Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T02:46:12.625Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 October 2012

Yann Bugeaud
Affiliation:
Université de Strasbourg
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] B., Adamczewski, On the expansion of some exponential periods in an integer base, Math. Ann. 346 (2010), 107–116. (Cited in Chapter 8.)Google Scholar
[2] B., Adamczewski and J.-P., Allouche, Reversals and palindromes in continued fractions, Theoret. Comput. Sci. 380 (2007), 220–237. (Cited in Chapter 7.)Google Scholar
[3] B., Adamczewski and Y., Bugeaud, On the complexity of algebraic numbers, II. Continued fractions, Acta Math. 195 (2005), 1–20. (Cited in Chapter 9.)Google Scholar
[4] B., Adamczewski and Y., Bugeaud, On the independence of expansions of algebraic numbers in an integer base, Bull. London Math. Soc. 39 (2007), 283–289. (Cited in Chapter 8.)Google Scholar
[5] B., Adamczewski and Y., Bugeaud, A short proof of the transcendence of the Thue–Morse continued fractions, Amer. Math. Monthly 114 (2007), 536–540. (Cited in Chapter 9.)Google Scholar
[6] B., Adamczewski and Y., Bugeaud, Dynamics for β-shifts and Diophantine approximation, Ergod. Theory Dynam. Systems 27 (2007), 1695–1711. (Cited in Chapters 8 & 9, and Appendix A.)Google Scholar
[7] B., Adamczewski and Y., Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases, Ann. of Math. 165 (2007), 547–565. (Cited in Chapter 8.)Google Scholar
[8] B., Adamczewski and Y., Bugeaud, On the Maillet–Baker continued fractions, J. Reine Angew. Math. 606 (2007), 105–121. (Cited in Chapter 9.)Google Scholar
[9] B., Adamczewski and Y., Bugeaud, Palindromic continued fractions, Ann. Inst. Fourier (Grenoble) 57 (2007), 1557–1574. (Cited in Chapter 9.)Google Scholar
[10] B., Adamczewski and Y., Bugeaud, Mesures de transcendance et aspects quantitatifs de la méthode de Thue–Siegel–Roth–Schmidt, Proc. London Math. Soc. 101 (2010), 1–31. (Cited in Chapters 4 & 9.)Google Scholar
[11] B., Adamczewski and Y., Bugeaud, Transcendence measures for continued fractions involving repetitive or symmetric patterns, J. Europ. Math. Soc. 12 (2010), 883–914. (Cited in Chapter 9.)Google Scholar
[12] B., Adamczewski and Y., Bugeaud, Diophantine approximation and transcendence. In: Encyclopedia of Mathematics and its Applications 135, Cambridge University Press, Cambridge, 2010, pp. 424–465. (Cited in Chapter 8.)
[13] B., Adamczewski and Y., Bugeaud, Nombres réels de complexité sous-linéaire: mesures d'irrationalité et de transcendance, J. Reine Angew. Math. 658 (2011), 65–98. (Cited in Chapter 8 and Appendix A.)Google Scholar
[14] B., Adamczewski, Y., Bugeaud and L., Davison, Continued fractions and transcendental numbers, Ann. Inst. Fourier (Grenoble) 56 (2006), 2093–2113. (Cited in Chapter 9.)Google Scholar
[15] B., Adamczewski, Y., Bugeaud and F., Luca, Sur la complexité des nombres algébriques, C. R. Acad. Sci. Paris 339 (2004), 11–14. (Cited in Chapter 8.)Google Scholar
[16] B., Adamczewski, Y., Bugeaud and F., Luca, On the values of a class of analytic functions at algebraic points, Acta Arith. 135 (2008), 1–18. (Cited in Chapter 8.)Google Scholar
[17] B., Adamczewski and J., Cassaigne, Diophantine properties of real numbers generated by finite automata, Compos. Math. 142 (2006), 1351–1372. (Cited in Chapter 8.)Google Scholar
[18] B., Adamczewski and C., Faverjon, Chiffres non nuls dans le développement en base entière d'un nombre algébrique irrationnel. C.R. Acad. Sci. Paris 350 (2012), 1–4. (Cited in Chapter 8.)Google Scholar
[19] B., Adamczewski and N., Rampersad, On patterns occurring in binary algebraic numbers, Proc. Amer. Math. Soc. 136 (2008), 3105–3109. (Cited in Chapters 8 & 10.)Google Scholar
[20] B., Adamczewski and T., Rivoal, Irrationality measures for some automatic real numbers, Math. Proc. Cambridge Phil. Soc. 147 (2009), 659–678. (Cited in Chapter 8.)Google Scholar
[21] W. W., Adams and J. L., Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194–198. (Cited in Chapter 7.)Google Scholar
[22] S. D., Adhikari, P., Rath and N., Saradha, On the sets of uniqueness of a distribution function of {ξ(p/q)n}, Acta Arith. 119 (2005), 307–316. (Cited in Chapter 3.)Google Scholar
[23] R., Adler, M., Keane and M., Smorodinsky, A construction of a normal number for the continued fraction transformation, J. Number Theory 13 (1981), 95–105. (Cited in Chapter 9.)Google Scholar
[24] V. N., Agafonov, Normal sequences and finite automata, Dokl. Akad. Nauk SSSR 179 (1968), 255–256 (in Russian).Google Scholar
English translation in Soviet Math. Dokl. 9 (1968), 324–325. (Cited in Chapter 4.)
[25] Ch., Aistleitner, On modifying normal numbers, Unif. Distrib. Theory 6 (2011), 49–58. (Cited in Chapters 4 & 10.)Google Scholar
[26] M., Ajtai, I., Havas and J., Komlós, Every group admits a bad topology. In: Studies in Pure Mathematics, 21–34, Birkhäuser, Basel, 1983. (Cited in Chapter 2.)
[27] M., Aka and U., Shapira, On the evolution of continued fractions in a fixed quadratic field. Preprint. (Cited in Chapter 9.)
[28] R. K., Akhunzhanov, On nonnormal numbers, Mat. Zametki 72 (2002), 150–152 (in Russian).Google Scholar
English translation in Math. Notes 72 (2002), 135–137. (Cited in Chapter 7.)
[29] R. K., Akhunzhanov, On the distribution modulo 1 of exponential sequences, Mat. Zametki 76 (2004), 163–171 (in Russian).Google Scholar
English translation in Math. Notes 76 (2004), 153–160. (Cited in Chapter 7.)
[30] R. K., Akhunzhanov and N. G., Moshchevitin, On the chromatic number of a distance graph associated with a lacunary sequence, Dokl. Akad. Nauk 397 (2004), 295–296 (in Russian). (Cited in Chapter 2.)Google Scholar
[31] R. K., Akhunzhanov and N. G., Moshchevitin, On the distribution modulo 1 of subexponential sequences, Mat. Zametki 77 (2005), 803–813 (in Russian).Google Scholar
English translation in Math. Notes 77 (2005), 741–750. (Cited in Chapter 2.)
[32] S., Akiyama, Mahler's Z-number and 3/2 number system, Unif. Distrib. Theory 3 (2008), 91–99. (Cited in Chapter 3.)Google Scholar
[33] S., Akiyama, Ch., Frougny and J., Sakarovitch, Powers of rationals modulo 1 and rational base number systems, Israel J. Math. 168 (2008), 53–91. (Cited in Chapter 3.)Google Scholar
[34] S., Akiyama and Y., Tanigawa, Salem numbers and uniform distribution modulo 1, Publ. Math. Debrecen 64 (2004), 329–341. (Cited in Chapter 3.)Google Scholar
[35] S., Albeverio, M., Pratsiovytyi and G., Torbin, Singular probability distributions and fractal properties of sets of real numbers defined by the asymptotic frequencies of their s-adic digits, Ukraïn. Mat. Zh. 57 (2005), 1163–1170.Google Scholar
English translation in Ukrainian Math. J. 57 (2005), 1361–1370. (Cited in Chapters 4 & 7.)
