Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T09:21:26.760Z Has data issue: false hasContentIssue false

21 - Alternative procedures in surgery for epilepsy

Published online by Cambridge University Press:  05 October 2012

André Olivier
Affiliation:
McGill University and Montreal Neurological Hospital and Institute
Warren W. Boling
Affiliation:
University of Louisville, Kentucky
Taner Tanriverdi
Affiliation:
Istanbul Üniversitesi
Get access

Summary

Introduction

This chapter will discuss techniques that depart from the classical epilepsy surgery of seizure focus resection. The treatments vagus nerve stimulation and multiple subpial transection discussed below are currently being used and are generally accepted as standard surgical options, but brain stimulation and radiosurgery are continuing to be studied to define their roles in the treatment of intractable epilepsy. For the newer therapies, we cannot know at this time whether they will be embraced as a useful and efficacious treatment option for our patients. With that caveat in mind, the goal of this chapter is to serve as an introduction to the current state of knowledge for investigational approaches, as well as to describe the indications and surgical technique for alternative procedures that have become accepted for use in surgery for epilepsy.

Multiple subpial transections

Often the most difficult and complex treatment decisions are in patients with a seizure focus that involves important functioning areas. In some patients, a minor neurological deficit may be acceptable for a reasonable chance at seizure freedom. However, if the complete resection of a seizure focus poses an unacceptable risk to neurological function, an alternative technique such as multiple subpial transection (MST) can be considered. The technique of MST was refined in animals by Morrell and colleagues. It was first utilized in humans by John Handbery in three patients and later translated to a large series of patients by Whisler at the Rush Epilepsy Center in Chicago.

