Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T17:22:45.468Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2016

Zi-Kui Liu
Affiliation:
Pennsylvania State University
Yi Wang
Affiliation:
Pennsylvania State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hillert, M., Phase Equilibria, Phase Diagrams and Phase Transformations, Cambridge University Press, Cambridge, 2007.
2. Guggenheim, E. A., Mixtures, Clarendon Press, Oxford, 1952.
3. Nye, J. F., Physical Properties of Crystals: Their Representation by Tensors and Matrices, Clarendon Press, Oxford, 1985.
4. Palatnik, L. S. and Landau, A. I., Phase Equilibria in Multicomponent Systems, Holt, Rinehart and Winston, London, 1964.
5. Hillert, M., “Principles of phase diagrams”, Int. Met. Rev. 30 (1985) 45–67.Google Scholar
6. Liu, Z. K. and Chang, Y. A., “Thermodynamic assessment of the Al–Fe–Si system”, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci. 30 (1999) 1081–1095.Google Scholar
7. Liu, Z. K., “Design magnesium alloys: how computational thermodynamics can help”. In Kaplan, H. I., Hryn, J. N., and Clow, B. B., Eds., Magnesium Technology 2000, Nashville, TN, TMS, Warrendale, PA, 2000, pp. 191–198.
8. Kohn, W. and Sham, L. J., “Self-consistent equations including exchange and correlation effects”, Phys. Rev. 140 (1965) A1133–A1138.Google Scholar
9. Goodwin, A. R. H., Marsh, K. N., and Wakeham, W. A., Eds., Measurement of the Thermodynamic Properties of Single Phases, Elsevier, Amsterdam, 2003.
10. Weir, R. D. and Loos, T. W. de, Eds., Measurement of the Thermodynamic Properties of Multiple Phases, Elsevier, Amsterdam, 2005.
11. Zhao, J.-C., Ed., Methods for Phase Diagram Determination, Elsevier, Amsterdam, 2007.
12. Marsh, K. N. and O'Hare, P. A. G., Eds., Solution Calorimetry, Blackwell Scientific, Oxford, 1994.
13. Kresse, G. and Joubert, D., “From ultrasoft pseudopotentials to the projector augmented-wave method”, Phys. Rev. B 59 (1999) 1758–1775.Google Scholar
14. Kresse, G. and Furthmuller, J., “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set”, Comput. Mater. Sci. 6 (1996) 15–50.Google Scholar
15. Wang, Y., Chen, L.-Q., and Liu, Z.-K., “YPHON: a package for calculating phonons of polar materials”, Commun. Comput. Phys. 185 (2014) 2950–2968.Google Scholar
16. Wang, Y., Liu, Z. K., and Chen, L. Q., “Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations”, Acta Mater. 52 (2004) 2665–2671.Google Scholar
17. Teter, D. M., Gibbs, G. V., Boisen, M. B., Allan, D. C., and Teter, M. P., “First-principles study of several hypothetical silica framework structures”, Phys. Rev. B 52 (1995) 8064–8073.Google Scholar
18. Shang, S. L., Wang, Y., Kim, D., and Liu, Z. K., “First-principles thermodynamics from phonon and Debye model: application to Ni and Ni3Al”, Comput. Mater. Sci. 47 (2010) 1040–1048.Google Scholar
19. Xie, J. J., Gironcoli, S. de, Baroni, S., and Scheffler, M., “First-principles calculation of the thermal properties of silver”, Phys. Rev. B 59 (1999) 965–969.Google Scholar
20. Walle, A. van de, Asta, M., and Ceder, G., “The alloy theoretic automated toolkit: a user guide”, CALPHAD 26 (2002) 539–553.Google Scholar
21. Alfe, D., “PHON: A program to calculate phonons using the small displacement method”, Comput. Phys. Commun. 180 (2009) 2622–2633.Google Scholar
22. Kresch, M., Delaire, O., Stevens, R., Lin, J. Y. Y., and Fultz, B., “Neutron scattering measurements of phonons in nickel at elevated temperatures”, Phys. Rev. B 75 (2007) 104301.Google Scholar
23. Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1954.