[36] S., Albeverio, M., Pratsiovytyi and G., Torbin, Topological and fractal properties of real numbers which are not normal, Bull. Sci. Math. 129 (2005), 615–630. (Cited in Chapters 4 & 7.)Google Scholar
[37] G., Alkauskas and A., Dubickas, Prime and composite numbers as integer parts of powers, Acta Math. Hungar. 105 (2004), 249–256. (Cited in Chapter 3.)Google Scholar
[38] J.-P., Allouche, Nouveaux résultats de transcendance de réels à développements non aléatoire, Gaz. Math. 84 (2000), 19–34. (Cited in Chapter 8.)Google Scholar
[39] J.-P., Allouche, A., Arnold, J., Berstel, S., Brlek, W., Jockush, S., Plouffe and B. E., Sagan, A relative of the Thue–Morse sequence, Discrete Math. 139 (1995), 455–461. (Cited in Appendix A.)Google Scholar
[40] J.-P., Allouche and M., Cosnard, The Komornik–Loreti constant is transcendental, Amer. Math. Monthly (2000), 448–449. (Cited in Chapter 9.)
[41] J.-P., Allouche and M., Cosnard, Non-integer bases, iteration of continuous real maps, and an arithmetic self-similar set, Acta Math. Hungar. 91 (2001), 325–332. (Cited in Chapter 3.)Google Scholar
[42] J.-P., Allouche, J. L., Davison, M., Queffélec and L. Q., Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001), 39–66. (Cited in Chapter 9 and Appendix A.)Google Scholar
[43] J.-P., Allouche and A., Glen, Distribution modulo 1 and the lexicographic world, Ann. Sci. Math. Québec 33 (2009), 125–143. (Cited in Chapter 3.)Google Scholar
[44] J.-P., Allouche and A., Glen, Extremal properties of (epi)sturmian sequences and distribution modulo 1, Enseign. Math. 56 (2010), 365–401. (Cited in Chapter 3.)Google Scholar
[45] J.-P., Allouche and J., Shallit, The ubiquitous Prouhet–Thue–Morse sequence. In: Sequences and their Applications (Singapore, 1998), 1–16, Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 1999. (Cited in Chapter 3 and Appendix A.)
[46] J.-P., Allouche and J., Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003. (Cited in Chapters 7, 8 & 10, and Appendix A.)
[47] N., Alon and Yu., Peres, Uniform dilations, Geom. Funct. Anal. 2 (1992), 1–28. (Cited in Chapter 8.)Google Scholar
[48] C., Altomare and B., Mance, Cantor series constructions contrasting two notions of normality, Monatsh. Math. 164 (2011), 1–22. (Cited in Chapter 9.)Google Scholar
[49] M., Amou, Approximation to certain transcendental decimal fractions by algebraic numbers, J. Number Theory 37 (1991), 231–241. (Cited in Chapters 4 & 7.)Google Scholar
[50] M., Amou and Y., Bugeaud, Expansions in integer bases and exponents of Diophantine approximation, J. London Math. Soc. 81 (2010), 297–316. (Cited in Chapters 4 & 7.)Google Scholar
[51] J., Auslander and Y. N., Dowker, On disjointness of dynamical systems, Math. Proc. Cambridge Philos. Soc. 85 (1979), 477–491. (Cited in Chapter 4.)Google Scholar
[52] D., Badziahin and S., Velani, Multiplicatively badly approximable numbers and the mixed Littlewood conjecture, Adv. Math. 228 (2011), 2766–2796. (Cited in Chapter 2.)Google Scholar
[53] D. H., Bailey, J. M., Borwein, R. E., Crandall and C., Pomerance, On the binary expansions of algebraic numbers, J. Théor. Nombres Bordeaux 16 (2004), 487–518. (Cited in Chapters 6 & 8.)Google Scholar
[54] D., Bailey, P., Borwein and S., Plouffe, On the rapid computation of various polylogarithmic constants, Math. Comp. 66 (1997), 903–913. (Cited in Chapter 5.)Google Scholar
[55] D. H., Bailey and R. E., Crandall, On the random character of fundamental constant expansions, Experiment. Math. 10 (2001), 175–190. (Cited in Chapter 5.)Google Scholar
[56] D. H., Bailey and R. E., Crandall, Random generators and normal numbers, Experiment. Math. 11 (2002), 527–546. (Cited in Chapter 5.)Google Scholar
[57] D. H., Bailey and M., Misiurewicz, A strong hot spot theorem, Proc. Amer. Math. Soc. 134 (2006), 2495–2501. (Cited in Chapters 4 & 5.)Google Scholar
[58] A., Baker, Continued fractions of transcendental numbers, Mathematika 9 (1962), 1–8. (Cited in Chapter 9.)Google Scholar
[59] G., Barat, Ch., Frougny and A., Pethő, A note on linear recurrent Mahler numbers, Integers 5 (2005), A1, 17 pp. (Cited in Chapter 10.)Google Scholar
[60] G., Barat, R. F., Tichy and R., Tijdeman, Digital blocks in linear numeration systems. In: Number Theory in Progress, Vol. 2 (Zakopane-Kościelisko, 1997), 607–631, de Gruyter, Berlin, 1999. (Cited in Chapter 6.)
[61] J., Barral and S., Seuret, Ubiquity and large intersections properties under digit frequencies constraints, Math. Proc. Cambridge Philos. Soc. 145 (2008), 527–548. (Cited in Chapter 7.)Google Scholar
[62] L., Barreira and G., Iommi, Partial quotients of continued fractions and β-expansions, Nonlinearity 21 (2008), 2211–2219. (Cited in Chapter 9.)Google Scholar
[63] L., Barreira, B., Saussol and J., Schmeling, Higher-dimensional multifractal analysis, J. Math. Pures Appl. 81 (2002), 67–91. (Cited in Chapter 7.)Google Scholar
[64] L., Barreira, B., Saussol and J., Schmeling, Distribution of frequencies of digits via multifractal analysis, J. Number Theory 97 (2002), 410–438. (Cited in Chapter 7.)Google Scholar
[65] L., Barreira and C., Valls, Asymptotic behavior of distribution of frequencies of digits, Math. Proc. Cambridge Philos. Soc. 145 (2008), 177–195. (Cited in Chapter 7.)Google Scholar
[66] L., Barreira and C., Valls, Cubic relations between frequencies of digits and Hausdorff dimension, Michigan Math. J. 60 (2011), 579–602. (Cited in Chapter 7.)Google Scholar
[67] V., Becher, Turing's note on normal numbers. In: Alan Turing – his work and impact, (eds. S. Barry, Cooper and Jan, van Leeuwen), Elsevier, Amsterdam, 2012. (Cited in Chapter 5.)
[68] V., Becher and S., Figueira, An example of a computable absolutely normal number, Theoret. Comput. Sci. 270 (2002), 947–958. (Cited in Chapter 5.)Google Scholar
[69] V., Becher, S., Figueira and R., Picchi, Turing's unpublished algorithm for normal numbers, Theoret. Comput. Sci. 377 (2007), 126–138. (Cited in Chapter 5.)Google Scholar
[70] J. P, Bell and M., Coons, Diophantine approximation of Mahler numbers. Preprint. (Cited in Chapter 8.)
[71] D., Berend, Multi-invariant sets on tori, Trans. Amer. Math. Soc. 280 (1983), 509–532. (Cited in Chapters 2 & 8.)Google Scholar
[72] D., Berend, Dense (mod 1) dilated semigroups of algebraic numbers, J. Number Theory 26 (1987), 246–256. (Cited in Chapter 2.)Google Scholar
[73] D., Berend and M. D., Boshernitzan, On a result of Mahler on the decimal expansions of (nα), Acta Arith. 66 (1994), 315–322. (Cited in Chapter 8.)Google Scholar
[74] D., Berend and M. D., Boshernitzan, Numbers with complicated decimal expansions, Acta Math. Hungar. 66 (1995), 113–126. (Cited in Chapters 8, 9 & 10.)Google Scholar
[75] D., Berend and Yu., Peres, Asymptotically dense dilations of sets on the circle, J. London Math. Soc. 47 (1993), 1–17. (Cited in Chapter 8.)Google Scholar
[76] V., Bergström, Einige Bemerkungen zur Theorie der diophantischen Approximationen, Fysiogr. Sllsk. Lund Forhandl. 6 (1936), 113–131. (Cited in Chapter 1.)Google Scholar
[77] M., Bernay, La dimension de Hausdorff de l'ensemble des nombres r-déterministes, C. R. Acad. Sci. Paris 280 (1975), A539–A541. (Cited in Chapter 4.)Google Scholar
[78] T., Bernhard, Einfach Kompliziert, Suhrkamp Verlag, 1986.
