Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T06:21:53.412Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2013

Ronald Greeley
Affiliation:
Arizona State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonenko, I., Head, J. W., Mustard, J. F., and Hawke, B. R. (1995). Criteria for the detection of lunar cryptomaria. Earth, Moon, and Planets, 69, 141–172.CrossRefGoogle Scholar
Arvidson, R. E., Ruff, S. W., Morris, R. V. et al. (2008). Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: mission overview and selected results from the Cumberland Ridge to Home Plate. J. Geophys. Res., 113(E12), E12S33.CrossRefGoogle Scholar
Bagnold, R. A. (1941). The Physics of Blown Sand and Desert Dunes. London: Methuen and Co.Google Scholar
Barlow, N. G., Costard, F. M., Craddock, R. A. et al. (2000). Standardizing the nomenclature of Martian impact crater ejecta morphologies. J. Geophys. Res., 105, 26,733–26,738.CrossRefGoogle Scholar
Bibring, J.-P., Langevin, Y., Mustard, J. F. et al. (2006). Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science, 312, 400–404.CrossRefGoogle ScholarPubMed
Brownlee, D., Tsou, P., Aléon, J. et al. (2006). Comet 81P/Wild2 under a microscope. Science, 314, 1,711–1,716.CrossRefGoogle Scholar
Buratti, B. J. and Mosher, J. A. (1991). Comparative global albedo and color maps of the Uranian satellites. Icarus, 90, 1–13.CrossRefGoogle Scholar
Canup, R. M. (2010). Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite. Nature, 468, 943–946.CrossRefGoogle ScholarPubMed
Carr, M. H. (2006). The Surface of Mars. Cambridge: Cambridge University Press.Google Scholar
Carr, M. H. and HeadIII, J. W. (2010). Geologic history of Mars. Earth Planet. Sci. Lett., 294, 185–203.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E. et al. (2001). Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. J. Geophys. Res., 106, 23,823–23,871.CrossRefGoogle Scholar
Clow, G. D. and Carr, M. H. (1980). Stability of sulfur slopes on Io. Icarus, 44, 268–279.CrossRefGoogle Scholar
Collins, G. and Nimmo, F. (2009). Chaotic terrain on Europa. In Europa, ed. Pappalardo, R., McKinnon, W., and Khurana, K.. Tucson, AZ: University of Arizona Press, pp. 259–281.Google Scholar
Cruikshank, D., Bell, J. F., Gaffey, M. J. et al. (1983). The dark side of Iapetus. Icarus, 53, 90–104.CrossRefGoogle Scholar
Davies, A. (2007). Volcanism on Io: A Comparison with Earth. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Davies, M. E., Dwornik, S. E., Gault, D. E., and Strom, R. G. (1976). Atlas of Mercury. NASA Special Publication 423.
Dence, M. R. (1972). The nature and significance of terrestrial impact structures. In Proceedings of the 24th International Geological Congress, Section 15, pp. 77–89.
Donahue, T. M., Hoffman, J. H., Hodges, R. R., and Watson, A. J. (1982). Venus was wet: a measurement of the ratio of D to H. Science, 216, 630–633.CrossRefGoogle Scholar
Esposito, L. W. (1984). Sulfur dioxide: episodic injection shows evidence for active Venus volcanism. Science, 223, 1,072–1,074.CrossRefGoogle ScholarPubMed
Figueredo, P. H., Greeley, R., Neuer, S., Irwin, L., and Schulze-Makuch, D. (2003). Locating potential biosignatures on Europa from surface geology observations. Astrobiology, 3, 851–861.CrossRefGoogle ScholarPubMed
French, B. M. (1998). Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Houston, TX: Lunar and Planetary Science Institute.Google Scholar
