Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-25T21:04:56.898Z Has data issue: false hasContentIssue false

1 - Introduction to Fed-Batch Cultures

Published online by Cambridge University Press:  05 April 2013

Henry C. Lim
Affiliation:
University of California, Irvine
Hwa Sung Shin
Affiliation:
Inha University, Seoul
Get access

Summary

A living cell of a microbial, plant, or animal source is essentially an expanding and dividing biochemical reactor in which a large number of enzyme-catalyzed biochemical reactions take place. Microbial cultures involve live microbial cells, while tissue cultures involve live plant or animal cells. These cultures can be run, as in the case of chemical and biochemical reactions, in three classical operational modes: batch, continuous, or semi-batch (semi-continuous). For the past three decades, there has been tremendous growth in the use of semi-batch reactors in the fermentation, biotechnology, chemical, and waste-treatment industries owing to increasing demands for specialty chemicals and products and to certain advantages semi-batch reactors provide. Batch and semi-batch processes are used to handle usually low-volume, high-value products such as fermentation products, including amino acids and antibiotics, recombinant DNA products, and specialty chemicals. Owing to high values of these products, profitability can be improved greatly even with marginal improvements in yield and productivity. Therefore, there are incentives to optimize batch or semi-batch reactor operations.

For a batch or semi-batch process, the objective is to maximize the profit that can be realized at the end of the run, at which time the reactor content is harvested for further processing such as separation and purification. Thus, the problem is called end point optimization as only the end, not the intermediate, results are relevant to the overall profit.

Type
Chapter
Information
Fed-Batch Cultures
Principles and Applications of Semi-Batch Bioreactors
, pp. 1 - 18
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burrows, S. 1970. Baker's yeast, in The Yeast, vol. 3, ed. Rose, A. S., and Harrison, J. S., p. 350. Academic Press.Google Scholar
Yamane, T. 1978. Kinetic studies on fed-batch fermentations: A monograph. Hakko Kogaku Kaishi 56: 310–322.Google Scholar
White, J. 1954. Yeast Technology. Vol. 31. John Wiley.Google Scholar
Reed, G., and Peppler, H. J. 1973. Yeast Technology. Avi.
Yamane, T., and Shimizu, S. 1984. Fed-batch techniques in microbial processes. Advances in Biochemical Engineering/Biotechnology 30: 147–202.CrossRefGoogle Scholar
Parelukar, S., and Lim, H. 1986. Modeling, optimization and control of semi-batch bioreactors. Advances in Biochemical Engineering/Biotechnology 32: 1207–1258.Google Scholar
Minihane, B. J., and Brown, D. E. 1986. Fed-batch culture technology. Biotechnology Advances 4: 207–218.CrossRefGoogle ScholarPubMed
Hosler, P., and Johnson, M. J. 1953. Penicillin from chemically defined media. Industrial and Engineering Chemistry 45: 871–874.CrossRefGoogle Scholar
Whitaker, A. 1980. Fed-batch culture. Process Biochemistry 15: 10–12, 14–15, 32.Google Scholar
Yamada, H., Kumagai, J., Enei, H., Matsui, H., and Okumura, S. 1972. Microbiological synthesis of L-tyrosine and 3,4-dihydroxyphenyl-L-alanine, in Fermentation Technology Today, ed. Terui, G., p. 445. Society for Fermentation Technology.Google Scholar
Nakamura, T., Kuratani, T., and Morita, Y. 1985. Fuzzy control application to glutamic acid fermentation. Proceedings of IFAC Modeling and Control of Biotechnology Processes Noordwijkerhout, The Netherlands, December.
Tsao, J. H., Chaung, H. L., and Wu, W. T. 1991. On-line state estimation and control in glutamic acid production. Bioprocess Biosystem Engineering 7: 35–39.CrossRefGoogle Scholar
Su, Y. C., and Yamada, K. 1960. Studies on L-glutamic acid fermentation. Part III. Pilot plant scale test of the fermentative production of L-glutamic acid by Brevibacterium divaricatum nov. sp. Bulletin Agricultural Chemistry Society Japan 24: 525–529.Google Scholar
Kishimoto, M., Alfafara, C. G., Nakajima, M., Yoshida, T., and Taguchi, H. 1989. The use of the maharanobis and modified distances for the improvement of simulation of glutamic acid production. Biotechnology and Bioengineering 33: 191–196.CrossRefGoogle ScholarPubMed
Kishimoto, M., Moo-Young, M., and Allsop, P. 1991. A fuzzy expert system for the optimization of glutamic acid production. Bioprocess Engineering 6: 173–177.CrossRefGoogle Scholar
Kishimoto, M., Kitta, Y., Takeuchi, S., Nakajima, M., and Yoshida, T. 1991. Computer control of glutamic acid production based on fuzzy clusterization of culture phases. Journal of Fermentation and Bioengineering 72: 110–114.CrossRefGoogle Scholar
Wu, J. Y., and Wu, W. T. 1992. Glutamic acid production in an airlift reactor with net draft tube. Bioprocess Engineering 8: 183–187.CrossRefGoogle Scholar
Sanraku Ocean Company Ltd and Ajinomoto Company Ltd. 1968. French Patent 1,556,808.
Tanaka, K., and Kimura, K. 1970. Method for producing L-glutamic acid. U.S. Patent 3,511,752.
Yamamoto, M., Nishida, H., Inui, T., and Ozaki, A. 1972. Microbial production of amino acids from aromatic compounds. II. Production of L-glutamic acid from benzoate. Hakko Kogaku Zasshi 50: 876–883.Google Scholar
Yamamoto, M., Nishida, H., Inui, T., and Ozaki, A. 1972. Microbial production of amino acids from aromatic compounds. III. Metabolic pathway of benzoate utilized by Brevibacterium species No. 6, a typical L-glutamate producer. Hakko Kogaku Zasshi 50: 884–892.Google Scholar
Kishimoto, M., Yoshida, T., and Taguchi, H. 1981. Simulation of fed-batch culture for glutamic acid production with ethanol feeding by use of regression analysis. Journal of Fermentation Technology 59: 43–48.Google Scholar
Kishimoto, M., Yoshida, T., and Taguchi, H. 1981. On-line optimal control of fed-batch culture of glutamic acid production. Journal of Fermentation Technology 59: 125–129.Google Scholar
Demande, Fr. (Kyowa Fermentation Industries Company Ltd). 1969. Bacterial production of L-lysine. U.S. Patent 3,595,751.