[79] V., Berthé, C., Holton and L. Q., Zamboni, Initial powers of Sturmian sequences, Acta Arith. 122 (2006), 315–347. (Cited in Chapter 8 and Appendix A.)Google Scholar
[80] M.-J., Bertin, A., Decomps-Guilloux, M., Grandet-Hugot, M., Pathiaux-Delefosse and J.-P., Schreiber, Pisot and Salem Numbers, Birkhäuser, Basel, 1992. (Cited in Preface and Chapter 2.)
[81] A., Bertrand, Développements en base de Pisot et répartition modulo 1, C. R. Acad. Sci. Paris 285 (1977), A419–A421. (Cited in Chapter 9.)Google Scholar
[82] A., Bertrand, Répartition modulo 1 et développement en base θ, C. R. Acad. Sci. Paris 289 (1979), A1–A4. (Cited in Chapter 9.)Google Scholar
[83] A., Bertrand-Mathis, Développements en base θ, répartition modulo un de la suite (xθn) n≥0, langages codés et θ-shift, Bull. Soc. Math. France 114 (1986), 271–323. (Cited in Chapters 6 & 9.)Google Scholar
[84] A., Bertrand-Mathis, Points génériques de Champernowne sur certains systèmes codes; application aux θ-shifts, Ergodic Theory Dynam. Systems 8 (1988), 35–51. (Cited in Chapter 9.)Google Scholar
[85] A., Bertrand-Mathis, Nombres normaux dans diverses bases, Ann. Inst. Fourier (Grenoble) 45 (1995), 1205–1222. (Cited in Chapter 9.)Google Scholar
[86] A., Bertrand-Mathis, Nombres normaux, J. Thór. Nombres Bordeaux 8 (1996), 397–412. (Cited in Chapter 9.)Google Scholar
[87] A., Bertrand-Mathis, Ensembles normaux relatifs à des matrices non-commutantes, J. Number Theory 63 (1997), 180–190. (Cited in Chapter 6.)Google Scholar
[88] A., Bertrand-Mathis, Sur les mesures simultanément invariantes pour les transformations x → {λx} et x → {βx}, Acta Math. Hungar. 78 (1998), 71–78. (Cited in Chapter 9.)Google Scholar
[89] A., Bertrand-Mathis, Sur les nombres normaux liés à des bases non équivalentes, Ergodic Theory Dynam. Systems 18 (1998), 89–93. (Cited in Chapter 9.)Google Scholar
[90] A., Bertrand-Mathis, Nombres self normaux, Bull. Soc. Math. France. To appear. (Cited in Chapter 9.)
[91] A., Bertrand-Mathis and B., Volkmann, On (ε, k)-normal words in connecting dynamical systems, Monatsh. Math. 107 (1989), 267–279. (Cited in Chapter 9.)Google Scholar
[92] D., Bertrand, Theta functions and transcendence, Ramanujan J. 1 (1997), 339–350. (Cited in Chapter 8.)Google Scholar
[93] A. S., Besicovitch, The asymptotic distribution of the numerals in the decimal representation of the squares of the natural numbers, Math. Z. 39 (1935), 146–156. (Cited in Chapters 4 & 5.)Google Scholar
[94] F., Beukers, Fractional parts of powers of rationals, Math. Proc. Cambridge Phil. Soc. 90 (1981), 13–20. (Cited in Chapter 3.)Google Scholar
[95] W. A., Beyer, N., Metropolis and J. R., Neergaard, Statistical study of digits of some square roots of integers in various bases, Math. Comp. 24 (1970), 455–473. (Cited in Chapter 8.)Google Scholar
[96] W. A., Beyer, N., Metropolis and J. R., Neergaard, The generalized serial test applied to expansions of some irrational square roots in various bases, Math. Comp. 24 (1970), 745–747. (Cited in Chapter 8.)Google Scholar
[97] L., Bienvenu, Qu'est-ce qu'un nombre au hasard? Hasard et calculabilité. In: Journée Annuelle 2011, pp. 1–26, Société mathématique de France, 2011. (Cited in Chapter 5.)
[98] P., Billingsley, Probability and Measure, Wiley Ser. Probab. Math. Statist., John Wiley & Sons, New York, 1979. (Cited in Chapter 6.)
[99] Yu. F., Bilu, The many faces of the subspace theorem [after Adamczewski, Bugeaud, Corvaja, Zannier…]. Séminaire Bourbaki, Vol. 2006/2007, Astérisque No. 317 (2008), Exp. No. 967, vii, 1–38. (Cited in Chapter 8 and Appendix E.)Google Scholar
[100] A., Bisbas, Normal numbers from infinite convolution measures, Ergodic Theory Dynam. Systems 23 (2003), 389–393. (Cited in Chapter 6.)Google Scholar
[101] A., Bisbas, A Cassels–Schmidt theorem for non-homogeneous Markov chains, Bull. Sci. Math. 129 (2005), 25–37. (Cited in Chapter 6.)Google Scholar
[102] A., Bisbas and N., Snigireva, Divergence points and normal numbers, Monatsh. Math. To appear. (Cited in Chapter 6.)
[103] F., Blanchard, β-expansions and symbolic dynamics, Theoret. Comput. Sci. 65 (1989), 131–141. (Cited in Chapter 9.)Google Scholar
[104] F., Blanchard, Nonliteral transducers and some problems of normality, J. Théor. Nombres Bordeaux 5 (1993), 303–321. (Cited in Chapter 4.)Google Scholar
[105] F., Blanchard and J.-M., Dumont, Generic sequences, transducers and multiplication of normal numbers, Israel J. Math. 80 (1992), 257–287. (Cited in Chapter 4.)Google Scholar
[106] R., Blecksmith, M., Filaseta and C., Nicol, A result on the digits of an, Acta Arith. 64 (1993), 331–339. (Cited in Chapter 6.)Google Scholar
[107] C., Bluhm, On a theorem of Kaufman: Cantor-type construction of linear fractal Salem sets, Ark. Mat. 36 (1998), 307–316. (Cited in Chapter 7.)Google Scholar
[108] C., Bluhm, Liouville numbers, Rajchman measures, and small Cantor sets, Proc. Amer. Math. Soc. 128 (2000), 2637–2640. (Cited in Chapter 7.)Google Scholar
[109] P., Bohl, Über ein in der Theorie der säkularen Störungen vorkommendes Problem, J. Reine Angew. Math. 135 (1909), 189–283. (Cited in Chapter 1.)Google Scholar
[110] P. E., Böhmer, Über die Transzendenz gewisser dyadischer Brüche, Math. Ann. 96 (1927), 367–377. (Cited in Chapter 7.)Google Scholar
[111] E., Bombieri and W., Gubler, Heights in Diophantine Geometry, New Math. Monogr.4, Cambridge University Press, Cambridge, 2006. (Cited in Appendix E.)
[112] E., Bombieri and A. J., van der Poorten, Continued fractions of algebraic numbers. In: Computational Algebra and Number Theory (Sydney, 1992), 137–152, Math. Appl., 325, Kluwer Academic Publishers, Dordrecht, 1995. (Cited in Chapter 9.)
[113] É., Borel, Sur une application d'un théorème de M. Hadamard, Bull. Sci. Math. 18 (1894), 22–25. (Cited in Chapter 2.)Google Scholar
[114] É., Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Math. Palermo 27 (1909), 247–271. (Cited in Chapter 4.)Google Scholar
[115] É., Borel, Leçons sur la Théorie des Fonctions, seconde édition, Gauthier-Villars, Paris, 1914. (Cited in Chapter 4.)
