Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-07T23:12:23.784Z Has data issue: false hasContentIssue false

Chapter 7 - Epidemiology, etiology, and pathophysiology of infection-associated venous thromboembolism in children

from Section 1 - Epidemiology, etiology, diagnosis, treatment, outcomes

Published online by Cambridge University Press:  18 December 2014

Anjali A. Sharathkumar
Affiliation:
Ann & Robert H. Lurie Children’s Hospital
Neil A. Goldenberg
Affiliation:
Johns Hopkins University School of Medicine
Anthony K. C. Chan
Affiliation:
McMaster University Health Sciences Center
Neil A. Goldenberg
Affiliation:
The Johns Hopkins University School of Medicine
Marilyn J. Manco-Johnson
Affiliation:
Hemophilia and Thrombosis Center, University of Colorado, Denver
Get access

Summary

Introduction

Venous thromboembolic events (VTE) are increasingly being recognized in children. The clinical spectrum of VTE constitutes deep venous thrombosis (DVT) and pulmonary embolism (PE). Unlike in adults, VTE in children is usually secondary to complications of a primary illness like sepsis, cancer or treatment of primary illness including placement of central venous lines (CVLs) and surgical intervention for correction of underlying diseases [1]. The reported incidence of VTEs in children ranges from 5.4 [2] to 9.7 [3] per 10,000 hospital admissions. Although the presence of CVLs accounted for 95% of thromboembolic events in hospitalized children [4], it is becoming clear that underlying infection in itself predisposes for the development of thrombosis [1,2,4–13]. A key reason is the intricate relationship between the coagulation system and the immune system [14].

The coagulation system is one of the primitive components of the host defense against bacterial infection [15]. Local thrombosis can serve as a part of the first line of host defense against bacterial invasion in vertebrates and non-vertebrates. An interesting example of the interaction between the host coagulation system and pathogens is the horseshoe crab, which uses endotoxin to trigger a clotting response that presumably walls off the bacteria, providing an initial defense against invasion [16]. The clotting system of the horseshoe crab consists of three serine proteases and one clottable protein that are functionally similar to mammalian fibrinogen and share some sequence homology with primate fibrinopeptide B [16]. This coagulation response to bacterial infections also appears to be preserved in mammals, in which infections trigger tissue factor (TF) expression on the surface of monocytes, which in turn initiates the coagulation cascade (Figure 7.1). To combat the host immune response, bacteria have developed virulence strategies to interact with host hemostatic factors such as plasminogen and fibrinogen in order to achieve widespread dissemination. Many investigators around the world are extensively studying the potential link between bacterial infections and thrombosis, and knowledge in this area is growing.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrew, M, David, M, Adams, M, Ali, K, Anderson, R, Barnard, D, et al. Venous thromboembolic complications (VTE) in children: first analyses of the Canadian Registry of VTE. Blood. 1994;83(5):1251–7.Google ScholarPubMed
Monagle, P, Adams, M, Mahoney, M, Ali, K, Barnard, D, Bernstein, M, et al. Outcome of pediatric thromboembolic disease: a report from the Canadian Childhood Thrombophilia Registry. Pediatr Res. 2000;47(6):763–6.CrossRefGoogle ScholarPubMed