24. Fultz, B., Anthony, L., Nagel, L. J., Nicklow, R. M., and Spooner, S., “Phonon densities of states and vibrational entropies of ordered and disordered Ni3Al”, Phys. Rev. B 52 (1995) 3315–3321.Google Scholar
25. Mostoller, M., Nicklow, R. M., Zehner, D. M., Lui, S. C., Mundenar, J. M., and Plummer, E. W., “Bulk and surface vibrational-modes in NiAl”, Phys. Rev. B 40 (1989) 2856–2872.Google Scholar
26. Statassis, C., Kayser, F. X., Loong, C.-K., and Rach, D., “Lattice dynamics of Ni3Al”, Phys. Rev. B 24 (1981) 3048–3054.Google Scholar
27. Manley, M. E., Lander, G. H., Sinn, H., Alatas, A., Hults, W. L., McQueeney, R. J., Smith, J. L., and Willit, J., “Phonon dispersion in uranium measured using inelastic x-ray scattering”, Phys. Rev. B 67 (2003) 052302.Google Scholar
28. Wang, Y., Wang, J. J., Zhang, H., Manga, V. R., Shang, S. L., Chen, L. Q., and Liu, Z. K., “A first-principles approach to elasticity at finite temperatures”, J. Phys. Condens. Matter 22 (2010) 225404.Google Scholar
29. Slater, J. C., “A simplification of the Hartree–Fock method”, Phys. Rev. 81 (1951) 385–390.Google Scholar
30. Perdew, J. P. and Zunger, A., “Self-interaction correction to density-functional approximations for many-electron systems”, Phys. Rev. B 23 (1981) 5048–5079.Google Scholar
31. Perdew, J. P. and Wang, Y., “Accurate and simple analytic representation of the electron-gas correlation-energy”, Phys. Rev. B 45 (1992) 13244–13249.Google Scholar
32. Perdew, J. P., Burke, K., and Ernzerhof, M., “Generalized gradient approximation made simple”, Phys. Rev. Lett. 77 (1996) 3865–3868.Google Scholar
33. Wallace, D. C., Thermodynamics of Crystals, John Wiley & Sons, New York, 1972.
34. Baroni, S., Gironcoli, S. de, Corso, A. Dal, and Giannozzi, P., “Phonons and related crystal properties from density-functional perturbation theory”, Rev. Mod. Phys. 73 (2001) 515–562.Google Scholar
35. Walle, A. van de and Ceder, G., “The effect of lattice vibrations on substitutional alloy thermodynamics”, Rev. Mod. Phys. 74 (2002) 11–45.Google Scholar
36. Baroni, S., Giannozzi, P., and Testa, A., “Elastic-constants of crystals from linear-response theory”, Phys. Rev. Lett. 59 (1987) 2662–2665.Google Scholar
37. Kern, G., Kresse, G., and Hafner, J., “Ab initio calculation of the lattice dynamics and phase diagram of boron nitride”, Phys. Rev. B 59 (1999) 8551–8559.Google Scholar
38. Wang, Y., Wang, J. J., Wang, W. Y., Mei, Z. G., Shang, S. L., Chen, L. Q. et al., “A mixed-space approach to first-principles calculations of phonon frequencies for polar materials”, J. Phys. Condens. Matter 11 (2010) 202201.Google Scholar
39. Jiang, C., Ph.D. thesis, Theoretical studies of aluminum and aluminide alloys using CALPHAD and first-principles approach, Pennsylvania State University, Philadelphia, PA,2004.