Frey, H. (2011). Previously unknown large impact basins on the Moon: implications for lunar stratigraphy. In Recent Advances and Current Research Issues in Lunar Stratigraphy. Boulder, CO: Geological Society of America, pp. 53–75.CrossRefGoogle Scholar
Gaddis, L. R., Staid, M. I., Tyburczy, J. A., Hawke, B. R., and Petro, N. E. (2003). Compositional analyses of lunar pyroclastic deposits. Icarus, 161, 262–280.CrossRefGoogle Scholar
Garcia-Ruiz, J. M., Hyde, S. T., Carnerup, A. M. et al. (2003). Self-assembled silica–carbonate structures and detection of ancient microfossils. Science, 302, 1,194–1,197.CrossRefGoogle ScholarPubMed
Gault, D. E., Quaide, W. L., and Oberbeck, V. R. (1968). Impact cratering mechanisms and structures. In Shock Metamorphism of Natural Materials, ed. French, B. M. and Short, N. M.. Baltimore, MD: Mono Book Corp., pp. 87–99.Google Scholar
Gault, D. E., Guest, J. E., Murray, J. B., Dzurisin, D., and Malin, M. C. (1975). Some comparisons of impact craters on Mercury and the Moon. J. Geophys. Res., 80, 2,444–2,460.CrossRefGoogle Scholar
Golombek, M. P. and Phillips, R. J. (2010). Mars tectonics. In Planetary Tectonics, ed. Watters, T. and Schultz, P.. Cambridge: Cambridge University Press, pp. 183–232.Google Scholar
Greeley, R. and Batson, R. (2001). The Compact NASA Atlas of the Solar System. Cambridge: Cambridge University Press.Google Scholar
Greeley, R. and Iversen, J. D. (1985). Wind as a Geological Process: Earth, Mars, Venus, and Titan. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Greeley, R. and Spudis, P. D. (1981). Volcanism on Mars. Rev. Geophys. Space Phys., 19, 13–41.CrossRefGoogle Scholar
Greeley, R., Fink, J. H., Gault, D. E., and Guest, J. E. (1982). Experimental simulation of impact cratering on icy satellites. In Satellites of Jupiter, ed. Morrison, D.. Tucson, AZ: University of Arizona Press, pp. 340–378.Google Scholar
Greenberg, R., Hoppa, G. V., Tufts, B. R. et al. (1999). Chaos on Europa. Icarus, 141, 263–286.CrossRefGoogle Scholar
Grotzinger, J. P. (2009). Mars exploration, comparative planetary history and the promise of Mars Science Laboratory. Nature Geosci., 2, 1–3.Google Scholar
Grundy, W. M., Young, L. A., Spencer, J. R. et al. (2006). Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations. Icarus, 184, 543–555.CrossRefGoogle Scholar
Head, J. W. and Wilson, L. (1986). Volcanic processes and landforms on Venus: theory, predictions, and observations. J. Geophys. Res., 91, 9,407–9,446.CrossRefGoogle Scholar
Head, J. W., Crumpler, L. S., Aubele, J. C., Guest, J. E., and Saunders, R. S. (1992). Venus volcanism: classification of volcanic features and structures, associations, and global distribution from Magellan data. J. Geophys. Res., 97, 13,153–13,198.CrossRefGoogle Scholar
Head, J. W., Murchie, S. L., Prockter, L. M. et al. (2008). Volcanism on Mercury: evidence from the first MESSENGER flyby. Science, 321, 69–72.CrossRefGoogle ScholarPubMed
Head, J. W., Marchant, D. R., Dickson, J. L., Kress, A. M., and Bakerm, D. M. (2010). Northern mid-latitude glaciation in the Amazonian period of Mars: criteria for the recognition of debris-covered glacier and valley glacier land system deposits. Earth Planet. Sci. Lett., 294, 306–320.CrossRefGoogle Scholar
Heiken, G. H., Vaniman, D. T., and French, B. M., eds. (1991). Lunar Sourcebook: A User’s Guide to the Moon. Cambridge: Cambridge University Press.