Sandoval, JA, Sheehan, MP, Stonerock, CE, Shafique, S, Rescorla, FJ, Dalsing, MC, et al. Incidence, risk factors, and treatment patterns for deep venous thrombosis in hospitalized children: an increasing population at risk. J Vasc Surg. 2008;47(4):837–43.CrossRefGoogle ScholarPubMed
Massicotte, MP, Dix, D, Monagle, P, Adams, M, Andrew, M. Central venous catheter related thrombosis in children: analysis of the Canadian Registry of Venous Thromboembolic Complications. J Pediatr. 1998;133(6):770–6.CrossRefGoogle ScholarPubMed
Crary, SE, Buchanan, GR, Drake, CE, Journeycake, JM. Venous thrombosis and thromboembolism in children with osteomyelitis. J Pediatr. 2006;149(4):537–41.CrossRefGoogle ScholarPubMed
Goldenberg, NA, Knapp-Clevenger, R, Hays, T, Manco-Johnson, MJ. Lemierre’s and Lemierre’s-like syndromes in children: survival and thromboembolic outcomes. Pediatrics. 2005;116(4):e543–8.CrossRefGoogle ScholarPubMed
Goldenberg, NA, Knapp-Clevenger, R, Manco-Johnson, MJ, Mountain States Regional Thrombophilia G. Elevated plasma factor VIII and D-dimer levels as predictors of poor outcomes of thrombosis in children. [Erratum appears in N Engl J Med. 2005;352(20):2146]. New Engl J Med. 2004;351(11):1081–8.CrossRefGoogle Scholar
Oren, H, Cingoz, I, Duman, M, Yilmaz, S, Irken, G. Disseminated intravascular coagulation in pediatric patients: clinical and laboratory features and prognostic factors influencing the survival. Pediatr Hematol Oncol. 2005;22(8):679–88.CrossRefGoogle ScholarPubMed
Sirachainan, N, Chuansumrit, A, Angchaisuksiri, P, Pakakasama, S, Hongeng, S, Kadegasem, P. Venous thromboembolism in Thai children. Pediatr Hematol Oncol. 2007;24(4):245–56.CrossRefGoogle ScholarPubMed
Gunes, AM, Baytan, B, Gunay, U. The influence of risk factors in promoting thrombosis during childhood: the role of acquired factors. Pediatr Hematol Oncol. 2006;23(5):399–410.CrossRefGoogle ScholarPubMed
Newall, F, Wallace, T, Crock, C, Campbell, J, Savoia, H, Barnes, C, et al. Venous thromboembolic disease: a single-centre case series study. J Paediatr Child Health. 2006;42(12):803–7.CrossRefGoogle ScholarPubMed
van Ommen, CH, Heijboer, H, van den Dool, EJ, Hutten, BA, Peters, M. Pediatric venous thromboembolic disease in one single center: congenital prothrombotic disorders and the clinical outcome. J Thromb Haemost. 2003;1(12):2516–22.CrossRefGoogle ScholarPubMed
deVeber, G, Andrew, M, Adams, C, Bjornson, B, Booth, F, Buckley, DJ, et al. Cerebral sinovenous thrombosis in children. New Engl J Medicine. 2001;345(6):417–23.CrossRefGoogle ScholarPubMed
Esmon, CT, Xu, J, Lupu, F. Innate immunity and coagulation. J Thromb Haemost. 2011;9 Suppl 1:182–8.CrossRefGoogle Scholar
Iwanaga, S, Lee, BL, Iwanaga, S, Lee, BL. Recent advances in the innate immunity of invertebrate animals. J Biochem Molec Biol. 2005;38(2):128–50.Google ScholarPubMed
Iwanaga, S, Miyata, T, Tokunaga, F, Muta, T. Molecular mechanism of hemolymph clotting system in Limulus. Thromb Res. 1992;68(1):1–32.CrossRefGoogle ScholarPubMed
Levi, M, Ten Cate, H. Disseminated intravascular coagulation [see comment]. New Engl J Med. 1999;341(8):586–92.CrossRefGoogle ScholarPubMed
Takeuchi, O, Sato, S, Horiuchi, T, Hoshino, K, Takeda, K, Dong, Z, et al. Cutting edge: role of toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol. 2002;169(1):10–14.CrossRefGoogle ScholarPubMed