[116] É., Borel, Sur les chiffres décimaux de √2 et divers problèmes de probabilités en chaîne, C. R. Acad. Sci. Paris 230 (1950), 591–593. (Cited in Chapter 8.)Google Scholar
[117] J.-P., Borel, Parties d'ensembles B-normaux, Manuscripta Math. 62 (1988), 317–335. (Cited in Chapter 4.)Google Scholar
[118] J.-P., Borel, Suites de longueur minimale associées à un ensemble normal donné, Israel J. Math. 64 (1988), 229–250. (Cited in Chapter 4.)Google Scholar
[119] J.-P., Borel, Sur certains ensembles normaux, Sém. Théor. Nombres Bordeaux 1 (1989), 67–79. (Cited in Chapter 4.)Google Scholar
[120] J., Borwein and D., Bailey, Mathematics by Experiment. Plausible Reasoning in the 21st Century, second edition, A. K. Peters, Ltd, Wellesley, MA, 2008. (Cited in Chapters 4, 5 & 8.)
[121] M. D., Boshernitzan, Homogeneously distributed sequences and Poincaré sequences of integers of sublacunary growth, Monatsh. Math. 96 (1983), 173–181. (Cited in Chapter 2.)Google Scholar
[122] M. D., Boshernitzan, Elementary proof of Furstenberg's Diophantine result, Proc. Amer. Math. Soc. 122 (1994), 67–70. (Cited in Chapter 2.)Google Scholar
[123] M. D., Boshernitzan, Density modulo 1 of dilations of sublacunary sequences, Adv. Math. 108 (1994), 104–117. (Cited in Chapter 2.)Google Scholar
[124] W., Bosma, K., Dajani and C., Kraaikamp, Entropy quotients and correct digits in number-theoretic expansions, In: Dynamics and Stochastics, 176–188, IMS Lecture Notes Monogr. Ser., 48, Institute of Mathematics and Statistics, Beachwood, OH, 2006. (Cited in Chapters 6 & 9.)
[125] J., Bourgain, E., Lindenstrauss, Ph., Michel and A., Venkatesh, Some effective results for ×a × b, Ergodic Theory Dynam. Systems 29 (2009), 1705–1722. (Cited in Chapter 2.)Google Scholar
[126] F., Bowman, Introduction to Bessel functions, Dover Publications Inc., New York, 1958. (Cited in Chapter 3.)
[127] D., Boyd, Transcendental numbers with badly distributed powers, Proc. Amer. Math. Soc. 23 (1969), 424–427. (Cited in Chapter 2.)Google Scholar
[128] D., Boyd, Salem numbers of degree four have periodic expansions. In: Théorie des Nombres (Quebec, PQ, 1987), pp. 57–64, de Gruyter, Boston, MA, 1989. (Cited in Chapter 9.)
[129] D., Boyd, On the beta expansion for Salem numbers of degree 6, Math. Comp. 65 (1996), 861–875. (Cited in Chapter 9.)Google Scholar
[130] R. P., Brent, A. J., van der Poorten and H. J. J. te, Riele, A comparative study of algorithms for computing continued fractions of algebraic numbers. In: Algorithmic Number Theory (Talence, 1996), 3547, Lecture Notes in Comput. Sci., 1122, Springer, Berlin, 1996. (Cited in Chapter 9.)
[131] R., Broderick, Y., Bugeaud, L., Fishman, D., Kleinbock and B., Weiss, Schmidt's game, fractals, and numbers normal to no base, Math. Res. Lett. 17 (2010), 307–321. (Cited in Chapter 7 and Appendix C.)Google Scholar
[132] R., Broderick, L., Fishman and A., Reich, Intrinsic approximation on Cantor-like sets, a problem of Mahler, Moscow J. Comb. Number Theory 1 (2011), 291–300. (Cited in Chapter 7.)Google Scholar
[133] G., Brown, Normal numbers and dynamical systems, Probabilistic and stochastic methods in analysis, with applications (Il Ciocco, 1991), 207–216, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 372, Kluwer Academic Publishers, Dordrecht, 1992. (Cited in Chapter 6.)
[134] G., Brown, M. S., Keane, W., Moran and C. E. M., Pearce, An inequality, with applications to Cantor measures and normal numbers, Mathematika 35 (1988), 87–94. (Cited in Chapter 6.)Google Scholar
[135] G., Brown and W., Moran, Schmidt's conjecture on normality for commuting matrices, Invent. Math. 111 (1993), 449–463. (Cited in Chapter 6.)Google Scholar
[136] G., Brown, W., Moran and C. E. M., Pearce, Riesz products and normal numbers, J. London Math. Soc. 32 (1985), 12–18. (Cited in Chapter 6.)Google Scholar
[137] G., Brown, W., Moran and C. E. M., Pearce, A decomposition theorem for numbers in which the summands have prescribed normality properties, J. Number Theory 24 (1986), 259–271. (Cited in Chapter 6.)Google Scholar
[138] G., Brown, W., Moran and C. E. M., Pearce, Riesz products, Hausdorff dimension and normal numbers, Math. Proc. Cambridge Philos. Soc. 101 (1987), 529–540. (Cited in Chapter 6.)Google Scholar
[139] G., Brown, W., Moran and A. D., Pollington, Normality to noninteger bases, C. R. Acad. Sci. Paris 316 (1993), 1241–1244. (Cited in Chapter 6.)Google Scholar
[140] G., Brown, W., Moran and A. D., Pollington, Normality with respect to powers of a base, Duke Math. J. 88 (1997), 247–265. (Cited in Chapter 6.)Google Scholar
[141] G., Brown, W., Moran and A. D., Pollington, Schmidt's conjecture on normality for dimension two, J. Fourier Anal. Appl. 8 (2002), 427–441. (Cited in Chapter 6.)Google Scholar
[142] G., Brown and Q., Yin, β-expansions and frequency of zero, Acta Math. Hungar. 84 (1999), 275–291. (Cited in Chapter 9.)Google Scholar
[143] N. G., de Bruijn, A combinatorial problem, Nederl. Akad. Wet. Proc. 49 (1946), 758–764. (Cited in Chapter 5.)Google Scholar
[144] Y., Bugeaud, Nombres de Liouville et nombres normaux, C.R. Acad. Sci. Paris 335 (2002), 117–120. (Cited in Chapter 7.)Google Scholar
[145] Y., Bugeaud, Linear mod one transformations and the distribution of fractional parts {ξ(p/q)n}, Acta Arith. 114 (2004), 301–311. (Cited in Chapter 3.)Google Scholar
[146] Y., Bugeaud, Approximation by Algebraic Numbers. Cambridge Tracts in Math.160, Cambridge, 2004. (Cited in Chapters 2 & 7 and Appendices C, D & E.)
[147] Y., Bugeaud, On the b-ary expansion of an algebraic number, Rend. Sem. Mat. Univ. Padova 118 (2007), 217–233. (Cited in Chapters 6 & 8.)Google Scholar
[148] Y., Bugeaud, Diophantine approximation and Cantor sets, Math. Ann. 341 (2008), 677–684. (Cited in Chapters 7 & 8.)Google Scholar
[149] Y., Bugeaud, An explicit lower bound for the block complexity of an algebraic number, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (2008), 229–235. (Cited in Chapter 8.)Google Scholar
[150] Y., Bugeaud, On the convergents to algebraic numbers. In: Analytic Number Theory, 133–143, Cambridge University Press, Cambridge, 2009. (Cited in Chapter 9.)