Type
Chapter
Information
Techniques in Epilepsy Surgery
The MNI Approach
, pp. 254 - 268
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Morrell, FHanbery, JWA new surgical technique for the treatment of focal cortical epilepsyElectroencephalogr Clin Neurophysiol 26 120 1969Google ScholarPubMed
Morrell, FWhisler, WWBleck, TPMultiple subpial transection: a new approach to the surgical treatment of focal epilepsyJ Neurosurg 70 231 1989CrossRefGoogle ScholarPubMed
Dudek, FIESnow, RWTaylor, CPRole of electrical interactions in synchronization of epileptiform burstsDelgado-Escueta, AVWard, AAWoodbury, DWBasic Mechanisms of the Epilepsies. Molecular and Cellular ApproachesNew York, NYRaven Press593 1986Google Scholar
Tatum, WOHelmers, SLVagus nerve stimulation and magnet use: Optimizing benefitsEpilepsy Behav 15 299 2009CrossRefGoogle ScholarPubMed
First International Vagus Nerve Stimulation Study GroupVagus nerve stimulation for treatment of partial seizures. Epilepsia 35 616 1994CrossRefGoogle Scholar
Handforth, ADeGiorgio, CMSchachter, SCVagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trialNeurology 51 48 1998CrossRefGoogle ScholarPubMed
Sperling, MRFeldman, HKinman, JLiporace, JDConnor, MJSeizure control and mortality in epilepsyAnn Neurol 46 45 19993.0.CO;2-I>CrossRefGoogle ScholarPubMed
Gilliam, FKuzniecky, RMeador, KPatient-oriented outcome assessment after temporal lobectomy for refractory epilepsyNeurology 53 687 1999CrossRefGoogle ScholarPubMed
Moruzzi, GMagoun, HWBrain stem reticular formation and activation of the EEGJ Neuropsychiatry Clin Neurosci 7 251 1995Google ScholarPubMed
Arduini, ALairy-Bounes, GC[Effects of stimulation of the reticular substance of the bulb and of sensory stimuli on the strychninic cortical waves in the isolated brain cat.]Boll Soc Ital Biol Sper 1951 27 1634Google Scholar
Zanchetti, AWang, SCMoruzzi, GThe effect of vagal afferent stimulation on the EEG pattern of the catElectroencephalogr Clin Neurophysiol 4 357 1952CrossRefGoogle ScholarPubMed
Woodbury, DMWoodbury, JWEffects of vagal stimulation on experimentally induced seizures in ratsEpilepsia 31 S7 1990CrossRefGoogle ScholarPubMed
Lockard, JSCongdon, WCDuCharme, LLFeasibility and safety of vagal stimulation in monkey modelEpilepsia 31 S20 1990CrossRefGoogle ScholarPubMed
McLachlan, RSSuppression of interictal spikes and seizures by stimulation of the vagus nerveEpilepsia 34 918 1993CrossRefGoogle ScholarPubMed
Garnett, ESNahmias, CScheffel, AFirnau, GUpton, ARRegional cerebral blood flow in man manipulated by direct vagal stimulationPacing Clin Electrophysiol 15 1579 1992CrossRefGoogle ScholarPubMed
Ko, DHeck, CGrafton, SVagus nerve stimulation activates central nervous system structures in epileptic patients during PET H2(15)O blood flow imagingNeurosurgery 39 426 1996CrossRefGoogle ScholarPubMed
Henry, TRBakay, RAVotaw, JRBrain blood flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: I. Acute effects at high and low levels of stimulationEpilepsia 39 983 1998CrossRefGoogle Scholar
Hammond, EJUthman, BMReid, SAWilder, BJRamsay, REVagus nerve stimulation in humans: neurophysiological studies and electrophysiological monitoringEpilepsia 31 S51 1990CrossRefGoogle ScholarPubMed
George, RSalinsky, MKuzniecky, RVagus nerve stimulation for treatment of partial seizures: 3. Long-term follow-up on first 67 patients exiting a controlled studyEpilepsia 35 637 1994CrossRefGoogle ScholarPubMed
Morris, GLMueller, WMLong-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01-E05Neurology 53 1731 1999CrossRefGoogle Scholar
The Vagus Nerve Stimulation Study GroupA randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizuresNeurology 45 224 1995CrossRefGoogle Scholar
Cooper, ISAmin, IGilman, SThe effect of chronic cerebellar stimulation upon epilepsy in manTrans Am Neurol Assoc 98 192 1973Google ScholarPubMed
Cooper, ISUpton, ARUse of chronic cerebellar stimulation for disorders of disinhibitionLancet 18 595 1978CrossRefGoogle Scholar
Upton, ARAmin, IGarnett, SEvoked metabolic responses in the limbic-striate system produced by stimulation of anterior thalamic nucleus in manPacing Clin Electrophysiol 10 217 1987CrossRefGoogle ScholarPubMed
Fisher, RSalanova, VWitt, TElectrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsyEpilepsia 51 899 2010CrossRefGoogle ScholarPubMed
Wright, GDMcLellan, DLBrice, JGA double-blind trial of chronic cerebellar stimulation in twelve patients with severe epilepsyJ Neurol Neurosurg Psychiatry 47 769 1984CrossRefGoogle ScholarPubMed
Velasco, FCarrillo-Ruiz, JDBrito, FDouble-blind, randomized controlled pilot study of bilateral cerebellar stimulation for treatment of intractable motor seizuresEpilepsia 46 1071 2005CrossRefGoogle ScholarPubMed