Hiesinger, H., HeadIII, J. W., Wolf, U, Jaumann, R., and Neukum, G. (2011). Ages and stratigraphy of lunar mare basalts: a synthesis. In Recent Advances and Current Research Issues in Lunar Stratigraphy. Boulder, CO: Geological Society of America pp. 1–51.Google Scholar
Howard, K. A. (1967). Drainage analysis in geological interpretation: a summation. Am. Assoc. Petrol. Geol. Bull., 51, 2,246–2,259.Google Scholar
Jaumann, R., Kirk, R. L., Lorenz, R. D. et al. (2009a). Geology and surface processes on Titan. In Titan, ed. Brown, H., Lebreton, J-P., and Waite, J. H.. Dordrecht: Springer, pp. 75–140.Google Scholar
Jaumann, R., Clark, R. N., Nimmo, F. et al. (2009b). Icy satellites: geologic evolution and surface processes. In Saturn from Cassini–Huygens, ed. Dougherty, M., Esposito, L., and Krimigis, S.. Dordrecht: Springer, pp. 637–681.CrossRefGoogle Scholar
Kivelson, M. G., Bagenal, F., Kurth, W. S. et al. (2004). Magnetospheric interactions with satellites. In Jupiter – The Planets, Satellites, and Magnetosphere, ed. Bagenal, F., Dowling, T., and McKinnon, W.. Cambridge: Cambridge University Press, pp. 513–536.Google Scholar
Lunine, J. I. (1990). Evolution of the atmosphere and surface of Titan. In Formation of Stars and Planets, and the Evolution of the Solar System. Proceedings of the 24th ESLAB Symposium, Friedrichshafen. Noordwijk: ESA, pp. 159–165.Google Scholar
McCauley, J. F. (1977). Orientale and Caloris. Phys. Earth Planet. Inter., 15, 220–250.CrossRefGoogle Scholar
McCauley, J. F., Smith, B. A., and Soderblom, L. A. (1979). Erosional scarps on Io. Nature, 280, 736–738.CrossRefGoogle Scholar
McKay, D. S., Heiken, G., Basu, A. et al. (1991). The lunar regolith. In The Lunar Sourcebook A User’s Guide to the Moon, ed. Heiken, G. H., Vaniman, D. T., and French, B. M.. Cambridge: Cambridge University Press, pp. 285–356.Google Scholar
McKee, E. D., ed. (1979). A Study of Global Sand Seas. Reston, VA: US Geological Survey.
McKinnon, W. B. (1999). Convective instability in Europa’s floating ice shell. Geophys. Res. Lett., 26, 951–954.CrossRefGoogle Scholar
McKinnon, W. B., Zahnle, K. J., Ivanov, B. A., and Melosh, H. J. (1997). Cratering on Venus: models and observations. In Venus II – Geology, Geophysics, Atmosphere and Solar Wind Environment, ed. Bougher, S. W., Hunten, D. M., and Philips, R. J.Tucson, AZ: University of Arizona Press, pp. 969–1,014.Google Scholar
Melosh, H. J. (1984). Impact ejection, spallation and the origin of meteorites. Icarus, 59, 234–260.CrossRefGoogle Scholar
Melosh, H. J. (1989). Impact Cratering: A Geologic Process. New York, NY: Oxford Univerisity Press.Google Scholar
Michael, G. G. and Neukum, G. (2010). Planetary surface dating from crater-size-frequency distribution measurements: partial resurfacing events and statistical age uncertainty. Planet. Space Sci. Lett., 294, 223–229.CrossRefGoogle Scholar
Moore, J. M., Schenk, P. M., Bruesch, L. S., Asphaug, E., and McKinnon, W. B. (2004). Large impact features on middle-sized icy satellites. Icarus, 171, 421–443.CrossRefGoogle Scholar
Murchie, S., Watters, T. R., Robinson, M. S. et al. (2008). Geology of the Caloris basin, Mercury: a view from MESSENGER. Science, 321, 73–76.CrossRefGoogle ScholarPubMed
Namiki, N., Iwata, T., Matsumoto, K. et al. (2009). Farside gravity field of the Moon from four-way Doppler measurements of SELENE (Kaguya). Science, 323, 900–905.CrossRefGoogle Scholar
Neukum, G., Ivanov, B. A., and Hartman, W. K. (2001). Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev., 96, 55–86.CrossRefGoogle Scholar
Nimmo, F., Spencer, J. R., Pappalardo, R. T., and Mullen, M. E. (2007). Shear heating as the origin of the plumes and heat flux on Enceladus. Nature, 447, 289–291.CrossRefGoogle ScholarPubMed
NRC (2011). Vision and Voyages for Planetary Science in the Decade 2013–2022. Washington, DC: National Academies Press.Google Scholar