[151] Y., Bugeaud, On the β-expansion of an algebraic number in an algebraic base β, Integers 9 (2009), 215–226. (Cited in Chapter 9.)Google Scholar
[152] Y., Bugeaud, On sequences (anξ)n≥1 converging modulo 1, Proc. Amer. Math. Soc. 137 (2009), 2609–2612. (Cited in Chapter 2.)Google Scholar
[153] Y., Bugeaud, Quantitative versions of the Subspace Theorem and applications, J. Théor. Nombres Bordeaux 23 (2011), 35–57. (Cited in Appendix E.)Google Scholar
[154] Y., Bugeaud, On the irrationality exponent of the Thue–Morse–Mahler numbers. Ann. Inst. Fourier (Grenoble) 61 (2011). (Cited in Chapter 8.)Google Scholar
[155] Y., Bugeaud, On the expansions of a real number to several integer bases, Rev. Mat. Iberoam. To appear. (Cited in Chapters 4, 5, 6, 7 & 10.)
[156] Y., Bugeaud, Continued fractions with low complexity: Transcendence measures and quadratic approximation, Compos. Math. To appear. (Cited in Chapter 9.)
[157] Y., Bugeaud, Variations around a problem of Mahler and Mendès France, J. Austral. Math. Soc. To appear. (Cited in Chapter 10 and Appendix D.)
[158] Y., Bugeaud, Continued fractions of transcendental numbers. Preprint. (Cited in Chapter 9.)
[159] Y., Bugeaud, M., Cipu and M., Mignotte, On the representation of Fibonacci and Lucas numbers in an integer base, Ann. Sci. Math.Québec. To appear. (Cited in Chapter 6.)
[160] Y., Bugeaud, M., Drmota and B., de Mathan, On a mixed Littlewood conjecture in Diophantine approximation, Acta Arith. 128 (2007), 107–124. (Cited in Chapter 2.)Google Scholar
[161] Y., Bugeaud and A., Dubickas, Fractional parts of powers and Sturmian words, C. R. Acad. Sci. Paris 341 (2005), 69–74. (Cited in Chapter 3.)Google Scholar
[162] Y., Bugeaud and A., Dubickas, On a problem of Mahler and Szekeres on approximation by roots of integers, Mich. Math. J. 56 (2008), 703–715. (Cited in Chapter 2.)Google Scholar
[163] Y., Bugeaud and J.-H., Evertse, On two notions of complexity of algebraic numbers, Acta Arith. 133 (2008), 221–250. (Cited in Chapter 8 and Appendix E.)Google Scholar
[164] Y., Bugeaud, A., Haynes and S., Velani, Metric considerations concerning the mixed Littlewood Conjecture, Intern. J. Number Theory 7 (2011), 593–609. (Cited in Chapter 2.)Google Scholar
[165] Y., Bugeaud, D., Krieger and J., Shallit, Morphic and automatic words: maximal blocks and Diophantine approximation, Acta Arith. 149 (2011), 181–199. (Cited in Chapter 8.)Google Scholar
[166] Y., Bugeaud and F., Luca, On the period of the continued fraction expansion of √22n+1 + 1, Indag. Math. 16 (2005), 21–35. (Cited in Chapter 9.)Google Scholar
[167] Y., Bugeaud and N., Moshchevitin, Badly approximable numbers and Littlewood-type problems, Math. Proc. Cambridge Phil. Soc. 150 (2011), 215–226. (Cited in Chapter 2.)Google Scholar
[168] Y., Bugeaud and N., Moshchevitin, On fractional parts of powers of real numbers close to 1, Math. Z. To appear. (Cited in Chapters 2 & 10.)
[169] P., Bundschuh, Üer eine Klasse reeller transzendenter Zahlen mit explicit angebbarer g-adischer und Kettenbruch-Entwicklung, J. Reine Angew. Math. 318 (1980), 110–119. (Cited in Chapter 7.)Google Scholar
[170] P., Bundschuh, Generalization of a recent irrationality result of Mahler, J. Number Theory 19 (1984), 248–253. (Cited in Chapter 10.)Google Scholar
[171] P., Bundschuh and A., Pethő, Zur Transzendenz gewisser Reihen, Monatsh. Math. 104 (1987), 199–223. (Cited in Chapter 8.)Google Scholar
[172] P., Bundschuh, P. J.-S., Shiue and X. Y., Yu, Transcendence and algebraic independence connected with Mahler type numbers, Publ. Math. Debrecen 56 (2000), 121–130. (Cited in Chapter 10.)Google Scholar
[173] C. S., Calude, Information and Randomness. An Algorithmic Perspective. Texts in Theoret. Comput. Sci., an EATCS series, Springer, Berlin, 2002. (Cited in Chapter 5.)
[174] C. S., Calude, M. J., Dinneen and C.-K., Shu, Computing a glimpse of randomness, Experiment. Math. 11 (2002), 361–370. (Cited in Chapter 5.)Google Scholar
[175] C., Calude and H., Jürgensen, Randomness as an invariant for number representations. In: Results and Trends in Theoretical Computer Science (Graz, 1994), 44–66, Lecture Notes in Comput. Sci., 812, Springer, Berlin, 1994. (Cited in Chapter 5.)
[176] D. G., Cantor, On powers of real numbers (mod1), Proc. Amer. Math. Soc. 16 (1965), 791–793. (Cited in Chapter 2.)Google Scholar
[177] D. G., Cantor, On power series with only finitely many coefficients (mod 1): Solution of a problem of Pisot and Salem, Acta Arith. 34 (1977), 43–55. (Cited in Chapter 2.)Google Scholar
[178] D., Cass, Integer parts of powers of quadratic units, Proc. Amer. Math. Soc. 101 (1987), 610–612. (Cited in Chapter 3.)Google Scholar
[179] J., Cassaigne, Sequences with grouped factors. In: DLT'97, Developments in Language Theory III, Thessaloniki, Aristotle University of Thessaloniki, 1998, pp. 211–222. (Cited in Chapter 8 and Appendix A.)
[180] J. W. S., Cassels, On a paper of Niven and Zuckerman, Pacific J. Math. 2 (1952), 555–557. (Cited in Chapter 4.)Google Scholar
[181] J. W. S., Cassels, An Introduction to Diophantine Approximation. Cambridge Tracts in Math. and Math. Phys., vol. 99, Cambridge University Press, Cambridge, 1957. (Cited in Chapter 2 and Appendix D.)
[182] J. W. S., Cassels, On a problem of Steinhaus about normal numbers, Colloq. Math. 7 (1959), 95–101. (Cited in Chapter 6.)Google Scholar
[183] E., Cesaratto and B., Vallée, Hausdorff dimension of real numbers with bounded digit averages, Acta Arith. 125 (2006), 115–162. (Cited in Chapter 7.)Google Scholar
[184] D. G., Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc. 8 (1933), 254–260. (Cited in Chapter 4.)Google Scholar
[185] K. T., Chang, A note on normal numbers, Nanta Math. 9 (1976), 70–72. (Cited in Chapter 4.)Google Scholar
[186] D. P., Chi and D. Y., Kwon, Sturmian words, β-shifts, and transcendence, Theoret. Comput. Sci. 321 (2004), 395–404. (Cited in Chapter 9.)Google Scholar
[187] G. H., Choe, T., Hamachi and H., Nakada, Mod 2 normal numbers and skew products, Studia Math. 165 (2004), 53–60. (Cited in Chapter 4.)Google Scholar
[188] G., Choquet, Répartition des nombres k(3/2)n; et ensembles associés, C. R. Acad. Sci. Paris 290 (1980), A575–A580. (Cited in Chapter 3.)Google Scholar
[189] G., Choquet, Algorithmes adaptés aux suites (kθn) et aux chaînes associées, C. R. Acad. Sci. Paris 290 (1980), A719–A724. (Cited in Chapter 3.)Google Scholar
[190] G., Choquet, θ-jeux récursifs et application aux suites (kθn); solénoïdes de Tℤ, C. R. Acad. Sci. Paris 290 (1980), A863–A868. (Cited in Chapter 3.)Google Scholar
[191] G., Choquet, Construction effective de suites (k(3/2)n). Étude des mesures (3/2)-stables, C. R. Acad. Sci. Paris 291 (1980), A69–A74. (Cited in Chapter 3.)Google Scholar
[192] G., Choquet, Les fermés (3/2)-stables de T; structure des fermés d'enombrables; applications arithmétiques, C. R. Acad. Sci. Paris 291 (1980), A239–A244. (Cited in Chapter 3.)Google Scholar
[193] G., Choquet, θ-fermés; θ-chaînes et θ-cycles (pour θ = 3]2), C.R. Acad. Sci. Paris 292 (1981), 5–10. (Cited in Chapters 3 & 9.)Google Scholar
[194] G., Choquet, θ-fermés et dimension de Hausdorff. Conjectures de travail. Arithmétique des θ-cycles (où θ=3/2), C. R. Acad. Sci. Paris 292 (1981), 339–344. (Cited in Chapters 3 & 9.)Google Scholar
[195] S., Chowla and M. J., De Leon, On a conjecture of Littlewood, Norske Vid. Selsk. Forh. (Trondheim) 41 (1968), 45–47. (Cited in Chapter 3.)Google Scholar
[196] J., Cigler, Ein gruppentheoretisches Analogon zum Begri? der normalen Zahl, J. Reine Angew. Math. 206 (1961), 5–8. (Cited in Chapter 6.)Google Scholar
[197] A., Cobham, On the Hartmanis–Stearns problem for a class of tag machines. In: Conference Record of 1968 Ninth Annual Symposium on Switching and Automata Theory, Schenectady, NY (1968), 51–60. (Cited in Chapter 8.)