Hopkins, PA, Sriskandan, S. Mammalian toll-like receptors: to immunity and beyond. Clin Exp Immunol. 2005;140(3):395–407.CrossRefGoogle ScholarPubMed
Inohara, Chamaillard, McDonald, C, Nunez, G, McDonald, C, Nunez G. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Ann Rev Biochem. 2005;74:355–83.CrossRefGoogle ScholarPubMed
McGregor, L, Martin, J, McGregor, JL. Platelet-leukocyte aggregates and derived microparticles in inflammation, vascular remodelling and thrombosis. Front Biosci. 2006;11:830–7.CrossRefGoogle ScholarPubMed
Osterud, B. Tissue factor: a complex biological role. Thromb Haemost. 1997;78(1):755–8.Google ScholarPubMed
Osterud, B. Tissue factor expression by monocytes: regulation and pathophysiological roles. Blood Coag Fibrinol. 1998;9 Suppl 1:S9–14.Google ScholarPubMed
van der Poll, T, Levi, M, Hack, CE, Ten Cate, H, van Deventer, SJ, Eerenberg, AJ, et al. Elimination of interleukin 6 attenuates coagulation activation in experimental endotoxemia in chimpanzees. J Exp Med. 1994;179(4):1253–9.CrossRefGoogle ScholarPubMed
Opal, SM, Esmon, CT, Opal, SM, Esmon, CT. Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care (London, England). 2003;7(1):23–38.CrossRefGoogle ScholarPubMed
Opal, SM, Opal, SM. Interactions between coagulation and inflammation. Scand J Infect Dis. 2003;35(9):545–54.CrossRefGoogle ScholarPubMed
Booth, KK, Terrell, DR, Vesely, SK, George, JN. Systemic infections mimicking thrombotic thrombocytopenic purpura. Am J Hematol. 2011;86(9):743–51.CrossRefGoogle ScholarPubMed
Douglas, KW, Pollock, KGJ, Young, D, Catlow, J, Green, R. Infection frequently triggers thrombotic microangiopathy in patients with preexisting risk factors: a single-institution experience. J Clin Apheresis. 2010;25(2):47–53.Google ScholarPubMed
Kiki, I, Gundogdu, M, Albayrak, B, Bilgic, Y. Thrombotic thrombocytopenic purpura associated with Brucella infection. Am J Med Sci. 2008;335(3):230–2.CrossRefGoogle ScholarPubMed
Lin, C-Y, Lin, S-H. Fatal thrombotic throbmocytopenic purpura coexisting with bacterial infection: a case report. Acta Neurol. 2008;17(1):42–6.Google ScholarPubMed
Esmon, CT. The interactions between inflammation and coagulation. Brit J Haematol. 2005;131(4):417–30.CrossRefGoogle ScholarPubMed
Bae, JS, Yang, L, Manithody, C, Rezaie, AR, Bae, J-S, Yang, L, et al. The ligand occupancy of endothelial protein C receptor switches the protease-activated receptor 1-dependent signaling specificity of thrombin from a permeability-enhancing to a barrier-protective response in endothelial cells. Blood. 2007;110(12):3909–16.CrossRefGoogle ScholarPubMed
Delabranche, X, Berger, A, Boisrame-Helms, J, Meziani, F. Microparticles and infectious diseases. Med Mal Infect. 2012;42(8):335–43.CrossRefGoogle ScholarPubMed
Satta, N, Toti, F, Feugeas, O, Bohbot, A, Dachary-Prigent, J, Eschwege, V, et al. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol. 1994;153(7):3245–55.Google ScholarPubMed
Brinkmann, V, Reichard, U, Goosmann, C, Fauler, B, Uhlemann, Y, Weiss, DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.CrossRefGoogle ScholarPubMed
Brinkmann, V, Laube, B, Abu Abed, U, Goosmann, C, Zychlinsky, A. Neutrophil extracellular traps: how to generate and visualize them. J Vis Exp. 2010;36:pii:1724, .Google Scholar
Brinkmann, V, Zychlinsky, A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol. 2007;5(8):577–82.CrossRefGoogle ScholarPubMed
Clark, SR, Ma, AC, Tavener, SA, McDonald, B, Goodarzi, Z, Kelly, MM, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Medicine. 2007;13(4):463–9.CrossRefGoogle ScholarPubMed