Ohno, H., Nakanishi, F., and Takamatsu, T. 1976. Optimal control of a semi-batch fermentation. Biotechnology and Bioengineering 18: 847–864.CrossRefGoogle Scholar
Ikeda, M., and Katsumata, R. 1999. Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Applied Environmental Microbiology 65: 2497–2502.Google ScholarPubMed
Aiba, S., Imanaka, T., and Tsunekawa, H. 1980. Enhancement of tryptophan production by Escherichia coli as an application of genetic engineering. Biotechnology Letters 2: 525–532.CrossRefGoogle Scholar
Aiba, S., Tsunekawa, H., and Imanaka, T. 1982. New approach to tryptophan production by Escherichia coli: Genetic manipulation of composite plasmids in vitro. Applied Environmental Microbiology 43: 289–297.Google ScholarPubMed
Martin, J. F., and McDaniel, L. E. 1974. Submerged culture production of the polyene antifungal antibiotics candidin and candihexin. Developments in Industrial Microbiology 15: 324–337.Google Scholar
Pirt, S. J. 1974. The theory of fed-batch culture with reference to the penicillin fermentation. Journal of Applied Chemistry and Biotechnology 24: 415–424.CrossRefGoogle Scholar
Trilli, A., Michelini, V., Mantovani, V., and Pirt, S. J. 1977. Estimation of productivities in repeated fed batch cephalosporin fermentation. Journal of Applied Chemistry and Biotechnology 27: 219–224.CrossRefGoogle Scholar
Matsumura, M., Imanaka, T., Yoshida, T., and Taguchi, T. 1981. Modeling of cephalosporin C production and its application to fed-batch culture. Journal of Fermentation Technology 59: 115–123.Google Scholar
Avanzini, F. 1963. Preparation of tetracycline antibiotics. British Patent 939,476.
Hockenhull, D. J. D. 1959. Griseofulvin. British Patent 868,958.
Hockenhull, D. J. D. 1962. Griseofulvin in submerged aerobic culture. British Patent 934,527.
Calam, C. T., Ellis, S. H., and McCann, M. J. 1971. Mathematical models of fermentations and a simulation of the griseofulvin fermentation. Journal of Applied Chemistry and Biotechnology 21: 181–189.CrossRefGoogle Scholar
Smith, C. G. 1956. Fermentation studies with Streptomyces niveus. Applied Microbiology 4: 232–236.Google ScholarPubMed
Bosnjak, M., Stroj, A., Curcic, M., Adamovic, V., Gluncic, Z., and Bravar, D. 1985. Application of scale-down experiments in the study of kinetics of oxytetracycline biosynthesis. Biotechnology and Bioengineering 27: 398–408.CrossRefGoogle Scholar
Ettler, P. 1987. Oil feeding during the oxytetracycline biosynthesis. Acta Biotechnologie 7: 3–8.CrossRefGoogle Scholar
Johnson, M. J. 1952. Recent advances in penicillin fermentation. Bulletin of the World Health Organization 6: 99–121.Google ScholarPubMed
Moyer, A., and Coghill, R. D. 1946. Penicillin: VIII. Production of penicillin in surface cultures. Journal of Bacteriology 51: 57–78.Google ScholarPubMed
Singh, K., and Johnson, M. J. 1948. Evaluation of the precursors for penicillin G. Journal of Bacteriology 56: 339–355.Google ScholarPubMed
Coghill, R. D., and Moyer, A. J. 1947. Production of increased yields of penicillin. U.S. Patent 2,423,873.
Brown, W. E., and Peterson, W. H. 1950. Factors affecting production of penicillin in semi-pilot-plant equipment. Industrial and Engineering Chemistry 42: 1769–1775.CrossRefGoogle Scholar
Brown, W. E., and Peterson, W. H. 1950. Penicillin fermentations in a Waldhof-type fermenter. Industrial and Engineering Chemistry 42: 1823–1826.CrossRefGoogle Scholar
Foster, J. W., and McDaniel, L. E. 1952. Fermentation process. U.S. Patent 2,584,009.
Owen, S. P., and Johnson, M. J. 1955. Effect of temperature changes on the production of penicillin by Penicillium chrysogenum. Applied Microbiology 3: 375–379.Google ScholarPubMed
Kolachov, P. J., and Schneider, W. C. 1952. Continuous process for penicillin production. U.S. Patent 2,609,327.
Soltero, F. V., and Johnson, M. 1953. The effect of the carbohydrate nutrition on penicillin production by Penicillium chrysogenum Q-176. Applied Microbiology 1: 52–57.Google ScholarPubMed
Davey, V. F., and Johnson, M. 1953. Penicillin production in corn steep media with continuous carbohydrate addition. Applied Microbiology 1: 208–211.Google ScholarPubMed
Anderson, R. F., Whitmore, L. M. J., Brown, W. E., Peterson, W. H., Churchill, B. W., Roegner, F. R., Campbell, T. H., Backus, M. P., and Stauffer, J. F. 1953. Penicillin production by pigment-free molds. Industrial and Engineering Chemistry 45: 768–773.CrossRefGoogle Scholar
Soltero, F. V., and Johnson, M. J. 1954. Continuous addition of glucose for evaluation of penicillin-producing cultures. Applied Microbiology 2: 41–44.Google ScholarPubMed
Anderson, R. F., Tornqvist, E. G. M., and Peterson, W. H. 1956. Effect of oil in pilot plant fermentations for penicillin production. Journal of Agricultural Food Chemistry 4: 556–559.CrossRefGoogle Scholar
Freaney, T. E. 1958. Penicillin. U.S. Patent 2,830,934.
Pan, S. C., Bonanno, S., and Wagman, G. H. 1959. Efficient utilization of fatty oils as energy source in penicillin fermentation. Applied Microbiology 7: 176–180.Google ScholarPubMed
Tornqvist, E. G. M., and Peterson, W. H. 1956. Penicillin production by high-yielding strains ofPenicillium chrysogenum. Applied Microbiology 4: 277–283.Google Scholar
Chaturbhuj, K., Gopalkrishnan, K. S., and Ghosh, D. 1961. Studies on the feed rate for precursor and sugar in penicillin fermentation. Hindustan Antibiotic Bulletin 3: 144–151.Google Scholar
Chaturbhuj, K., and Ghosh, D. 1961. Semi-continuous penicillin fermentation. Hindustan Antibiotic Bulletin 4: 50–51.Google Scholar
Hockenhull, D. J. D., and Mackenzie, R. M. 1968. Preset nutrient feeds for penicillin fermentation on defined media. Chemistry and Industry 19: 607–610.Google ScholarPubMed
Noguchi, Y., Kurihara, S., and Arao, O. 1960. Influence of feeding of nitrogen source on the penicillin production. Hakko Kogaku Zasshi 38: 514–517.Google Scholar
McCann, E. P., and Calam, C. T. 1972. Metabolism of Penicillium chrysogenum and the production of penicillin using a high yielding strain, at different temperatures. Journal of Applied Chemistry and Biotechnology 22: 1201–1208.CrossRefGoogle Scholar
Matelova, V., Brecka, A., and Matouskova, J. 1972. New method of intermittent feeding in penicillin biosynthesis. Applied Microbiology 23: 669–670.Google ScholarPubMed
Pan, C. H., Hepler, L., and Elander, R. P. 1972. Control of pH and carbohydrate addition in the penicillin fermentation. Developments in Industrial Microbiology 13: 103–112.Google Scholar
Fishman, V. M., and Birokov, V. V. 1974. Kinetic model of secondary metabolite production and its use in computation of optimal conditions. Biotechnology and Bioengineering Symposium 4: 647–662.Google Scholar
Verkhovtseva, T. P., Lur'e, L. M., Itsygin, S. B., Stepanova, N. E., and Levitov, M. M. 1975. Carbon metabolism under conditions of controlled penicillin biosynthesis. Antibiotiki 20: 102–106.Google Scholar
Noguchi, Y., Miyakawa, R., and Arao, O. 1960. Penicillin fermentation: Relation of the amount of glucose and soybean oil added and the potency of the culture in the fermentation by feeding technique. Journal of Fermentation Technology 38: 511–514.Google Scholar
Rodrigues, J. A. D., and Maciel Filho, R. 1999. Production optimization with operating constraints for a fed-batch reactor with DMC predictive control. Chemica Engineering Science 54: 2745–2751.CrossRefGoogle Scholar
Badino, A. C., Barboza, M., and Hokka, C. O. 1994. Power input and oxygen transfer in fed-batch penicillin production process. Advances in Bioprocess Engineering , Kluwer Academic Publishers, 157–162.