[198] A., Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164–192. (Cited in Chapter 8.)Google Scholar
[199] H. J., Cohen and F., Supnick, Concerning real numbers whose powers have nonintegral differences, Proc. Amer. Math. Soc. 14 (1963), 626–627. (Cited in Chapter 2.)Google Scholar
[200] C. M., Colebrook, The Hausdorff dimension of certain sets of nonnormal numbers, Michigan Math. J. 17 (1970), 103–116. (Cited in Chapters 4 & 9.)Google Scholar
[201] C. M., Colebrook and J. H. B., Kemperman, On non-normal numbers, Indag. Math. 30 (1968), 1–11. (Cited in Chapters 6 & 10.)Google Scholar
[202] K. J., Compton, On rich words. In: Combinatorics on Words (Waterloo, Ont., 1982), 39–61, Academic Press, Toronto, ON, 1983. (Cited in Chapter 4.)
[203] A. H., Copeland and P., Erdős, Note on normal numbers, Bull. Amer. Math. Soc. 52 (1946), 857–860. (Cited in Chapter 4.)Google Scholar
[204] J., Coquet, Ensembles normaux et équirépartition complète, Acta Arith. 39 (1981), 49–52. (Cited in Chapter 4.)Google Scholar
[205] J. G., van der Corput, Diophantische Ungleichungen. I. Zur Gleichverteilung Modulo Eins, Acta Math. 56 (1931), 373–456. (Cited in Chapter 1.)Google Scholar
[206] J. G., van der Corput, Sur la discrépance modulo un. I, II, III, Proc. Akad. Wet. Amsterdam 42 (1939), 476–486, 554–565, 713–722. (Cited in Chapter 1.)Google Scholar
[207] P., Corvaja and U., Zannier, Some new applications of the subspace theorem, Compositio Math. 131 (2002), 319–340. (Cited in Chapter 8.)Google Scholar
[208] P., Corvaja and U., Zannier, On the rational approximations to the powers of an algebraic number: Solution of two problems of Mahler and Mendès France, Acta Math. 193 (2004), 175–191. (Cited in Chapter 9.)Google Scholar
[209] P., Corvaja and U., Zannier, On the length of the continued fraction for values of quotients of power sums, J. Théor. Nombres Bordeaux 17 (2005), 737–748. (Cited in Chapter 9.)Google Scholar
[210] E., Curry, Multidimensional radix representations and hot spot theorem. In: Tapas in Experimental Mathematics, 181190, Contemp. Math., 457, American Mathematical Society, Providence, RI, 2008. (Cited in Chapter 4.)
[211] K., Dajani and A., Fieldsteel, Equipartition of interval partitions and an application to number theory, Proc. Amer. Math. Soc. 129 (2001), 3453–3460. (Cited in Chapter 6.)Google Scholar
[212] K., Dajani and C., Kraaikamp, Ergodic Theory of Numbers, Carus Math. Monogr., 29, Mathematical Association of America, Washington, DC, 2002, x + 190 pp. (Cited in Chapter 9 and Appendices C & D.)
[213] L. V., Danilov, Certain classes of transcendental numbers, Mat. Zametki 12 (1972), 149–154 (in Russian).Google Scholar
English translation in Math. Notes 12 (1972), 524–527. (Cited in Chapter 7.)
[214] H., Davenport, A remark on continued fractions, Michigan Math. J. 11 (1964), 343–344. (Cited in Chapter 9.)Google Scholar
[215] H., Davenport and P., Erdős, Note on normal decimals, Canadian J. Math. 4 (1952), 58–63. (Cited in Chapter 4.)Google Scholar
[216] H., Davenport, P., Erdős and W. J., LeVeque, On Weyl's criterion for uniform distribution, Michigan Math. J. 10 (1963), 311–314. (Cited in Chapter 1.)Google Scholar
[217] H., Davenport and K. F., Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 160–167. (Cited in Appendix E.)Google Scholar
[218] J. L., Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), 29–32. (Cited in Chapter 7.)Google Scholar
[219] J.-M., De Koninck and I., Kátai, On a problem of normal numbers raised by Igor Shparlinski, Bull. Austr. Math. Soc. 84 (2011), 337–349. (Cited in Chapter 4.)Google Scholar
[220] J.-M., De Koninck and I., Kátai, Normal numbers created from primes and polynomials. Preprint. (Cited in Chapter 4.)
[221] J.-M., De Koninck and I., Kátai, Construction of normal numbers by classified prime divisors of integers, Funct. Approx. Comment. Math. 45 (2011), 231–253. (Cited in Chapter 4.)Google Scholar
[222] J.-M., De Koninck and I., Kátai, Some new methods for constructing normal numbers. Preprint. (Cited in Chapter 4.)
[223] A., Decomps-Guilloux and M., Grandet-Hugot, Nouvelles caractérisations des nombres de Pisot et de Salem. In: Groupe d'Étude en Théorie Analytique des Nombres, 1ère–2ème années: 19841985, Exp. No. 31, 19 pp., Secrétariat Math., Paris, 1985. (Cited in Chapter 2.)
[224] A., Decomps-Guilloux and M., Grandet-Hugot, Nouvelles caractérisations des nombres de Pisot et de Salem, Acta Arith. 50 (1988), 155–170. (Cited in Chapter 2.)Google Scholar
[225] M., Dekking, Transcendance du nombre de Thue–Morse, C. R. Acad. Sci. Paris 285 (1977), A157–A160. (Cited in Chapter 8.)Google Scholar
[226] M., Denker and K. F., Krämer, Upper and lower class results for subsequences of the Champernowne number. In: Ergodic Theory and Related Topics, III (Güstrow, 1990), 83–89, Lecture Notes in Math., 1514, Springer, Berlin, 1992. (Cited in Chapter 4.)
[227] C., Doche, M. Mendès, France and J.-J., Ruch, Equidistribution modulo 1 and Salem numbers, Funct. Approx. Comment. Math. 39 (2008), 261–271. (Cited in Chapter 3.)Google Scholar
[228] Y., Dodge and G., Melfi, Random number generators and rare events in the continued fraction of π, J. Stat. Comput. Simul. 75 (2005), 189–197. (Cited in Chapter 9.)Google Scholar
[229] D., Doty, J. H., Lutz and S., Nandakumar, Finite-state dimension and real arithmetic, Inform. and Comput. 205 (2007), 1640–1651. (Cited in Chapter 4.)Google Scholar
[230] R. G., Downey and D. R., Hirschfeldt, Algorithmic Randomness and Complexity. Theory and Applications of Computability, Springer, New York, 2010. (Cited in Chapter 5.)
[231] F., Dress, Intersections d'ensembles normaux, J. Number Theory 2 (1970), 352–362. (Cited in Chapter 4.)Google Scholar
[232] M., Drmota and R., Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Math.1651, Springer, Berlin, 1997. (Cited in Preface and Chapters 1 & 4.)