Oberbeck, V. R. (1975). The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev. Geophys. Space Phys., 13, 337–362.CrossRefGoogle Scholar
Oberbeck, V. R. and Quaide, W. L. (1967). Estimated thickness of a fragmental surface layer of Oceanus Procellarum. J. Geophys. Res., 72, 4,697–4,704.CrossRefGoogle Scholar
Pappalardo, R. T., Collins, G. C., Head, J. W. et al. (2004). Geology of Ganymede. In Jupiter – The Planets, Satellites, and Magnetosphere, ed. Bagenal, F., Dowling, T., and McKinnon, W.. Cambridge: Cambridge University Press, pp. 363–396.Google Scholar
Phillips, R. J., Davis, B. J., Tanaka, K. L. et al. (2011). Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars. Science, 332, 838–841.CrossRefGoogle Scholar
Porco, C. C., Thomas, P. C., Weiss, J. W., and Richardson, D. C. (2007). Saturn’s small inner satellites: clues to their origins. Science, 318, 1,602–1,607.CrossRefGoogle ScholarPubMed
Prockter, L. and Patterson, G. W. (2009). Morphology and evolution of Europa’s ridges and bands. In Europa, ed. Pappalardo, R., McKinnon, W., and Khurana, K.. Tucson, AZ: University of Arizona Press, pp. 237–258.Google Scholar
Roatsch, T, Jaumann, R., Stephan, K., and Thomas, P. C. (2009). Cartographic mapping of the icy satellites using ISS and VIMS data. In Saturn from Cassini-Huygens, ed. Dougherty, M., Esposito, L., and Krimigis, S.. Dordrecht: Springer, pp. 763–781.CrossRefGoogle Scholar
Schenk, P. M. (1995). The geology of Callisto. J. Geophys. Res., 100, 19,023–19,040.CrossRefGoogle Scholar
Schenk, P. M., Chapman, C. R., Zahnle, K., and Moore, J. M. (2004). Ages and interiors: the cratering record of the Galilean satellites. In Jupiter – The Planets, Satellites, and Magnetosphere, ed. Bagenal, F., Dowling, T., and McKinnon, W.. Cambridge: Cambridge University Press, pp. 427–456.Google Scholar
Schmincke, H.-U. (2004). Volcanism. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Schultz, P. H. and Gault, D. E. (1975). Seismic effects from major basin formation on the Moon and Mercury. Moon, 12, 159–177.CrossRefGoogle Scholar
Sharpton, V. L. (1994). Evidence from Magellan for unexpectedly deep complex craters on Venus. In Large Meteorite Impacts and Planetary Evolution, ed. Dressler, B. O., Grieve, R. A. F., and Sharpton, V. L.. Boulder, CO: Geological Society of America.Google Scholar
Smrekar, S. E., Elkins-Tanton, L., Leitner, J. J. et al. (2007). Tectonic and thermal evolution of Venus and the role of volatiles: implications for understanding the terrestrial planets. In Exploring Venus as a Terrestrial Planet, ed. Esposito, L. W., Stofan, E. R., and Cravens, T. E.. Washington, DC: American Geophysical Union.Google Scholar
Solomon, S. and Head, J. W. (1982). Evolution of the Tharsis province of Mars: the importance of heterogeneous lithospheric thickness and volcanic construction. J. Geophys. Res., 87, 9,755–9,774.CrossRefGoogle Scholar
Solomon, S. C., Smrekar, S. E., Bindschadler, D. L. et al. (1992). Venus tectonics: an overview of Magellan observations. J. Geophys. Res., 97, 13,199–13,255.CrossRefGoogle Scholar
Solomon, S. C., McNutt, R. L., Watters, T. R. et al. (2008). Return to Mercury: a global perspective on MESSENGER’s first Mercury flyby. Science, 321, 59–65.CrossRefGoogle ScholarPubMed
Sotin, C., Mitri, G., Rappaport, N., and Schubert, G. (2009). Titan’s interior structure. In Titan, ed. Brown, H., Lebreton, J-P., and Waite, J. H.. Dordrecht: Springer, pp. 61–73.Google Scholar
Spencer, J. R., Carlson, R. W., Becker, T. L., and Blue, J. S. (2004). Maps and spectra of Jupiter and the Galilean Satellites. In Jupiter – The Planets, Satellites, and Magnetosphere, ed. Bagenal, F., Dowling, T. and McKinnon, W.. Cambridge: Cambridge University Press, pp. 689–698.Google Scholar
Spencer, J. R., Barr, A. C., Esposito, L. W. et al. (2009). Enceladus: an active cyrovolcanic satellite, In Saturn from Cassini-Huygens, ed. Dougherty, M., Esposito, L., and Krimigis, S.. Dordrecht: Springer, pp. 683–724.CrossRefGoogle Scholar