Menezes, J. C., Alves, S. S., Lemos, J. M., and Feyo de Azevedo, S. 1994. Mathematical modeling of industrial pilot-plant penicillin-G fed-batch fermentations. Journal of Chemical Technology and Biotechnology 61: 123–138.CrossRefGoogle ScholarPubMed
Nicolai, B. M., Van Impe, J. F., Vanrolleghem, P. A., and Vandewalle, J. 1991. A modified unstructured mathematical model for the penicillin G fed-batch fermentation. Biotechnology Letters 13: 489–494.CrossRefGoogle Scholar
Squires, R. W. 1972. Regulation of the penicillin fermentation by means of a submerged oxygen-sensitive electrode. Developments in Industrial Microbiology 13: 128–135.Google Scholar
Calam, C. T., and Russell, D. W. 1973. Microbial aspects of fermentation process development. Journal of Applied Chemistry and Biotechnology 23: 225–237.CrossRefGoogle Scholar
Moyer, A. J., and Coghill, R. D. 1947. Penicillin. X. The effect of phenylacetic acid on penicillin production. Journal of Bacteriology 53: 329–341.Google ScholarPubMed
Hegewald, E., Wolleschensky, B., Guthke, R., Neubert, M., and Knorre, W. A. 1981. Instabilities of product formation in a fed-batch culture of Penicillium chrysogenum. Biotechnology and Bioengineering 23: 1563–1572.CrossRefGoogle Scholar
Mou, D.-G., and Cooney, C. L. 1983. Growth monitoring and control through computer-aided on-line mass balancing in a fed-batch penicillin fermentation. Biotechnology and Bioengineering 25: 225–255.CrossRefGoogle Scholar
Bapat, P. M., Padiyar, N. U., Dave, N. N., Bhartiya, S., and Wangikar, P. P. 2006. Model-based optimization of feeding recipe for rifamycin fermentation. Journal of American Institute of Chemical Engineers 52: 4248–4257.CrossRefGoogle Scholar
Singh, A., Bruzelius, E., and Heding, H. 1976. Streptomycin: A fermentation study. European Journal of Applied Microbiology 3: 97–101.CrossRefGoogle Scholar
Jackson, C. J., and Milner, J. 1950. Improvements in the production of streptomycin. British Patent 644,078.
Inoue, S., Nishizawa, Y., and Nagai, S. 1983. Stimulatory effect of ammonium on streptomycin formation by Streptomyces griseus growing on a glucose minimal medium. Journal of Fermentation Technology 61: 7–12.Google Scholar
Avanzith, F. 1963. Preparation of tetracycline antibiotics. British Patent 939,476.
Makarevich, V. G., Slugina, M. D., Upiter, G. D., Zaslavskaia, P. L., and Gerasimova, T. M. 1976. Regulation of tetracycline biosynthesis by controlling the growth of the producer. Antibiotiki 21: 205–210.Google ScholarPubMed
Wang, H. Y., Cooney, C. L., and Wang, D. I. C. 1979. Computer control of bakers’ yeast production. Biotechnology and Bioengineering 21: 975–995.CrossRefGoogle Scholar
Finn, B., Harvey, L., and McNeil, B. 2006. Near-infrared spectroscopic monitoring of biomass, glucose, ethanol and protein content in a high cell density baker's yeast fed-batch bioprocess. Yeast 23: 507–517.CrossRefGoogle Scholar
Hospodka, J. 1966. Oxygen-absorption rate-controlled feeding of substrate into aerobic microbial cultures. Biotechnology and Bioengineering 8: 117–134.CrossRefGoogle Scholar
Mikiewicz, T., Leniak, W., and Ziobrowski, J. 1975. Control of nutrient supply in yeast propagation. Biotechnology and Bioengineering 17: 1829–1832.CrossRefGoogle Scholar
Aiba, S., Nagai, S., and Nishizawa, Y. 1976. Fed batch culture of Saccharomyces cerevisiae: A perspective of computer control to enhance the productivity in baker's yeast cultivation. Biotechnology and Bioengineering 18: 1001–1016.CrossRefGoogle ScholarPubMed
Wang, H. Y., Cooney, C. L., and Wang, D. I. C. 1977. Computer-aided baker's yeast fermentations. Biotechnology and Bioengineering 19: 69–86.CrossRefGoogle ScholarPubMed
Dairaku, K., Yamasaki, Y., Kuki, K., Shioya, S., and Takamatsu, T. 1981. Maximum production in a bakers’ yeast fed-batch culture by a tubing method. Biotechnology and Bioengineering 23: 2069–2081.CrossRefGoogle Scholar
Dairaku, K., Izumoto, E., Morikawa, H., Shioya, S., and Takamatsu, T. 1983. An advanced microcomputer coupled control system in a bakers’ yeast-fed batch culture using a tubing method. Journal of Fermentation Technology 61: 189–196.Google Scholar
Bach, H. P., Woehrer, W., and Roehr, M. 1978. Continuous determination of ethanol during aerobic cultivation of yeasts. Biotechnology and Bioengineering 20: 799–807.CrossRefGoogle Scholar
Nanba, A., Hirota, F., and Nagai, S. 1981. Microcomputer-coupled baker's yeast production. Journal of Fermentation Technology 59: 383–389.Google Scholar
Yamane, K., Suzuki, H., Hirotani, M., Ozawa, H., and Nishizawa, K. 1970. Effect of nature and supply of carbon sources on cellulase formation in pseudomonas fluorescens var. cellulose. Journal of Biochemistry 67(1):9–18.CrossRefGoogle Scholar
Hulme, M. A., and Stranks, D. W. 1970. Induction and the regulation of production of cellulase by fungi. Nature 226: 469–470.CrossRefGoogle ScholarPubMed
Waki, T., Suga, K., and Ichikawa, K. 1981. Production of cellulase in fed-batch culture. Advances in Biotechnology 1: 359–364.Google Scholar
Allen, A. L., and Mortensen, R. E. 1981. Production of cellulase from Trichoderma reesei in fed-batch fermentation from soluble carbon sources. Biotechnology and Bioengineering 23: 2641–2645.CrossRefGoogle Scholar
Gottvaldova, M., Kucera, J., and Podrazky, V. 1982. Enhancement of cellulase production by Trichoderma viride using carbon/nitrogen double-fed-batch. Biotechnology Letters 4: 229–231.Google Scholar
Yang, X. M. 1992. Optimization of a cultivation process for recombinant protein production by Escherichia coli. Journal of Biotechnology 23: 271–289.CrossRefGoogle ScholarPubMed
Fujio, Y., Kojima, S., Sambuichi, M., and Ueda, S. 1972. Isoamylase production by Aerobacter aerogenes. IV. Controlled feeding of the culture by dissolved oxygen and its analysis. Journal of Fermentation Technology 50: 546–552.Google Scholar
Fujio, Y., Sambuichi, M., and Ueda, S. 1971. Isoamylase production by Aerobacter aerogenes. III. Isoamylase formation in continuous cultures. Journal of Fermentation Technology 49: 626–631.Google Scholar
Carrington, T. R., Savidge, T. A., and Walmsley, M. F. 1966. Penicillin-splitting enzymes. British Patent 1,015,554.