Velasco, FVelasco, MOgarrio, CFanghanel, GElectrical stimulation of the centromedian thalamic nucleus in the treatment of convulsive seizures: a preliminary reportEpilepsia 28 421 1987CrossRefGoogle ScholarPubMed
Velasco, FVelasco, MVelasco, ALJimenez, FEffect of chronic electrical stimulation of the centromedian thalamic nuclei on various intractable seizure patterns: I. Clinical seizures and paroxysmal EEG activityEpilepsia 34 1052 1993CrossRefGoogle ScholarPubMed
Velasco, ALVelasco, FVelasco, MElectrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up studyEpilepsia 48 1895 2007CrossRefGoogle ScholarPubMed
Boon, PVonck, KDe, HerdtDeep brain stimulation in patients with refractory temporal lobe epilepsyEpilepsia 48 1551 2007CrossRefGoogle ScholarPubMed
Chabardès, SKahane, PMinotti, LDeep brain stimulation in epilepsy with particular reference to the subthalamic nucleusEpileptic Disord 4 S83 2002Google ScholarPubMed
Chkhenkeli, SAChkhenkeli, ISEffects of therapeutic stimulation of nucleus caudatus on epileptic electrical activity of brain in patients with intractable epilepsyStereotact Funct Neurosurg 69 221 1997CrossRefGoogle ScholarPubMed
Franzini, AMessina, GMarras, CDeep brain stimulation of two unconventional targets in refractory non-resectable epilepsyStereotact Funct Neurosurg 86 373 2008CrossRefGoogle ScholarPubMed
Morrell, MBrain stimulation for epilepsy: can scheduled or responsive neurostimulation stop seizuresCurr Opin Neurol 19 164 2006CrossRefGoogle ScholarPubMed
Dempsey, EWMorrison, RSThe production of rhythmically recurrent cortical potentials after localized thalamic stimulationAm J Physiol 135 293 1942Google Scholar
Lado, FAVelísek, LMoshé, SLThe effect of electrical stimulation of the subthalamic nucleus on seizures is frequency dependentEpilepsia 44 157 2003CrossRefGoogle ScholarPubMed
Penfield, WJasper, HElectrocorticography, Epilepsy and the Functional Anatomy of the Human BrainBoston, MALittle, Brown692 1954Google Scholar
Yamamoto, JIkeda, AKinoshita, MLow-frequency electric cortical stimulation decreases interictal and ictal activity in human epilepsySeizure 15 520 2006CrossRefGoogle ScholarPubMed
Sun, FTMorrell, MJWharen, REResponsive cortical stimulation for the treatment of epilepsyNeurotherapeutics 5 68 2008CrossRefGoogle ScholarPubMed
Anderson, WSKossoff, EHBergey, GKJallo, GIImplantation of a responsive neurostimulator device in patients with refractory epilepsyNeurosurg Focus 25 E12 2008CrossRefGoogle ScholarPubMed
Maesawa, SKondziolka, DBalzer, JThe behavioral and electroencephalographic effects of stereotactic radiosurgery for the treatment of epilepsy evaluated in the rat kainic acid modelStereotact Funct Neurosurg 73 115 1999CrossRefGoogle ScholarPubMed
Maesawa, SKondziolka, DDixon, CESubnecrotic stereotactic radiosurgery controlling epilepsy produced by kainic acid injection in ratsJ Neurosurg 93 1033 2000CrossRefGoogle ScholarPubMed
Mori, YKondziolka, DBalzer, JEffects of stereotactic radiosurgery on an animal model of hippocampal epilepsyNeurosurgery 46 157 2000CrossRefGoogle ScholarPubMed
Munari, CKahane, PFrancione, SRole of the hypothalamic hamartoma in the genesis of gelastic fits (a video-stereo-EEG study)Electroencephalogr Clin Neurophysiol 95 154 1995CrossRefGoogle Scholar
Valdueza, JMCristante, LDammann, OHypothalamic hamartomas: with special reference to gelastic epilepsy and surgeryNeurosurgery 34 949 1994Google ScholarPubMed
Delalande, OFohlen, MDisconnecting surgical treatment of hypothalamic hamartoma in children and adults with refractory epilepsy and proposal of a new classificationNeurol Med Chir (Tokyo) 43 61 2003CrossRefGoogle ScholarPubMed
Sturm, JWAndermann, FBerkovic, SFPressure to laugh”: an unusual epileptic symptom associated with small hypothalamic hamartomasNeurology 54 971 2000CrossRefGoogle ScholarPubMed
Northfield, DWRussell, DSPubertas praecox due to hypothalamic hamartoma: report of two cases surviving surgical removal of the tumourJ Neurol Neurosurg Psychiatry 30 166 1967CrossRefGoogle ScholarPubMed
Palmini, AChandler, CAndermann, FResection of the lesion in patients with hypothalamic hamartomas and catastrophic epilepsyNeurology 58 1338 2002CrossRefGoogle ScholarPubMed
Polkey, CEResective surgery for hypothalamic hamartomasEpileptic Disord 5 281 2003Google Scholar
Feiz-Erfan, IHorn, EMRekate, HLSurgical strategies for approaching hypothalamic hamartomas causing gelastic seizures in the pediatric population: transventricular compared with skull base approachesJ Neurosurg 103 325 2005Google ScholarPubMed