[233] A., Dubickas, A lower bound for the quantity ∥(3/2)k∥, Russian Math. Surveys 45 (1990), 163–164. (Cited in Chapter 3.)Google Scholar
[234] A., Dubickas, A note on powers of Pisot numbers, Publ. Math. Debrecen 56 (2000), 141–144. (Cited in Chapter 3.)Google Scholar
[235] A., Dubickas, Integer parts of powers of Pisot and Salem numbers, Arch. Math. (Basel) 79 (2002), 252–257. (Cited in Chapter 3.)Google Scholar
[236] A., Dubickas, Sequences with infinitely many composite numbers, In: Analytic and Probabilistic Methods in Number Theory (Palanga, 2001), 57–60, TEV, Vilnius, 2002. (Cited in Chapter 3.)
[237] A., Dubickas, There are infinitely many limit points of the fractional parts of powers, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), 4391–4397. (Cited in Chapter 2.)Google Scholar
[238] A., Dubickas, Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc. 38 (2006), 70–80. (Cited in Chapter 3.)Google Scholar
[239] A., Dubickas, On the fractional parts of the natural powers of a fixed number, Sibirsk. Mat. Zh. 47 (2006), 1071–1075. English translation in Siberian Math. J. 47 (2006), 879–882. (Cited in Chapter 2.)Google Scholar
[240] A., Dubickas, On the distance from a rational power to the nearest integer, J. Number Theory 117 (2006), 222–239. (Cited in Chapter 3.)Google Scholar
[241] A., Dubickas, On the limit points of the fractional parts of powers of Pisot numbers, Arch. Math. (Brno) 42 (2006), 151–158. (Cited in Chapter 3.)Google Scholar
[242] A., Dubickas, Even and odd integral parts of powers of a real number, Glasg. Math. J. 48 (2006), 331–336. (Cited in Chapter 3.)Google Scholar
[243] A., Dubickas, On the fractional parts of lacunary sequences, Math. Scand. 99 (2006), 136–146. (Cited in Chapter 2.)Google Scholar
[244] A., Dubickas, Arithmetical properties of linear recurrent sequences, J. Number Theory 122 (2007), 142–150. (Cited in Chapter 3.)Google Scholar
[245] A., Dubickas, On a sequence related to that of Thue–Morse and its applications, Discrete Math. 307 (2007), 1082–1093. (Cited in Chapter 3.)Google Scholar
[246] A., Dubickas, On the powers of some transcendental numbers, Bull. Austral. Math. Soc. 76 (2007), 433–440. (Cited in Chapter 2.)Google Scholar
[247] A., Dubickas, An approximation by lacunary sequence of vectors, Combin. Probab. Comput. 17 (2008), 339–345. (Cited in Chapter 2.)Google Scholar
[248] A., Dubickas, On the powers of 3/2 and other rational numbers, Math. Nachr. 281 (2008), 951–958. (Cited in Chapter 3.)Google Scholar
[249] A., Dubickas, On the limit points of (anξ)∞n=1 mod 1 for slowly increasing integer sequences (an)∞n=1, Proc. Amer. Math. Soc. 137 (2009), 449–456. (Cited in Chapter 2.)Google Scholar
[250] A., Dubickas, An approximation property of lacunary sequences, Israel J. Math. 170 (2009), 95–111. (Cited in Chapters 3 & 10.)Google Scholar
[251] A., Dubickas, On the fractional parts of rational powers, Int. J. Number Theory 5 (2009), 1037–1048. (Cited in Chapter 3.)Google Scholar
[252] A., Dubickas, Prime and composite integers close to powers of a number, Monatsh. Math. 156 (2009), 271–284. (Cited in Chapter 3.)Google Scholar
[253] A., Dubickas, Distribution of some sequences modulo 1. In: Number Theory and Applications. Proc. of the Intern. Conf. on Number Theory and Cryptography (eds. S. D., Adhikari and B., Ramakrishnan), Hindustan Book Agency, India (2009), 33–41. (Cited in Chapter 2.)
[254] A., Dubickas, Powers of a rational number modulo 1 cannot lie in a small interval, Acta Arith. 137 (2009), 233–239. (Cited in Chapter 3.)Google Scholar
[255] A., Dubickas, On integer sequences generated by linear maps, Glasgow Math. J. 51 (2009), 243–252. (Cited in Chapter 9.)Google Scholar
[256] A., Dubickas, Squares and cubes in Sturmian sequences, RAIRO Theoret. Inform. and Appl. 43 (2009), 615–624. (Cited in Appendix A.)Google Scholar
[257] A., Dubickas, On the universality of a sequence of powers modulo 1. In: Analytic Number Theory and Related Areas, October 17–19, 2007 (ed. Koichi, Kawada), RIMS Kokyuroku 1665, RIMS, Kyoto University, Kyoto, Japan (2009), 1–4. (Cited in Chapter 2.)
[258] A., Dubickas, Binary words with a given Diophantine exponent, Theor. Computer Science 410 (2009), 5191–5195. (Cited in Chapter 7.)Google Scholar
[259] A., Dubickas, Powers of rational numbers modulo 1 lying in short intervals, Results in Math. 57 (2010), 23–31. (Cited in Chapter 3.)Google Scholar
[260] A., Dubickas, On the distribution of powers of a complex number, Archiv Math. 95 (2010), 151–160. (Cited in Chapter 3.)Google Scholar
[261] A., Dubickas, The lonely runner problem for many runners, Glas. Mat. 46 (2011), 25–30. (Cited in Chapter 2.)Google Scholar
[262] A., Dubickas, On β-expansions of unity for rational and transcendental numbers β, Math. Slovaca 61 (2011), 705–716. (Cited in Chapter 9.)Google Scholar
[263] A., Dubickas and J., Jankauskas, On the intersection of infinite geometric and arithmetic progressions, Bull. Braz. Math. Soc. 41 (2010), 551–566. (Cited in Chapter 2.)Google Scholar
[264] A., Dubickas and M. J., Mossinghoff, Lower bounds for Z-numbers, Math. Comp. 78 (2009), 1837–1851. (Cited in Chapter 3.)Google Scholar
[265] A., Dubickas and A., Novikas, Integer parts of powers of rational numbers, Math. Z. 251 (2005), 635–648. (Cited in Chapter 3.)Google Scholar
[266] J.-M., Dumont and A., Thomas, Une modification multiplicative des nombres g normaux, Ann. Fac. Sci. Toulouse Math. 8 (1986/1987), 367–373. (Cited in Chapter 4.)Google Scholar
[267] J.-M., Dumont and A., Thomas, Modifications de nombres normaux par des transducteurs, Acta Arith. 68 (1994), 153–170. (Cited in Chapter 4.)Google Scholar
[268] A., Durand, Sets with large intersection and ubiquity, Math. Proc. Cambridge Philos. Soc. 144 (2008), 119–144. (Cited in Chapter 7.)Google Scholar
[269] A., Durner, Distribution measures and Hausdorff dimensions, Forum Math. 9 (1997), 687–705. (Cited in Chapters 4 & 9.)Google Scholar
[270] J., Dutka, The square root of 2 to 1,000,000 decimals, Math. Comp. 25 (1971), 927–930. (Cited in Chapter 8.)Google Scholar
[271] D., Duverney, Ke., Nishioka, Ku., Nishioka and I., Shiokawa, Transcendence of Jacobi's theta series, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 202–203. (Cited in Chapter 8.)Google Scholar
[272] H. G., Eggleston, The fractional dimension of a set de?ned by decimal properties, Quart. J. Math. Oxford Ser. 20 (1949), 31–36. (Cited in Chapter 7.)Google Scholar
[273] H. G., Eggleston, Sets of fractional dimension which occur in some problems in number theory, Proc. London Math. Soc. 54 (1951), 42–93. (Cited in Chapter 7.)Google Scholar
[274] H., Ehlich, Die positiven Lösungen der Gleichung ya — [ya]= yb — [yb] = yc — [yc], Math. Z. 76 (1961), 1–4. (Cited in Chapter 2.)Google Scholar
[275] A., Ehrenfeucht, K. P., Lee and G., Rozenberg, Subword complexities of various classes of deterministic developmental languages with-out interactions, Theor. Comput. Sci. 1 (1975), 59–75. (Cited in Chapter 10.)Google Scholar
[276] M., Einsiedler, L., Fishman and U., Shapira, Diophantine approximation on fractals, Geom. Funct. Anal. 21 (2011), 14–35. (Cited in Chapters 7, 9 & 10.)Google Scholar
[277] M., Einsiedler and D., Kleinbock, Measure rigidity and p-adic Littlewood-type problems, Compositio Math. 143 (2007), 689–702. (Cited in Chapter 2.)Google Scholar
[278] S. I., El-Zanati and W. R. R., Transue, On dynamics of certain Cantor sets, J. Number Theory 36 (1990), 246–253. (Cited in Chapters 4 & 6.)Google Scholar
[279] P., Erdős, Problems and results on Diophantine approximations. II. In: Répartition Modulo 1 (Actes Colloq., Marseille-Luminy, 1974), pp. 89–99, Lecture Notes in Math., Vol. 475, Springer, Berlin, 1975. (Cited in Chapter 2.)