Hsu, E. J., and Vaughn, R. H. 1969. Production and catabolite repression of the constitutive polygalacturonic acid trans-eliminase of Aeromonas liquefaciens. Journal of Bacteriology 98: 172–181.Google ScholarPubMed
Gutellberg, A. V. 1954. A method for the production of the plakalbumin-forming proteinase from Bacillus subtilis. Comptes rendus des travaux du Laboratoire Carlsberg 29: 27–35.Google Scholar
Bergman, D. E., Denison, F. W. J., and Friedland, W. C. 1962. Culture process for gibberellic acid. U.S. Patent 3,021,261.
Kalabokias, G. 1071. Microbial alkaline protease by fermentation with Bacillus subtilis var licheniformis. U.S. Patent 3,623,956.
Yamane, T., and Tsukano, M. 1977. Kinetic studies on fed-batch cultures. V. Effect of several substrate-feeding modes on production of extracellular-amylase by fed-batch culture of Bacillus megaterium. Journal of Fermentation Technology 55: 233–242.Google Scholar
Clark, D. J., and Marr, A. G. 1964. Studies on the repression of beta-galactosidase in Escherichia coli. Biochemistry and Biophysics Acta 92: 85–94.Google ScholarPubMed
Gray, P. P., Dunnill, P., and Lilly, , , M. D. 1973. Effect of controlled feeding of glycerol on β-galactosidase production by Escherichia coli in batch culture. Biotechnology and Bioengineering 15: 1179–1188.CrossRefGoogle ScholarPubMed
Markkanen, P., Reinwall, A., and Linko, M. 1976. Increase of β-glucanase production by Bacillus subtilis by use of starch feeding during fermentor cultivation. Journal of Applied Chemistry and Biotechnology 26: 41–46.Google Scholar
Yamane, T., Kishimoto, M., and Yoshida, F. 1976. Semi-batch culture of methanol-assimilating bacteria with exponentially increased methanol feed. Journal of Fermentation Technology 54: 229–240.Google Scholar
Srinivasan, V. R., Fleenor, M. B., and Summers, R. J. 1977. Gradient-feed method of growing high cell density cultures of cellulomonas in a bench-scale fermentor. Biotechnology and Bioengineering 19: 153–155.Google Scholar
Yano, T., Kobayashi, T., and Shimizu, S. 1978. Fed-batch culture of methanol-utilizing bacterium with DO-stat. Journal of Fermentation Technology 56: 416–420.Google Scholar
Kobayashi, T., Yano, T., Mori, H., and Shimizu, S. 1979. Cultivation of microorganisms with a DO-stat and a silicone tubing sensor. Biotechnology and Bioengineering Symposium 9: 73–83.Google Scholar
Harrison, D. E. F., Topiwala, H., and Hamer, G. 1972. Fermentation Technology Today, ed. Terui, G. Society for Fermentation Technology. Japan, 491.
Nishio, N., Tsuchiya, Y., Hayashi, M., and Nagai, S. 1977. Studies on methanol metabolism. VI. A fed-batch culture of methanol-utilizing bacteria with pH stat. Journal of Fermentation Technology 55: 151–155.Google Scholar
Reuss, M., Gnieser, J., Reng, H. G., and Wagner, F. 1975. Extended culture of Candida boidinii on methanol. European Journal of Applied Microbiology 1: 295–305.CrossRefGoogle Scholar
Woehrer, W., and Roehr, M. 1981. Regulatory aspects of bakers’ yeast metabolism in aerobic fed-batch cultures. Biotechnology and Bioengineering 23: 567–581.CrossRefGoogle Scholar
Mori, H., Yano, T., Kobayashi, T., and Shimizu, S. 1979. High density cultivation of biomass in fed-batch system with DO-stat. Journal of Chemical Engineering of Japan 12: 313–319.CrossRefGoogle Scholar
Matsumura, M., Umemoto, K., Shinabe, K., and Kobayashi, J. 1982. Application of pure oxygen in a new gas entraining fermentor. Journal of Fermentation Technology 60: 565–578.Google Scholar
Watteeuw, C. M., Armiger, W. B., Ristroph, D. L., and Humphrey, A. E. 1979. Production of single cell protein from ethanol by fed-batch process. Biotechnology and Bioengineering 21: 1221–1237.CrossRefGoogle Scholar
Edwards, V. H., Cottschalk, M. J., Noojin, A. Y., III, Tuthill, L. B., and Tannahill, A. L. 1970. Extended culture: Growth of Candida utilis at controlled acetate concentrations. Biotechnology and Bioengineering 12: 975–999.CrossRefGoogle ScholarPubMed
Yamane, T., Matsuda, M., and Sada, E. 1981. Application of porous teflon tubing method to automatic fed-batch culture of microorganisms. II. Automatic constant-value control of fed substrate (ethanol) concentration in semi-batch culture of yeast. Biotechnology and Bioengineering 23: 2509–2524.CrossRefGoogle Scholar
Minami, K., Yamamura, M., Shimizu, S., Ogawa, K., and Sekine, N. 1978. Single cell production from methanol. II. Methods and apparatus for methanol feeding with less growth-inhibition. Journal of Fermentation Technology 56: 35–40.Google Scholar
Yang, G., Tian, J., and Li, J. 2007. Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under micro-aerobic conditions. Applied Microbiology and Biotechnology 73: 1017–1024.CrossRefGoogle Scholar
Zhao, Y. N., Chen, G., and Yao, S. J. 2006. Microbial production of 1,3-propanediol from glycerol by encapsulatedKlebsiella pneumoniae. Biochemical Engineering Journal 32: 93–99.CrossRefGoogle Scholar
Richard, S., Allenet, and CIE Soc (Societe Richard, Allenet & Cie) 1921. Acetone; butyl alcohol. British Patent 176,284.