Spudis, P. D. (1996). The Once and Future Moon. Washington, DC: Smithsonian Institution Press.Google Scholar
Spudis, P. D. and Guest, J. E. (1988). Stratigraphy and geologic history of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R., and Matthews, M. S.. Tucson, AZ: University of Arizona Press.Google Scholar
Spudis, P. D., McGovern, P. J., and Kiefer, W. S. (2011). Large shield volcanoes on the Moon. In 42nd Lunar and Planetary Science Conference. Houston, TX: Lunar and Planetary Institute, abstract #1367.Google Scholar
Squyres, S. W. and the Athena Science Team (2003). Athena Mars rover science investigation. J. Geophys. Res., 108(E12), 8062, .CrossRefGoogle Scholar
Stofan, E. R., Sharpton, V. L., Schubert, G. et al. (1992). Global distribution and characteristics of coronae and related features on Venus: implications for origin and relation to mantle processes. J. Geophys. Res., 97, 13,347–13,378.CrossRefGoogle Scholar
Stoffler, D. and Ryder, G. (2001). Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. Space Sci. Rev., 96, 9–54.CrossRefGoogle Scholar
Strom, R. G. (1979). Mercury: a post Mariner 10 assessment. Space Sci. Rev., 24, 3–70.CrossRefGoogle Scholar
Strom, R. G. and Sprague, A. L. (2003). Exploring Mercury: The Iron Planet. Berlin: Springer-Verlag.Google Scholar
Thomas, P. C., Burns, J. A., Helfenstein, P. et al. (2007). Shapes of the saturnian icy satellites and their significance. Icarus, 190, 573–584.CrossRefGoogle Scholar
Treiman, A. H. (2007). Geochemistry of Venus’ surface: current limitations as future opportunities. In Exploring Venus as a Terrestrial Planet, ed. Esposito, L. W., Stofan, E. R. and Cravens, T. E.. Washington, DC: American Geophysical Union.Google Scholar
Waters, T. R., Head, J. W., Solomon, S. C. et al. (2009). Evolution of the Rembrandt impact basin on Mercury. Science, 324, 618–621.Google Scholar
Weber, R. C., Lin, P. Y., Garnero, E. J., Williams, Q., and Lognonne, P. (2011). Seismic detection of the lunar core. Science, 331, 309–312.CrossRefGoogle ScholarPubMed
Werner, S. C., Ivanov, B. A., and Neukum, G. (2009). Theoretical analysis of secondary cratering on Mars and an image-based study on the Cerberus Plains. Icarus, 200, 406–417.CrossRefGoogle Scholar
Whitford-Stark, J. L. (1982). Factors influencing the morphology of volcanic landforms: an Earth–Moon comparision. Earth Sci. Rev., 18, 109–168.CrossRefGoogle Scholar
Wilhelms, D. E. (1980). Geologic map of lunar ringed impact basins. In Papers Presented to Conference on Multi-Ring Basins. Houston, TX: Lunar and Planetary Institute, pp. 115–117.Google Scholar
Wilhelms, D. E. and Davis, D. E. (1971). Two former faces of the Moon. Icarus, 15, 368–372.CrossRefGoogle Scholar
Williams, D. A. and Howell, R. R. (2007). Active volcanism: effusive eruptions. In Io After Galileo: A New View of Jupiter’s Volcanic Moon, ed. Lopes, R. M. C. and Spencer, J. R.. Cambridge: Cambridge University Press, pp. 133–161.Google Scholar
Wilshire, H. G. and Howard, K. A. (1968). Structural patterns in central uplifts of crypto-explosive structures as typified by Sierra Madera. Science, 162, 258–261.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Ronald Greeley, Arizona State University
  • Book: Introduction to Planetary Geomorphology
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139020961.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Ronald Greeley, Arizona State University
  • Book: Introduction to Planetary Geomorphology
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139020961.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Ronald Greeley, Arizona State University
  • Book: Introduction to Planetary Geomorphology
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139020961.015
Available formats
×