Procaccini, EDorfmüller, GFohlen, MBulteau, CDelalande, OSurgical management of hypothalamic hamartomas with epilepsy: the stereoendoscopic approachNeurosurgery 59 2006Google ScholarPubMed
Parrent, AGStereotactic radiofrequency ablation for the treatment of gelastic seizures associated with hypothalamic hamartoma. Case reportJ Neurosurg 91 881 1999CrossRefGoogle ScholarPubMed
Homma, JKameyama, SMasuda, HStereotactic radiofrequency thermocoagulation for hypothalamic hamartoma with intractable gelastic seizuresEpilepsy Res 76 15 2007CrossRefGoogle ScholarPubMed
Schulze-Bonhage, ATrippel, MWagner, KOutcome and predictors of interstitial radiosurgery in the treatment of gelastic epilepsyNeurology 71 277 2008CrossRefGoogle ScholarPubMed
Régis, JArkha, YYomo, SRôle de la radiochirugie Gamma Knife dans le traitement des épilepsies pharmacorésistantes : situation actuelle, résultats et perspectivesNeurochirurgie 54 320 2008CrossRefGoogle Scholar
Striano, SStriano, PCoppola, ARomanelli, PThe syndrome gelastic seizures-hypothalamic hamartoma: severe, potentially reversible encephalopathyEpilepsia 50 62 2009CrossRefGoogle Scholar
Régis, JScavarda, DTamura, MEpilepsy related to hypothalamic hamartomas: surgical management with special reference to gamma knife surgeryChilds Nerv Syst 22 881 2006CrossRefGoogle ScholarPubMed
Talairach, JBancaud, JSzikla, GApproche nouvelle de la neurochirurgie de l'epilepsie. Méthodologie stéréotaxique et résultats thérapeutiquesNeurochirurgie 20 1 1974Google Scholar
Bartolomei, FHayashi, MTamura, MLong-term efficacy of gamma knife radiosurgery in mesial temporal lobe epilepsyNeurology 70 1658 2008CrossRefGoogle ScholarPubMed
Barbaro, NMQuigg, MBroshek, DKA multicenter, prospective pilot study of gamma knife radiosurgery for mesial temporal lobe epilepsy: seizure response, adverse events, and verbal memoryAnn Neurol 65 167 2009CrossRefGoogle ScholarPubMed
Anschel, DJOrtega, ELKraus, ACFisher, RSFocally injected adenosine prevents seizures in the ratExp Neurol 190 544 2004CrossRefGoogle ScholarPubMed
Tamargo, RJRossell, LAKossoff, EHThe intracerebral administration of phenytoin using controlled-release polymers reduces experimental seizures in ratsEpilepsy Res 48 145 2002CrossRefGoogle ScholarPubMed
Bobo, RHLaske, DWAkbasak, AConvection-enhanced delivery of macromolecules in the brainProc Natl Acad Sci USA 91 2076 1994CrossRefGoogle Scholar
Heiss, JDWalbridge, SMorrison, PLocal distribution and toxicity of prolonged hippocampal infusion of muscimolJ Neurosurg 103 1035 2005CrossRefGoogle ScholarPubMed
Kanter-Schlifke, IGeorgievska, BKirik, DKokaia, MSeizure suppression by GDNF gene therapy in animal models of epilepsyMol Ther 15 1106 2007CrossRefGoogle ScholarPubMed
Noé, FFrasca, ABalducci, CNeuropeptide Y overexpression using recombinant adeno-associated viral vectorsNeurotherapeutics 6 300 2009CrossRefGoogle ScholarPubMed
McCown, TJAdeno-associated virus-mediated expression and constitutive secretion of galanin suppresses limbic seizure activity in vivoMol Ther 14 63 2006CrossRefGoogle ScholarPubMed
Riban, VFitzsimons, HLDuring, MJGene therapy in epilepsyEpilepsia 50 24 2009CrossRefGoogle ScholarPubMed
Thompson, KWSuchomelova, LMTransplants of cells engineered to produce GABA suppress spontaneous seizuresEpilepsia 45 4 2004CrossRefGoogle ScholarPubMed
Li, TSteinbeck, JALusardi, TSuppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implantsBrain 130 1276 2007CrossRefGoogle ScholarPubMed
Ruschenschmidt, CKoch, PGBrustle, OBeck, HFunctional properties of ES cell-derived neurons engrafted into the hippocampus of adult normal and chronically epileptic ratsEpilepsia 46 174 2005CrossRefGoogle ScholarPubMed
Rao, MSHattiangady, BRai, KSShetty, AKStrategies for promoting anti-seizure effects of hippocampal fetal cells grafted into the hippocampus of rats exhibiting chronic temporal lobe epilepsyNeurobiol Dis 27 117 2007CrossRefGoogle ScholarPubMed
Kørbling, MEstrov, ZAdult stem cells for tissue repair – a new therapeutic concept?N Engl J Med 349 570 2003CrossRefGoogle ScholarPubMed
Zhao, LRDuan, WMReyes, MHuman bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of ratsExp Neurol 174 11 2002CrossRefGoogle ScholarPubMed
Chen, JSanberg, PRLi, YIntravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in ratsStroke 32 2682 2001CrossRefGoogle ScholarPubMed
Toma, JGMcKenzie, IABagli, DMiller, FDIsolation and characterization of multipotent skin-derived precursors from human skinStem Cells 23 727 2005CrossRefGoogle ScholarPubMed
Fernandes, KJKobayashi, NRGallagher, CJAnalysis of the neurogenic potential of multipotent skin-derived precursorsExp Neurol 201 32 2006CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×