von Bruhl, M-L, Stark, K, Steinhart, A, Chandraratne, S, Konrad, I, Lorenz, M, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35.CrossRefGoogle ScholarPubMed
Massberg, S, Grahl, L, von Bruehl, ML, Manukyan, D, Pfeiler, S, Goosmann, C, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nature Medicine. 2010;16(8):887–96.CrossRefGoogle ScholarPubMed
Ermert, D, Urban, CF, Laube, B, Goosmann, C, Zychlinsky, A, Brinkmann, V. Mouse neutrophil extracellular traps in microbial infections. J Innate Immun. 2009;1(3):181–93.CrossRefGoogle ScholarPubMed
Ammollo, CT, Semeraro, F, Xu, J, Esmon, NL, Esmon, CT. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost. 2011;9(9):1795–803.CrossRefGoogle ScholarPubMed
Semeraro, F, Ammollo, CT, Morrissey, JH, Dale, GL, Friese, P, Esmon, NL, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–61.CrossRefGoogle ScholarPubMed
Morrissey, JH, Gregory, SA, Mackman, N, Edgington, TS. Tissue factor regulation and gene organization. Oxford Surveys on Eukaryotic Genes. 1989;6:67–84.Google ScholarPubMed
Sadler, JE. Thrombomodulin structure and function. Thromb Haemost. 1997;78(1):392–5.Google ScholarPubMed
Oganesyan, V, Oganesyan, N, Terzyan, S, Qu, D, Dauter, Z, Esmon, NL, et al. The crystal structure of the endothelial protein C receptor and a bound phospholipid. J Biol Chem. 2002;277(28):24851–4.CrossRefGoogle Scholar
Dahlback, B. Protein S and C4b-binding protein: components involved in the regulation of the protein C anticoagulant system. Thromb Haemost. 1991;66(1):49–61.Google ScholarPubMed
Dickson, B. Venous thrombosis: on the history of Virchow’s triad. UTMJ. 2004;81:166–71.Google Scholar
Mammen, EF. Perspectives for the future. Intensive Care Med. 1993;19 Suppl 1:S29–34.CrossRefGoogle ScholarPubMed
Cunnington, A, Nadel, S. New therapies for sepsis. Curr Top Med Chem. 2008;8(7):603–14.CrossRefGoogle ScholarPubMed
Hellgren, M, Javelin, L, Hagnevik, K, Blomback, M. Antithrombin III concentrate as adjuvant in DIC treatment. A pilot study in 9 severely ill patients. Thromb Res. 1984;35(4):459–66.CrossRefGoogle ScholarPubMed
von Kries, R, Stannigel, H, Gobel, U. Anticoagulant therapy by continuous heparin-antithrombin III infusion in newborns with disseminated intravascular coagulation. Eur J Pediatr. 1985;144(2):191–4.CrossRefGoogle ScholarPubMed
Kreuz, WD, Schneider, W, Nowak-Gottl, U. Treatment of consumption coagulopathy with antithrombin concentrate in children with acquired antithrombin deficiency – a feasibility pilot study. Eur J Pediatr. 1999;158 Suppl 3:S187–91.CrossRefGoogle ScholarPubMed
Ettingshausen, CE, Veldmann, A, Beeg, T, Schneider, W, Jager, G, Kreuz, W. Replacement therapy with protein C concentrate in infants and adolescents with meningococcal sepsis and purpura fulminans. Semin Thromb Hemost. 1999;25(6):537–41.CrossRefGoogle ScholarPubMed
Rivard, GE, David, M, Farrell, C, Schwarz, HP. Treatment of purpura fulminans in meningococcemia with protein C concentrate. J Pediatr. 1995;126(4):646–52.CrossRefGoogle ScholarPubMed
Goldstein, B, Nadel, S, Peters, M, Barton, R, Machado, F, Levy, H, et al. ENHANCE: results of a global open-label trial of drotrecogin alfa (activated) in children with severe sepsis. Pediatr Crit Care Med. 2006;7(3):200–11.CrossRefGoogle ScholarPubMed
Nadel, S, Goldstein, B, Williams, MD, Dalton, H, Peters, M, Macias, WL, et al. Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet. 2007;369(9564):836–43.CrossRefGoogle ScholarPubMed