Eoff, J. R., Linder, W. V., and Beyer, G. F. 1919. The production of glycerol from sugar by fermentation. Journal of Industrial and Engineering Chemistry 11: 842–845.CrossRefGoogle Scholar
Moss, A. R., and Klien, R. 1949. Riboflavin. British Patent 615,847.
Pridham, T. G. 1951. Biological production of riboflavin. U.S. Patent 2,578,738.
Kojima, I., Yoshikawa, H., Okazaki, M., and Terui, G. 1972. Riboflavine production by Eremothecium ashbyii. I. Inhibiting factors of riboflavine production and their control. Journal of Fermentation Technology 50: 716–723.Google Scholar
Speedie, J. D., and Hull, G. W. 1960. Cobalamin preparation by fermentation. British Patent 829,232.
Jackson, P. W. 1960. Cobalamins. British Patent 846,149.
Hoffman-La Roche, F., Co., Akt-Ges. 1960. Vitamins of the B12 group. British Patent 866,488.
Kojima, I., Sato, H., and Fujiwara, Y. 1993. Vitamin B12 production by isopropanol assimilating microorganisms. Journal of Fermentation and Bioengineering 75: 182–186.CrossRefGoogle Scholar
Masai, H., Kawamura, Y., and Yamada, K. 1978. Development of a new production process and use of fermentation vinegar. Bulletin of the Agricultural Chemical Society, Japan 52: R103–R109.CrossRefGoogle Scholar
Shepard, M. W. 1963. Citric acid. U.S. Patent 3,083,144.
Darken, M. A., Jensen, A. L., and Shu, P. 1959. Production of gibberellic acid by fermentation. Applied Microbiology 7: 301–303.Google ScholarPubMed
Borrow, A., Jefferys, E. G., and Nixon, I. S. 1960. Gibberellic acid. British Patent 838,033.
Giordano, W., and Domenech, C. E. 1999. Aeration affects acetate destination in Gibberella fujikuroi. FEMS Microbiology Letters 180: 111–116.CrossRefGoogle ScholarPubMed
Serzedello, A., Simao, S., and Whitaker, N. 1958. Effect of gibberellic acid on lettuce crops (Lactuca sativa Linneu). Revista de Agricultura 33: 117–122.Google Scholar
Bergman, D. E., Denison, F. W.., and Friedland, W. C. 1962. Culture process for gibberellic acid. U.S. Patent 3,021,261.
Yamauchi, H., Mori, H., Kobayashi, T., and Shimizu, S. 1983. Mass production of lipids by Lipomyces starkeyi in microcomputer-aided fed-batch culture. Journal of Fermentation Technology 61: 275–280.Google Scholar
Mori, T., Kobayashi, T., and Shimizu, S. 1981. High density production of sorbose from sorbitol by fed-batch culture with DO-stat. Journal of Chemical Engineering Japan 14: 65–70.CrossRefGoogle Scholar
Wright, D. G., and Calam, C. T. 1968. Importance of the introductory phase in penicillin production, using continuous flow culture. Chemistry and Industry 38: 1274–1275.Google ScholarPubMed
Pirt, S. J., Thackeray, E. J., and Harris-Smith, R. J. 1961. The influence of environment on antigen production by Pasteurella pestis studied by means of the continuous flow culture technique. Journal of General Microbiology 25: 119–130.CrossRefGoogle ScholarPubMed
Lee, J., Lee, S. Y., Park, S., and Middelberg, A. P. J. 1999. Control of fed-batch fermentations. Biotechnology Advances 17: 29–48.CrossRefGoogle ScholarPubMed
Yee, L., and Blanch, H. W. 1992. Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Bio/technology 10: 1550–1556.Google ScholarPubMed
Namdev, P. K., Thompson, B. G., and Gray, M. R. 1992. Effect of feed zone in fed-batch fermentations of Saccharomyces cerevisiae. Biotechnology and Bioengineering 40: 235–246.CrossRefGoogle ScholarPubMed
Lee, J.-Y., and Xun, L. 1998. Novel biological process for L-DOPA production from L-tyrosine by p-hydroxyphenylacetate 3-hydroxylase. Biotechnology Letters 20: 479–482.CrossRefGoogle Scholar
Kitsuta, Y., and Kishimoto, M. 1994. Fuzzy supervisory control of glutamic acid production. Biotechnology and Bioengineering 44: 87–94.CrossRefGoogle ScholarPubMed
Tada, K., Kishimoto, M., Omasa, T., Katakura, Y., and Suga, K. 2001. Constrained optimization of L-lysine production based on metabolic flux using a mathematical programming method. Journal of Bioscience and Bioengineering 91: 344–351.CrossRefGoogle ScholarPubMed
Drysch, A., El Massaoudi, M., Wiechert, W., de Graaf, A. A., and Takors, R. 2004. Serial flux mapping of Corynebacterium glutamicum during fed-batch L-lysine production using the sensor reactor approach. Biotechnology and Bioengineering 85: 497–505.CrossRefGoogle ScholarPubMed
Dodge, T. C., and Gerstner, J. M. 2002. Optimization of the glucose feed rate profile for the production of tryptophan from recombinant E coli. Journal of Chemical Technology and Biotechnology 7: 1238–1245.CrossRefGoogle Scholar
Cruz, A. J. G., Silva, A. S., Araujo, M. L. G. C., Giordano, R. C., and Hokka, C. O. 1999. Modelling and optimization of the cephalosporin C production bioprocess in a fed-batch bioreactor with invert sugar as substrate. Chemical Engineering Science 54: 3137–3142.CrossRefGoogle Scholar
Kim, N. R., Lim, J. S., Hong, S. I., and Kim, S. W. 2005. Optimization of feed conditions in a 2.5-l fed-batch culture using rice oil to improve cephalosporin C production by Cephalosporium acremonium M25. World Journal of Microbiology and Biotechnology 21: 787–789.CrossRefGoogle Scholar
Kim, J. H., Lim, J. S., and Kim, S. W. 2004. The improvement of cephalosporin C production by fed-batch culture of Cephalosporium acremonium M25 using rice oil. Biotechnology and Bioprocess Engineering 9: 459–464.CrossRefGoogle Scholar
Papapanagiotou, P. A., Quinn, H., Molitor, J.-P., Nienow, A. W., and Hewitt, C. J. 2005. The use of phase inversion temperature (PIT) microemulsion technology to enhance oil utilisation during Streptomyces rimosus fed-batch fermentations to produce oxytetracycline. Biotechnology Letters 27: 1579–1585.CrossRefGoogle ScholarPubMed