40. Jiang, C., Wolverton, C., Sofo, J., Chen, L. Q., and Liu, Z. K., “First-principles study of binary bcc alloys using special quasirandom structures”, Phys. Rev. B 69 (2004) 214202.Google Scholar
41. Sigli, C., Kosugi, M., and Sanchez, J., “Calculation of thermodynamic properties and phase diagrams of binary transition-metal alloys”, Phys. Rev. Lett. 57 (1986) 253–256.Google Scholar
42. Wolverton, C. and Zunger, A., “Ising-like description of structurally relaxed ordered and disordered alloys”, Phys. Rev. Lett. 75 (1995) 3162–3165.Google Scholar
43. Zunger, A., Wei, S. H., Ferreira, L. G., and Bernard, J. E., “Special quasirandom structures”, Phys. Rev. Lett. 65 (1990) 353.Google Scholar
44. Walle, A. van de, Tiwary, P., Jong, M. de, Olmsted, D. L., Asta, M., Dick, A. et al., “Efficient stochastic generation of special quasirandom structures”, CALPHAD 42 (2013) 13–18.Google Scholar
45. Wang, Y., Zacherl, C. L., Shang, S. L., Chen, L. Q., and Liu, Z. K., “Phonon dispersions in random alloys: a method based on special quasi-random structure force constants”, J. Phys. Condens. Matter 23 (2011) 485403.Google Scholar
46. Dutta, B., Bisht, K., and Ghosh, S., “Ab initio calculation of phonon dispersions in size-mismatched disordered alloys”, Phys. Rev. B 82 (2010) 134207.Google Scholar
47. Kaufman, L. and Bernstein, H., Computer Calculation of Phase Diagrams, Academic Press, New York, 1970.
48. Saunders, N. and Miodownik, A. P., CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Pergamon, Oxford, 1998.
49. Lukas, H. L., Fries, S. G., and Sundman, B., Computational Thermodynamics: The CALPHAD Method, Cambridge University Press, Cambridge, 2007.
50. Lukas, H. L., Fries, S. G., and Sundman, B., “Software for CALPHAD modeling”, CALPHAD 26(2) (2002).Google Scholar
51. Lukas, H. L., Fries, S. G., and Sundman, B., “Software for CALPHAD modeling”, CALPHAD 33(2) (2009).Google Scholar
52. Dinsdale, A. T., “SGTE data for pure elements”, CALPHAD 15 (1991) 317–425.Google Scholar
53. Wang, Y., Curtarolo, S., Jiang, C., Arroyave, R., Wang, T., Ceder, G. et al., “Ab initio lattice stability in comparison with CALPHAD lattice stability”, CALPHAD 28 (2004) 79–90.Google Scholar
54. Ozolins, V., “First-principles calculations of free energies of unstable phases: the case of fcc W”, Phys. Rev. Lett. 102 (2009) 065702.Google Scholar
55. Hillert, M., “The Compound energy fermalism”. J. Alloys Compd. 320 (2001) 161–176.Google Scholar
56. Sundman, B., Ohnuma, I., Dupin, N., Kattner, U. R., and Fries, S. G., “An assessment of the entire Al–Fe system including D0(3) ordering”, Acta Mater. 57 (2009) 2896–2908.Google Scholar
57. Kusoffsky, A., Dupin, N., and Sundman, B., “On the compound energy formalism applied to fcc ordering”, CALPHAD 25 (2001) 549–565.Google Scholar
58. Abe, T. and Sundman, B., “A description of the effect of short range ordering in the compound energy formalism”, CALPHAD 27 (2003) 403–408.Google Scholar
59. Liu, Z. K., Zhang, H., Ganeshan, S., Wang, Y., and Mathaudhu, S. N., “Computational modeling of effects of alloying elements on elastic coefficients”, Scr. Matter 63 (2010) 686–691.Google Scholar
60. Hillert, M., and Jarl, M. A., “Model for alloying effects in ferromagnatic metals”, CALPHAD 2 (1978) 227–238.Google Scholar
61. Xiong, W., Chen, Q., Korzhavyi, P. A., and Selleby, M., “An improved magnetic model for thermodynamic modelling”, CALPHAD 39 (2012) 11–20.Google Scholar
62. Haun, M. J., Furman, E., Jang, S. J., McKinstry, H. A. & Cross, L. E.Thermodynamic theory of PbTiO 3”, J. Appl. Phys. 62 (1987) 3331–8.Google Scholar
63. Scientific Group Thermodata Europe (SGTE), Thermodynamic Properties of Inorganic Materials. Lehrstuhl für Theoretische Hüttenkunde, Ed. Landolt-Boernstein New Series, Group IV, Springer, Berlin, 1999, vol. 19.