Fourrier, F, Chopin, C, Huart, JJ, Runge, I, Caron, C, Double-blind, Goudemand J., placebo-controlled trial of antithrombin III concentrates in septic shock with disseminated intravascular coagulation. Chest. 1993;104(3):882–8.CrossRefGoogle ScholarPubMed
Bernard, GR, Vincent, JL, Laterre, PF, LaRosa, SP, Dhainaut, JF, Lopez-Rodriguez, A, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. New Engl J Med. 2001;344(10):699–709.CrossRefGoogle ScholarPubMed
Ranieri, VM, Thompson, BT, Barie, PS, Dhainaut, J-F, Douglas, IS, Finfer, S, et al. Drotrecogin alfa (activated) in adults with septic shock. New Engl J Med. 2012;366(22):2055–64.CrossRefGoogle ScholarPubMed
Silva, E, de Figueiredo, LFP, Colombari, F. Prowess-shock trial: a protocol overview and perspectives. Shock. 2010;34 Suppl 1:48–53.CrossRefGoogle Scholar
Decembrino, L, D’Angelo, A, Manzato, F, Solinas, A, Tumminelli, F, De Silvestri, A, et al. Protein C concentrate as adjuvant treatment in neonates with sepsis-induced coagulopathy: a pilot study. Shock. 2010;34(4):341–5.CrossRefGoogle ScholarPubMed
Marti-Carvajal, AJ, Sola, I, Gluud, C, Lathyris, D, Cardona, AF. Human recombinant protein C for severe sepsis and septic shock in adult and paediatric patients. Cochrane Database Syst Rev. 2012;12:CD004388.CrossRefGoogle ScholarPubMed
Dreyfus, M, Masterson, M, David, M, Rivard, GE, Muller, FM, Kreuz, W, et al. Replacement therapy with a monoclonal antibody purified protein C concentrate in newborns with severe congenital protein C deficiency. Semin Thromb Hemost. 1995;21(4):371–81.CrossRefGoogle ScholarPubMed
Veldman, A, Fischer, D, Wong, FY, Kreuz, W, Sasse, M, Eberspacher, B, et al. Human protein C concentrate in the treatment of purpura fulminans: a retrospective analysis of safety and outcome in 94 pediatric patients. Critical Care (London, England). 2010;14(4):R156.CrossRefGoogle ScholarPubMed
de Kleijn, ED, de Groot, R, Hack, CE, Mulder, PGH, Engl, W, Moritz, B, et al. Activation of protein C following infusion of protein C concentrate in children with severe meningococcal sepsis and purpura fulminans: a randomized, double-blinded, placebo-controlled, dose-finding study. Crit Care Med. 2003;31(6):1839–47.CrossRefGoogle ScholarPubMed
Clarke, RC, Johnston, JR, Mayne, EE. Meningococcal septicaemia: treatment with protein C concentrate. Intens Care Med. 2000;26(4):471–3.CrossRefGoogle ScholarPubMed
Eisele, B, Lamy, M. Clinical experience with antithrombin III concentrates in critically ill patients with sepsis and multiple organ failure. Semin Thromb Hemost. 1998;24(1):71–80.CrossRefGoogle ScholarPubMed
Hanada, T, Abe, T, Takita, H. Antithrombin III concentrates for treatment of disseminated intravascular coagulation in children. Am J Pediatr Hematol/Oncol. 1985;7(1):3–8.Google ScholarPubMed
Kreuz, W, Schneider, W, Nowak-Gottl, U. Treatment of consumption coagulopathy with antithrombin concentrate in children with acquired antithrombin deficiency – a feasibility pilot study. Eur J Pediatr 1999:158 Suppl 3:S87–91.CrossRefGoogle ScholarPubMed
Abraham, E, Reinhart, K, Opal, S, Demeyer, I, Doig, C, Rodriguez, AL, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA. 2003;290(2):238–47.CrossRefGoogle ScholarPubMed
de Pont, ACJM, Moons, AHM, de Jonge, E, Meijers, JCM, Vlasuk, GP, Rote, WE, et al. Recombinant nematode anticoagulant protein c2, an inhibitor of tissue factor/factor VIIa, attenuates coagulation and the interleukin-10 response in human endotoxemia. J Thromb Haemost. 2004;2(1):65–70.CrossRefGoogle ScholarPubMed
