Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T14:57:41.965Z Has data issue: false hasContentIssue false

6 - Crystallization of elastic polymers

Published online by Cambridge University Press:  05 May 2014

Michael Bachmann
Affiliation:
University of Georgia
Get access

Summary

A central result of the discussion in the last chapter was the strong influence of finite-size effects on the freezing behavior of flexible polymers constrained to regular lattices. Thus, (unphysical) lattice effects interfere with (physical) finite-size effects and the question remains what polymer crystals of small size could look like. Since all effects in the freezing regime are sensitive to system or model details, this question cannot be answered in general. Nonetheless, it is obvious that the surface exposed to a different environment, e.g., a solvent, is relevant for the formation of the whole crystalline or amorphous structure. This is true for any physical system. If a system tries to avoid contact with the environment (a polymer in bad solvent or a set of mutually attracting particles in vacuum), it will form a shape with a minimal surface. A system that can be considered as a continuum object in an isotropic environment, like a water droplet in the air, will preferably form a spherical shape.

But what if the system is “small” and discrete? Small crystals consisting of a few hundred cold atoms, e.g., argon [154], but also as different systems as spherical virus hulls enclosing the coaxially wound genetic material [155, 156] exhibit an icosahedral or icosahedral-like shape. But why is just the icosahedral assembly naturally favored?

The capsid of spherical viruses is formed by protein assemblies, the protomers, and the highly symmetric morphological arrangement of the protomers in icosahedral capsids reduces the number of genes that are necessary to encode the capsid proteins. Furthermore, the formation of crystalline facets decreases the surface energy, which is particularly relevant for small atomic clusters.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×