Wang, Z., Lauwerijssen, M. J. C., and Yuan, J. 2005. Combined age and segregated kinetic model for industrial-scale penicillin fed-batch cultivation. Biotechnology and Bioprocess Engineering 10: 142–148.CrossRefGoogle Scholar
Tiller, V., Meyerhoff, J., Sziele, D., Schuegerl, K., and Bellgardt, K.-H. 1994. Segregated mathematical model for the fed-batch cultivation of a high-producing strain of Penicillium chrysogenum. Journal of Biotechnology 34: 119–131.CrossRefGoogle ScholarPubMed
El-Tayeb, O. M., Salama, A. A., Hussein, M. M. M., and El-Sedawy, H. F. 2004. Optimization of industrial production of rifamycin B by Amycolatopsis mediterranei. III. Production in fed-batch mode in shake flasks. African Journal of Biotechnology ONLINE 3: 387–394.CrossRefGoogle Scholar
Jin, Z. H., Lin, J. P., Xu, Z. N., and Cen, P. L. 2002. Improvement of industry-applied rifamycin B-producing strain, Amycolatopsis mediterranei, by rational screening. Journal of General and Applied Microbiology 48: 329–334.CrossRefGoogle ScholarPubMed
Zhang, Q., Jin, X., Wang, S., Rong, G., and Chen, Y. 2000. Modeling for streptomycin fermentation process based on principal component analysis and fuzzy model. Wuxi Qinggong Daxue Xuebao 19: 446–450.Google Scholar
Xiaoming Jin, X., Wang, S., and Chu, J. 2003. Hybrid modeling and monitoring of streptomycin fermentation process. Proceedings 42nd IEEE Conference on Design and Control 5: 4765–4769.Google Scholar
Ross, A., and Schuegerl, K. 1998. Tetracycline production by Streptomyce aureofaciens: The time lag of production. Applied Microbiology and Biotechnology 29: 174–180.Google Scholar
Qureshi, N., Ezeji, T. C., Blaschek, H. P., and Cotta, M. A. 2004. A novel biological process to convert renewable biomass to acetone and butanol (AB). AIChE Annual Meeting, Austin, TX, Nov. 7–12.
Tashiro, Y., Takeda, K., Kobayashi, G., Sonomoto, K., Ishizaki, A., and Yoshino, S. 2004. High butanol production by Clostridium saccharoperbutylacetonicum N1–4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method. Journal of Bioscience and Bioengineering 98: 263–268.CrossRefGoogle ScholarPubMed
Ezeji, T. C., Qureshi, N., and Blaschek, H. P. 2004. Acetone butanol ethanol (ABE) production from concentrated substrate: Reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Applied Microbiology and Biotechnology 63: 653–658.CrossRefGoogle ScholarPubMed
Xie, D., Liu, D., Zhu, H., and Zhang, J. 2002. Optimization of glycerol fed-batch fermentation in different reactor states: A variable kinetic parameter approach. Applied Biochemistry and Biotechnology 101: 131–151.CrossRefGoogle ScholarPubMed
Xie, D., Liu, D., Zhu, H., and Liu, T. 2001. Multipulse feed strategy for glycerol fed-batch fermentation: A steady-state nonlinear optimization approach. Applied Biochemistry and Biotechnology 95: 103–112.CrossRefGoogle ScholarPubMed
Lu, W., Zhang, K., and Wu, P. 2000. Fed-batch fermentation of Eremothecium ashbyii for riboflavin production. Wuxi Qinggong Daxue Xuebao 19: 240–243.Google Scholar
Andriantsoa, M., Laget, M., Cremieux, A., and Dumenil, G. 1984. Constant fed-batch culture of methanol-utilizing corynebacterium producing vitamin B12. Biotechnology Letters 6: 783–788.CrossRefGoogle Scholar
Yong, Q., Hong, F., Ding, Y., and Yu, S. 1998. Production of cellulase in fed-batch cultures. Linchan Huaxue Yu Gongye 18: 73–77.Google Scholar
McLean, D., and Podruzny, M. F. 1985. Further support for fed-batch production of cellulases. Biotechnology Letters 7: 683–688.CrossRefGoogle Scholar
Prytz, I., Sanden, A. M., Nystroem, T., Farewell, A., Wahlstroem, A., Foerberg, C., Pragai, Z., Barer, M., Harwood, C., and Larsson, G. 2003. Fed-batch production of recombinant β-galactosidase using the universal stress promoters uspA and uspB in high cell density cultivations. Biotechnology and Bioengineering 83: 595–603.CrossRefGoogle ScholarPubMed
Nor, Z. M., Tamer, M. I., Mehrvar, M., Scharer, J. M., Moo-Young, M., and Jervis, E. J. 2001. Improvement of intracellular-galactosidase production in fed-batch culture of Kluyveromyces fragilis. Biotechnology Letters 23: 845–849.CrossRefGoogle Scholar
Lai, J.-T., and Liu, H.-S. 1996. Production enhancement of Pseudomonas amyloderamosa isoamylase. Bioprocess Engineering 15: 139–144.CrossRefGoogle Scholar
Wu, D. H., Wen, C. Y., Chu, W. S., Lin, L. L., and Hsu, W. H. 1993. Selection of antibiotic-resistant mutants with enhanced isoamylase activity in Pseudomonas amyloderamosa. Biotechnology Letters 15: 883–888.CrossRefGoogle Scholar
Rao, K. J., and Panda, T. 1996. Effect of mode of operation of bioreactors on the biosynthesis of penicillin amidase in Escherichia coli. Bioprocess Engineering 14: 317–321.CrossRefGoogle Scholar
Beshay, U., and Moreira, A. 2005. Production of alkaline protease with Teredinobacter turnirae in controlled fed-batch fermentation. Biotechnology Letters 27: 1457–1460.CrossRefGoogle ScholarPubMed
Dutta, J. R., Dutta, P. K., and Banerjee, R. 2005. Modeling and optimization of protease production by a newly isolated Pseudomonas sp. using a genetic algorithm. Process Biochemistry 40: 879–884.CrossRefGoogle Scholar
Mao, W., Pan, R., and Freedman, D. 1992. High production of alkaline protease by Bacillus licheniformis in a fed-batch fermentation using a synthetic medium. Journal of Industrial Microbiology 11: 1–6.CrossRefGoogle Scholar
Ahmad, R., Qadeer, M. A., Jafri, R. H., Baig, M. A., and Khan, J. 1995. Kinetic studies on the biosynthesis of Bacillus polymyxa PCSIR-90 β-amylase. Pakistan Journal of Scientific Research 47: 55–61.Google Scholar
Shiina, S., Ohshima, T., and Sato, M. 2007. Extracellular production of α-amylase during fed-batch cultivation of recombinant Escherichia coli using pulsed electric field. Journal of Electrostatics 65: 30–36.CrossRefGoogle Scholar