Godoi, LC, Gomes, KB, Alpoim, PN, Carvalho, MdG, Lwaleed, BA, Sant’Ana Dusse, LM. Preeclampsia: the role of tissue factor and tissue factor pathway inhibitor. J Thromb Thrombolysis. 2012;34(1):1–6.CrossRefGoogle ScholarPubMed
Saito, H, Maruyama, I, Shimazaki, S, Yamamoto, Y, Aikawa, N, Ohno, R, et al. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J Thromb Haemost. 2007;5(1):31–41.CrossRefGoogle ScholarPubMed
Wunderink, RG, Laterre, P-F, Francois, B, Perrotin, D, Artigas, A, Vidal, LO, et al. Recombinant tissue factor pathway inhibitor in severe community-acquired pneumonia: a randomized trial. Am J Resp Crit Care Med. 2011;183(11):1561–8.CrossRefGoogle ScholarPubMed
Levi, M. Disseminated intravascular coagulation. Crit Care Med. 2007;35(9):2191–5.CrossRefGoogle ScholarPubMed
Chuansumrit, A, Hotrakitya, S, Hathirat, P, Isarangkura, P. Disseminated intravascular coagulation in children: diagnosis, management and outcome. Southeast Asian J Trop Med Public Health. 1993;24 Suppl 1:229–33.Google Scholar
Hazelzet, JA, Risseeuw-Appel, IM, Kornelisse, RF, Hop, WC, Dekker, I, Joosten, KF, et al. Age-related differences in outcome and severity of DIC in children with septic shock and purpura. Thromb Haemost. 1996;76(6):932–8.Google ScholarPubMed
Khemani, RG, Bart, RD, Alonzo, TA, Hatzakis, G, Hallam, D, Newth, CJL. Disseminated intravascular coagulation score is associated with mortality for children with shock. Intens Care Med. 2009;35(2):327–33.CrossRefGoogle ScholarPubMed
Raffini, LJ, Raybagkar, D, Blumenstein, MS, Rubenstein, RC, Manno, CS. Cystic fibrosis as a risk factor for recurrent venous thrombosis at a pediatric tertiary care hospital. J Pediatr. 2006;148(5):659–64.CrossRefGoogle Scholar
Forrester, LJ, Campbell, BJ, Berg, JN, Barrett, JT. Aggregation of platelets by Fusobacterium necrophorum. J Clin Microbiol. 1985;22(2):245–9.Google ScholarPubMed
Ramirez, S, Hild, TG, Rudolph, CN, Sty, JR, Kehl, SC, Havens, P, et al. Increased diagnosis of Lemierre syndrome and other Fusobacterium necrophorum infections at a Children’s Hospital. Pediatrics. 2003;112(5):e380.CrossRefGoogle Scholar
Alvarez, A, Schreiber, JR. Lemierre’s syndrome in adolescent children – anaerobic sepsis with internal jugular vein thrombophlebitis following pharyngitis. Pediatrics. 1995;96(2 Pt 1):354–9.Google ScholarPubMed
Le Monnier, A, Jamet, A, Carbonnelle, E, Barthod, G, Moumile, K, Lesage, F, et al. Fusobacterium necrophorum middle ear infections in children and related complications: report of 25 cases and literature review. Pediatr Infect Dis J. 2008;27(7):613–7.CrossRefGoogle ScholarPubMed
Lim, S-C, Lee, S-S, Yoon, T-M, Lee, J-K. Lemierre syndrome caused by acute isolated sphenoid sinusitis and its intracranial complications. Auris Nasus Larynx. 2010;37(1):106–9.CrossRefGoogle ScholarPubMed
Redaelli de Zinis, LO, Gasparotti, R, Campovecchi, C, Annibale, G, Barezzani, MG. Internal jugular vein thrombosis associated with acute mastoiditis in a pediatric age. Otol Neurotol. 2006;27(7):937–44.CrossRefGoogle Scholar
Thorne, MC, Chewaproug, L, Elden, LM. Suppurative complications of acute otitis media: changes in frequency over time. Arch Otolaryngol Head Neck Surg. 2009;135(7):638–41.CrossRefGoogle ScholarPubMed
Carpenter, J, Tsuchida, T. Cerebral sinovenous thrombosis in children. Curr Neurol Neurosci Rep. 2007;7(2):139–46.CrossRefGoogle ScholarPubMed