64. Andersson, J. O., Helander, T., Hoglund, L. H., Shi, P. F., and Sundman, B., “Thermo-Calc and DICTRA, computational tools for materials science”, CALPHAD 26 (2002) 273–312.Google Scholar
65. Yang, M., Zhong, Y., and Liu, Z. K., “Defect analysis and thermodynamic modeling of LaCoO3−δ”, Solid State Ionics 178 (2007) 1027–1032.Google Scholar
66. Macdonald, D. D., “Passivity – the key to our metals-based civilization”, Pure Appl. Chem. 71 (1999) 951–978.Google Scholar
67. Larcin, J., Maskell, W. C., and Tye, F. L., “Leclanché cell investigations. 1. Zn(NH3)2Cl2 solubility and the formation of ZnCl2⋅4Zn(OH)2⋅H2O”, Electrochim. Acta 42 (1997) 2649–2658.Google Scholar
68. Liu, Z. K., Wang, Y., and Shang, S. L., “Origin of negative thermal expansion phenomenon in solids”, Scripta Mater. 65 (2011) 664–667.Google Scholar
69. Wang, Y., Hector, L. G., Zhang, H., Shang, S. L., Chen, L. Q., and Liu, Z. K., “Thermodynamics of the Ce gamma-alpha transition: density-functional study”, Phys. Rev. 78 (2008) 104113.Google Scholar
70. Wang, Y., Hector, L. G., Zhang, H., Shang, S. L., Chen, L. Q., and Liu, Z. K., “A thermodynamic framework for a system with itinerant-electron magnetism”, J. Phys. Condens. Matter 21 (2009) 326003.Google Scholar
71. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., and Sutton, A. P., “Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study”, Phys. Rev. B 57 (1998) 1505–1509.Google Scholar
72. Liu, Z.-K., Wang, Y., and Shang, S., “Thermal expansion anomaly regulated by entropy”, Sci. Rep. 4 (2014) 7043.Google Scholar
73. Wang, Y., Shang, S. L., Zhang, H., Chen, L. Q., and Liu, Z. K., “Thermodynamic fluctuations in magnetic states: Fe3Pt as a prototype”, Philos. Mag. Lett. 90 (2010) 851–859.Google Scholar
74. National Science and Technology Council, “Materials Genome Initiative for Global Competitiveness”, www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf, Office of Science and Technology Policy, Washington DC, June 2011.
75. Kaufman, L. and Agren, J., “CALPHAD, first and second generation – birth of the materials genome”, 70 (2014) 3–6.
76. Liu, Z. K., “Perspective on Materials Genome®”, Chin. Sci. Bull. 59 (2014) 1619–1623.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Zi-Kui Liu, Pennsylvania State University, Yi Wang, Pennsylvania State University
  • Book: Computational Thermodynamics of Materials
  • Online publication: 05 July 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139018265.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Zi-Kui Liu, Pennsylvania State University, Yi Wang, Pennsylvania State University
  • Book: Computational Thermodynamics of Materials
  • Online publication: 05 July 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139018265.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Zi-Kui Liu, Pennsylvania State University, Yi Wang, Pennsylvania State University
  • Book: Computational Thermodynamics of Materials
  • Online publication: 05 July 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139018265.012
Available formats
×