Huang, H., Ridgway, D., Gu, T., and Moo-Young, M. 2004. Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy. Bioprocess Biosystem Engineering 27: 63–69.CrossRefGoogle ScholarPubMed
Skolpap, W., Scharer, J. M., Douglas, P. L., and Moo-Young, M. 2004. Fed-batch optimization of α-amylase and protease-producing Bacillus subtilis using Markov chain methods. Biotechnology and Bioengineering 86: 706–717.CrossRefGoogle ScholarPubMed
Enayati, N., Tari, C., Parulekar, S. J., Stark, B. C., and Webster, D. A. 1999. Production of α-amylase in fed-batch cultures of vgb+ and vgb− recombinant Escherichia coli: Some observations. Biotechnology Progress 15: 640–645.CrossRefGoogle ScholarPubMed
Lee, J., and Parulekar, S. J. 1993. Enhanced production of α-amylase in fed-batch cultures of Bacillus subtilis TN106[pAT5]. Biotechnology and Bioengineering 42: 1142–1150.CrossRefGoogle Scholar
Yoo, Y. J., Cadman, T. W., Hong, J., and Hatch, R. T. 1998. Fed-batch fermentation for the production of α-amylase by Bacillus amyloliquefaciens. Biotechnology and Bioengineering 31: 426–432.CrossRefGoogle Scholar
Prytz, I., Sanden, A. M., Nystroem, T., Farewell, A., Wahlstroem, A., Foerberg, C., Pragai, Z., Barer, M., Harwood, C., and Larsson, G. 2003. Fed-batch production of recombinant β-galactosidase using the universal stress promoters uspA and uspB in high cell density cultivations. Biotechnology and Bioengineering 83(5): 595–603.CrossRefGoogle ScholarPubMed
Nor, Z. M., Tamer, M. I., Mehrvar, M., Scharer, J. M., Moo-Young, M., and Jervis, E. J. 2001. Improvement of intracellular β-galactosidase production in fed-batch culture of Kluyveromyces fragilis. Biotechnology Letters 23: 845–849.CrossRefGoogle Scholar
Patnaik, P. R. 1999. Neural control of an imperfectly mixed fed-batch bioreactor for recombinant β-galactosidase. Biochemical Engineering Journal 3: 113–120.CrossRefGoogle Scholar
Bedard, C., Perret, S., and Kamen, A. A. 1997. Fed-batch culture of Sf-9 cells supports 3 × 107 cells per ml and improves baculovirus-expressed recombinant protein yields. Biotechnology Letters 19: 629–632.CrossRefGoogle Scholar
Shene, C., Andrews, B. A., and Asenjo, J. A. 1999. Fedbatch fermentations of Bacillus subtilis ToC46 (pPFF1) for the synthesis of a recombinant β-1,3-glucanase: Experimental study and modeling. Enzyme and Microbial Technology 24: 247–254.CrossRefGoogle Scholar
Chuen-Im, S., and Lynch, H. C. 1998. Production of a yeast cell wall degrading enzyme, β-1,3-glucanase by recombinantBacillus subtilis. Biochemical Society Transaction 26: S175.Google ScholarPubMed
Argyropoulos, D., and Lynch, H. C. 1997. Recombinant β-glucanase production and plasmid stability of Bacillus subtilis in cyclic fed-batch culture. Biotechnology Techniques 11: 187–190.CrossRefGoogle Scholar
Ozadali, F., Glatz, B. A., and Glatz, C. E. 1996. Fed-batch fermentation with and without online extraction for propionic and acetic acid production by Propionibacterium acidipropionici. Applied Microbiology and Biotechnology 44: 710–716.Google Scholar
Eaton, D. C., and Gabelman, A. 1995. Fed-batch and continuous fermentation of Selenomonas ruminantium for natural propionic, acetic and succinic acids. Journal of Industrial Microbiology 15: 32–38.CrossRefGoogle Scholar
Crolla, A., and Kennedy, K. J. 2004. Fed-batch production of citric acid by Candida lipolytica grown on n-paraffins. Journal of Biotechnology 110: 73–84.CrossRefGoogle ScholarPubMed
Rakshit, S. K., Khan, N. H., and Lakshmi, K. V. 1994. A fed-batch surface culture process for the production of citric acid with reuse of Aspergillus niger mycelia. Bioprocess Engineering 11: 199–201.CrossRefGoogle Scholar
Shukla, R., Chand, S., and Srivastava, A. K. 2005. Improvement of gibberellic acid production using a model based fed-batch cultivation of Gibberella fujikuroi. Process Biochemistry (Oxford) 40: 2045–2050.Google Scholar
Bandelier, S., Renaud, R., and Druand, A. 1996. Production of gibberellic acid by fed-batch solid state fermentation in an aseptic pilot-scale reactor. Process Biochemistry (Oxford) 32: 141–145.Google Scholar
Lale, G., Jogdand, V. V., and Gadre, R. V. 2006. Morphological mutants of Gibberella fujikuroi for enhanced production of gibberellic acid. Journal of Applied Microbiology 100: 65–72.CrossRefGoogle ScholarPubMed
Chapman, B. D., Schleicher, M., Beuger, A., Gostomski, P., and Thiele, J. H. 2006. Improved methods for the cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea. Journal of Microbiological Methods 65: 96–106.CrossRefGoogle ScholarPubMed
Rodriguez, H., and Gallardo, R. 1993. Single-cell protein production from bagasse pith by a mixed bacterial culture. Acta Biotechnology 13: 141–149.CrossRefGoogle Scholar
Yano, T., Kurokawa, M., and Nishizawa, Y. 2001. Optimum substrate feed rate in fed-batch culture with the DO-stat method. Journal of Fermentation and Bioengineering 71: 345–349.CrossRefGoogle Scholar
Sato, K., Maruyama, K., Mori, H., Suzuki, T., and Shimizu, S. 1984. Protein production by lysis with glycine of a facultative methylotroph, Protaminobacte ruber, cultivated in a fed-batch system. Journal of Fermentation Technology 62: 301–303.Google Scholar
Diniz, S. C., Taciro, M. K., Gomez, J. G. C., Pradella, J. G. da Cruz. 2004. High-cell-density cultivation of Pseudomonas putida IPT 046 and medium-chain-length polyhydroxyalkanoate production from sugarcane carbohydrates. Applied Biochemistry and Biotechnology 119: 51–69.CrossRefGoogle ScholarPubMed