Huisman, TA, Holzmann, D, Martin, E, Willi, UV. Cerebral venous thrombosis in childhood. Eur Radiol. 2001;11(9):1760–5.CrossRefGoogle ScholarPubMed
Heller, C, Heinecke, A, Junker, R, Knofler, R, Kosch, A, Kurnik, K, et al. Cerebral venous thrombosis in children: a multifactorial origin. Circulation. 2003;108(11):1362–7.CrossRefGoogle ScholarPubMed
Fitzgerald, KC, Williams, LS, Garg, BP, Carvalho, KS, Golomb, MR. Cerebral sinovenous thrombosis in the neonate. Arch Neurol. 2006;63(3):405–9.CrossRefGoogle ScholarPubMed
Kenet, G, Waldman, D, Lubetsky, A, Kornbrut, N, Khalil, A, Koren, A, et al. Paediatric cerebral sinus vein thrombosis. A multi-center, case-controlled study. Thromb Haemost. 2004;92(4):713–18.Google ScholarPubMed
Sebire, G, Tabarki, B, Saunders, DE, Leroy, I, Liesner, R, Saint-Martin, C, et al. Cerebral venous sinus thrombosis in children: risk factors, presentation, diagnosis and outcome. Brain. 2005;128(Pt 3):477–89.CrossRefGoogle ScholarPubMed
Carvalho, KS, Bodensteiner, JB, Connolly, PJ, Garg, BP. Cerebral venous thrombosis in children. J Child Neurol. 2001;16(8):574–80.CrossRefGoogle ScholarPubMed
Mallick, AA, Sharples, PM, Calvert, SE, Jones, RWA, Leary, M, Lux, AL, et al. Cerebral venous sinus thrombosis: a case series including thrombolysis. Arch Dis Child. 2009;94(10):790–4.CrossRefGoogle ScholarPubMed
Wasay, M, Dai, AI, Ansari, M, Shaikh, Z, Roach, ES. Cerebral venous sinus thrombosis in children: a multicenter cohort from the United States. J Child Neurol. 2008;23(1):26–31.CrossRefGoogle ScholarPubMed
Lutter, SA, Kerschner, JE, Chusid, MJ. Gradenigo syndrome: a rare but serious complication of otitis media. Pediatr Emerg Care. 2005;21(6):384–6.CrossRefGoogle ScholarPubMed
Kimura, AC, Pien, FD. Head and neck cellulitis in hospitalized adults. Am J Otolaryngol. 1993;14(5):343–9.CrossRefGoogle ScholarPubMed
Muorah, M, Hinds, R, Verma, A, Yu, D, Samyn, M, Mieli-Vergani, G, et al. Liver abscesses in children: a single center experience in the developed world. J Pediatr Gastroenterol Nutr. 2006;42(2):201–6.CrossRefGoogle ScholarPubMed
Brown, CE, Lowe, TW, Cunningham, FG, Weinreb, JC. Puerperal pelvic thrombophlebitis: impact on diagnosis and treatment using x-ray computed tomography and magnetic resonance imaging. Obstet Gynecol. 1986;68(6):789–94.Google ScholarPubMed
Brown, CE, Stettler, RW, Twickler, D, Cunningham, FG. Puerperal septic pelvic thrombophlebitis: incidence and response to heparin therapy. Am J Obstet Gynecol. 1999;181(1):143–8.CrossRefGoogle ScholarPubMed
Wysokinska, EM, Hodge, D, McBane, RD, 2nd. Ovarian vein thrombosis: incidence of recurrent venous thromboembolism and survival. Thromb Haemost. 2006;96(2):126–31.Google Scholar
Mantadakis, E, Plessa, E, Vouloumanou, EK, Michailidis, L, Chatzimichael, A, Falagas, ME. Deep venous thrombosis in children with musculoskeletal infections: the clinical evidence. Int J Infect Dis. 2012;16(4):e236–43.CrossRefGoogle ScholarPubMed
Hollmig, ST, Copley, LAB, Browne, RH, Grande, LM, Wilson, PL. Deep venous thrombosis associated with osteomyelitis in children. J Bone Joint Surg Am. 2007;89(7):1517–23.Google ScholarPubMed
Gonzalez, BE, Teruya, J, Mahoney, DH, Hulten, KG, Edwards, R, Lamberth, LB, et al. Venous thrombosis associated with staphylococcal osteomyelitis in children. Pediatrics. 2006;117(5):1673–9.CrossRefGoogle ScholarPubMed
