales Singulières. Lecture Notes in Mathematics, vol. 204, Springer-Verlag, Berlin–New York.CrossRefGoogle Scholar
[132] Zygmund, A. 1974. On Fourier coefficients and transforms of functions of two variables. Studia Math. 50, 189–201.CrossRefGoogle Scholar
[133] Zygmund, A. 2002. Trigonometric Series. Vols. I and II. Third edition. With a foreword by Robert A., Fefferman. Cambridge Mathematical Library, Cambridge University Press, Cambridge.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Camil Muscalu, Cornell University, New York, Wilhelm Schlag, University of Chicago
  • Book: Classical and Multilinear Harmonic Analysis
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139047081.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Camil Muscalu, Cornell University, New York, Wilhelm Schlag, University of Chicago
  • Book: Classical and Multilinear Harmonic Analysis
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139047081.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Camil Muscalu, Cornell University, New York, Wilhelm Schlag, University of Chicago
  • Book: Classical and Multilinear Harmonic Analysis
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139047081.014
Available formats
×