Thuesen, M. H., Nørgaard, A., Hansen, A. M., Caspersen, M. B., and Christensen, H. E. M. 2003. Expression of recombinant Pseudomonas stutzeri di-heme cytochrome c4 by high-cell-density fed-batch cultivation of Pseudomonas putida. Expression and Purification 27: 175–181.CrossRefGoogle ScholarPubMed
Tocaj, A., Hof, A., Hagander, P., and Holst, O. 1993. Fed-batch cultivation of Pseudomonas cepacia with on-line control of the toxic substrate salicylate. Applied Microbiology and Biotechnology 38: 463–466.CrossRefGoogle Scholar
Vandeska, E., Amartey, S., Kuzmanova, S., and Jeffries, T. W. 1996. Fed-batch culture for xylitol production by Candida boidinii. Process Biochemistry (Oxford) 31: 265–270.Google Scholar
Yano, T., Endo, T., Tuji, T., and Nishizawa, Y. 1991. Fed-batch culture with a modified DO-stat method. Journal of Fermentation and Bioengineering 71: 35–38.CrossRefGoogle Scholar
Huang, H. P., Chang, L. L., Chao, Y. C., and Huang, S. Y. 1988. On-line optimal feed of substrate during fed-batch culture of cell mass. Chemical Engineering Communication 68: 221–236.CrossRefGoogle Scholar
Cheng, C., and Ma, J.-H. 1996. Enantioselective synthesis of S-(-)-1-phenylethanol in Candida utilis semi-fed-batch cultures. Process Biochemistry (Oxford) 31: 119–124.Google Scholar
Vijaikishore, P., and Karanth, N. G. 1987. Glycerol production by fermentation: A fed-batch approach. Biotechnology and Bioengineering 30: 325–328.CrossRefGoogle ScholarPubMed
Finn, B., Harvey, L. M., and McNeil, B. 2006. Near-infrared spectroscopic monitoring of biomass, glucose, ethanol and protein content in a high cell density baker's yeast fed-batch bioprocess. Yeast 23: 507–517.CrossRefGoogle Scholar
Belo, I., Pinheiro, R., and Mota, M. 2003. Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor. Biotechnology Progress 19: 665–671.CrossRefGoogle Scholar
Qin, G., Lin, J., Liu, X., and Cen, P. 2006. Effects of medium composition of 5 aminolevulinic acid by recombinant Escherichia coli. Journal of Bioscience and Bioengineering 102: 316–322.CrossRefGoogle ScholarPubMed
Choo, C. Y., Tian, Y., Kim, W. S., Blatter, E., Conary, J., and Brady, C. P. 2007. High-level production of a monoclonal antibody in murine melanoma cells by perfusion culture using a gravity settler. Biotechnology Progress 23: 225–231.CrossRefGoogle Scholar
Felse, P. A., Shah, V., Chan, J., Rao, K. J., and Gross, R. A. 2007. Sophorolipid biosynthesis by Candida bombicola from industrial fatty acid residues. Enzyme Microbial Techniques 40: 316–323.CrossRefGoogle Scholar
Amouri, B., and Gargouri, A. 2006. Characterization of a novel β-glucosidase from a Stachybotrys strain. Biochemical Engineering Journal 32: 191–197.CrossRefGoogle Scholar
Koller, M., Horvat, P., Hesse, P., Bona, R., Kutschera, C., Atlic, A., and Braunegg, G. 2006. Assessment of formal and low structured kinetic modeling of polyhydroxy-alkanoate synthesis from complex substrates. Bioprocess Biosystem Engineering 29: 367–377.CrossRefGoogle Scholar
Hekmat, D., Bauer, R., and Neff, V. 2007. Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Process Biochemistry 42: 71–76.CrossRefGoogle Scholar
Zhou, J. W., Chang, Y. F., Xu, Z. H., Yu, Z. N., and Chen, S. W. 2007. Production of thuringiensin by fed-batch culture of Bacillus thuringiensis subsp. Darmstadiensis 032 with an improved pH-control glucose feeding strategy. Process Biochemistry 42: 52–56.Google Scholar
Babaeipour, V., Shojaosadati, S. A., Robatjazi, S. M., Khalilzadeh, R., and Maghsoudi, N. 2007. Over-production of human interferon-γ by HCDC of recombinant Escherichia coli. Process Biochemistry 42: 112–117.CrossRefGoogle Scholar
Wen, S., Zhang, T., and Tan, T. 2006. Maximizing production of glutathione by amino acid modulation and high-cell-density fed-batch culture of Saccharomyces cerevisiae. Process Biochemistry 41: 2424–2428.CrossRefGoogle Scholar
Smith, G. M., Lee, S. A., Reilly, K. C., Eiteman, M. A., and Altman, E. 2006. Fed-batch two phase production of alanine by a metabolically engineered Escherichia coli . Biotechnology Letters 28: 1695–1700.CrossRefGoogle ScholarPubMed
Teodoro, J. C., Baptista-Neto, A., Cruz-Hernandez, I. L., Hokka, C. O., and Badino, A. C. 2006. Influence of feeding conditions on clavulanic acid production in fed-batch cultivation with medium containing glycerol. Applied Microbiology and Biotechnology 72: 450–455.CrossRefGoogle ScholarPubMed
Patnaik, P. R. 2006. Enhancement of PHB biosynthesis by Ralstonia eutropha in fed-batch cultures by neural filtering and control. Food Bioprocesses 84: 150–156.Google Scholar
Xie, L., and Wang, D. C. 1994. Fed-batch cultivation of animal cells using different medium design concepts and feeding strategies. Biotechnology and Bioengineering 43: 1175–1189.CrossRefGoogle Scholar
Zhou, W., Rehm, J., and Hu, W. S. 1995. High viable cell concentration fed-batch cultures of hybridoma cells through online nutrient feeding. Biotechnology and Bioengineering 46: 579–587.CrossRefGoogle Scholar
Burky, J. E., Wesson, M. C., Young, A., Farnsworth, S., Dionne, B., Zhu, Y., Hartman, T. E., Qu, L., Zhou, W., and Sauer, P. W. 2007. Protein-free fed-batch culture of non-GS NS0 cell lines for production of recombinant antibodies. Biotechnology and Bioengineering 96: 281–293.CrossRefGoogle ScholarPubMed
Dhir, S., Morrow, K. J., Jr., Rhinehart, R. R., and Wiesner, T. 2000. Dynamic optimization of hybridoma growth in a fed-batch bioreactor. Biotechnology and Bioengineering 67: 197–205.3.0.CO;2-W>CrossRefGoogle Scholar
Wong, D. C. F., Wong, K. T. K., Goh, L. T., Heng, C. K., and Yap, M. G. S. 2005. Impact of dynamic online fed-batch strategies on metabolism, productivity and N- glycosylation quality in CHO cell cultures. Biotechnology and Bioengineering 89: 164–177.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×