Nourse, C, Starr, M, Munckhof, W. Community-acquired methicillin-resistant Staphylococcus aureus causes severe disseminated infection and deep venous thrombosis in children: literature review and recommendations for management. J Paediatr Child Health. 2007;43(10):656–61.CrossRefGoogle ScholarPubMed
Antoniak, S, Boltzen, U, Riad, A, Kallwellis-Opara, A, Rohde, M, Dorner, A, et al. Viral myocarditis and coagulopathy: increased tissue factor expression and plasma thrombogenicity. J Mol Cell Cardiol. 2008;45(1):118–26.CrossRefGoogle ScholarPubMed
Rahbar, A, Soderberg-Naucler, C. Human cytomegalovirus infection of endothelial cells triggers platelet adhesion and aggregation. J Virol. 2005;79(4):2211–20.CrossRefGoogle ScholarPubMed
Leder, AN, Flansbaum, B, Zandman-Goddard, G, Asherson, R, Shoenfeld, Y. Antiphospholipid syndrome induced by HIV. Lupus. 2001;10(5):370–4.CrossRefGoogle ScholarPubMed
Yuste, JR, Prieto, J. Anticardiolipin antibodies in chronic viral hepatitis. Do they have clinical consequences?Eur J Gastroenterol Hepatol. 2003;15(7):717–19.CrossRefGoogle ScholarPubMed
Kuczkowski, J, Stankiewicz, C, Izycka-Swieszewska, E, Przewozny, T. Sigmoid sinus thrombosis in a 5-year-old child with acute otitis media and acquired CMV infection. Otolaryngol Pol. 2006;60(6):923–7.Google Scholar
Josephson, C, Nuss, R, Jacobson, L, Hacker, MR, Murphy, J, Weinberg, A, Manco-Johnson, MJ. The varicella autoantibody syndrome. Pediatr Res 2001;50:345–52.CrossRefGoogle ScholarPubMed
Josephson, C. Manco-Johnson, M, Nuss, R, Key, N, Moertel, C, Jacobson, L, Meech, S, Weinberg, A, Lefkowitz, J. Lupus anticoagulant and protein S deficiency in children with post-varicella purpura fulminans or thrombosis. J Pediatr 1996;128:324–8.Google Scholar
Canpolat, C, Bakir, M. A case of purpura fulminans secondary to transient protein C deficiency as a complication of chickenpox infection. Turk J Pediatr. 2002;44(2):148–51.Google ScholarPubMed
Lumbiganon, P, Kosalaraksa, P, Thepsuthammarat, K, Sutra, S. Dengue mortality in patients under 18 years old: an analysis from the health situation analysis of the Thai population in 2010 project. J Med Assoc Thai. 2012;95 Suppl 7:S108–13.Google ScholarPubMed
Srichaikul, T, Nimmannitya, S. Haematology in dengue and dengue haemorrhagic fever. Best Pract Res Clin Haematol. 2000;13(2):261–76.CrossRefGoogle ScholarPubMed
Ribes, JA, Vanover-Sams, CL, Baker, DJ. Zygomycetes in human disease. Clin Microbiol Rev 2000;13:236–301.CrossRefGoogle ScholarPubMed
del Pont, MJ, De Cicco, L, Gallo, G, Llera, J, De Santibanez, , D’Angostino, D. Hepatic arterial thrombosis due to Mucor species in a child following orthotopic liver transplanation. Transpl Infect Dis 2000;2:33–5.CrossRefGoogle Scholar
Ryan, M, Yeo, S, Maguire, A, Webb, D, O’Marcaigh, A, McDermott, M, et al. Rhinocerebral zygomycosis in childhood acute lymphoblastic leukaemia. Eur J Pediatr. 2001;160(4):235–8.CrossRefGoogle ScholarPubMed
Simmons, JH, Zeitler, PS, Fenton, LZ, Abzug, MJ, Fiallo-Scharer, RV, Klingensmith, GJ. Rhinocerebral mucormycosis complicated by internal carotid artery thrombosis in a pediatric patient with type 1 diabetes mellitus: a case report and review of the literature. Pediatr Diabetes 2005;6:234–8.CrossRefGoogle Scholar
Rodland, EK, Ueland, T, Bjornsen, S, Sagen, EL, Dahl, CP, Naalsund, A, et al. Systemic biomarkers of inflammation and haemostasis in patients with chronic necrotizing pulmonary aspergillosis. BMC Infect Dis. 2012;12:144.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×