[280] P., Erdős, Some unconventional problems in number theory, Math. Mag. 52 (1979), 67–70. (Cited in Chapter 6.)Google Scholar
[281] P., Erdős and S. J., Taylor, On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences, Proc. London Math. Soc. 7 (1957), 598–615. (Cited in Chapter 2.)Google Scholar
[282] L., Euler, De fractionibus continuis, Commentarii Acad. Sci. Imperiali Petropolitanae 9 (1737). (Cited in Appendix D.)Google Scholar
[283] G., Everest, A., van der Poorten, I., Shparlinski and T., Ward, Recurrence Sequences, Math. Surveys Monogr., 104, American Mathematical Society, Providence, RI, 2003. (Cited in Chapter 9.)
[284] J.-H., Evertse and H.P., Schlickewei, A quantitative version of the Absolute Subspace Theorem, J. Reine Angew. Math. 548 (2002), 21–127. (Cited in Appendix E.)Google Scholar
[285] C., Faivre, On decimal and continued fraction expansions of a real number, Acta Arith. 82 (1997), 119–128. (Cited in Chapter 9.)Google Scholar
[286] C., Faivre, A central limit theorem related to decimal and continued fraction expansion, Arch. Math. (Basel) 70 (1998), 455–463. (Cited in Chapter 9.)Google Scholar
[287] C., Faivre, On calculating a continued fraction expansion from a decimal expansion, Acta Sci. Math. (Szeged) 67 (2001), 505–519. (Cited in Chapter 9.)Google Scholar
[288] K., Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics 85, Cambridge University Press, Cambridge, 1985. (Cited in Appendix C.)
[289] K., Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, Chichester, 1990. (Cited in Chapter 7 and Appendix C.)
[290] K., Falconer, Sets with large intersection properties, J. London Math. Soc. 49 (1994), 267–280. (Cited in Chapter 7.)Google Scholar
[291] B., Faller and C.-E., Pfister, A point is normal for almost all maps βx + α mod 1 or generalized β-transformations, Ergodic Theory Dynam. Systems 29 (2009), 1529–1547. (Cited in Chapter 9.)Google Scholar
[292] A.-H., Fan, L., Liao and J.-H., Ma, On the frequency of partial quotients of regular continued fractions, Math. Proc. Cambridge Philos. Soc. 148 (2010), 179–192. (Cited in Chapter 9.)Google Scholar
[293] B., Farhi, Sur l'ensemble exceptionnel de Weyl, C. R. Math. Acad. Sci. Paris 343 (2006), 441–445. (Cited in Chapter 2.)Google Scholar
[294] D., Färm, Applications of large intersection classes to non-typical points of expanding interval maps, Licentiate Theses in Mathematical Sciences, University of Lund, 2009. (Cited in Chapter 7.)
[295] D., Färm, Simultaneously non-dense orbits under di?erent expanding maps, Dynamical Syst. 25 (2010), 531–545. (Cited in Chapter 9.)Google Scholar
[296] D., Färm, Simultaneously non-convergent frequencies of words in different expansions, Monatsh. Math. 162 (2011), 409–427. (Cited in Chapter 7.)Google Scholar
[297] D., Färm and T., Persson, Large intersection classes on fractals, Nonlinearity 24 (2011), 1291–1309. (Cited in Chapter 7.)Google Scholar
[298] D., Färm, Non-typical points for β-shifts. Preprint. (Cited in Chapter 9.)
[299] D., Färm, T., Persson and J., Schmeling, Dimension of countable intersections of some sets arising in expansions in non-integer bases, Fundamenta Math. 209 (2010), 157–176. (Cited in Chapter 9.)Google Scholar
[300] P., Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335–400. (Cited in Chapter 2 and Appendix F.)Google Scholar
[301] J., Feldman, A generalization of a result of R. Lyons about measures on [0, 1), Israel J. Math. 81 (1993), 281–287. (Cited in Chapters 2 & 10.)Google Scholar
[302] J., Feldman and M., Smorodinsky, Normal numbers from independent processes, Ergodic Theory Dynam. Systems 12 (1992), 707–712. (Cited in Chapter 6.)Google Scholar
[303] N. I., Feldman and Yu., V.Nesterenko, Number Theory. IV. Transcendental Numbers, Encyclopaedia Math. Sci.44, Springer, Berlin, 1998. (Cited in Chapter 8.)
[304] D.-J., Feng, On the topology of polynomials with bounded integer coefficients. Preprint. (Cited in Chapter 2.)
[305] S., Ferenczi and Ch., Mauduit, Transcendence of numbers with a low complexity expansion, J. Number Theory 67 (1997), 146–161. (Cited in Chapter 8 and Appendix A.)Google Scholar
[306] L., Fishman, Schmidt's game on fractals, Israel J. Math. 171 (2009), 77–92. (Cited in Chapter 7.)Google Scholar
[307] L., Flatto, Z-numbers and β-transformations. In: Symbolic Dynamics and its Applications, (ed. P., Walters), Contemp. Math. 135 (1992), American Mathematical Society, Providence, RI, 181–202. (Cited in Chapter 3.)
[308] L., Flatto, J. C., Lagarias and A. D., Pollington, On the range of fractional parts {ξ(p/q)n}, Acta Arith. 70 (1995), 125–147. (Cited in Chapters 2 & 3.)Google Scholar
[309] C. Flye, Sainte-Marie, Solution au problème 48, L'intermédiaire des mathématiciens 1 (1894), 107–110. (Cited in Chapter 5.)Google Scholar
[310] N. P., Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, (eds. V., Berthé, S., Ferenczi, C., Mauduit and A., Siegel), Lecture Notes in Mathematics, 1794, Springer, Berlin, 2002. (Cited in Appendix A.)
[311] W., Forman and H. N., Shapiro, An arithmetic property of certain rational powers, Comm. Pure Appl. Math. 20 (1967), 561–573. (Cited in Chapter 3.)Google Scholar
[312] J. N., Franklin, Deterministic simulation of random processes, Math. Comp. 17 (1963), 28–59. (Cited in Chapter 1.)Google Scholar
[313] O., Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddel. Lunds Univ. Math. Sem. 3 (1935), 1–118. (Cited in Appendix C.)Google Scholar
[314] M., Fuchs, Digital expansion of exponential sequences, J. Théor. Nombres Bordeaux 14 (2002), 477–487. (Cited in Chapter 6.)Google Scholar
[315] H., Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49. (Cited in Chapters 2 & 10.)Google Scholar
[316] H., Furstenberg, Intersections of Cantor sets and transversality of semigroups. In: Problems in Analysis (Sympos. Salomon Bochner, Princeton University, Princeton, NJ, 1969), p. 4159. Princeton University Press, Princeton, NJ, 1970. (Cited in Chapter 10.)
[317] I., Gál and L., Gál, The discrepancy of the sequence {(2nx)}, Indag. Math. 26 (1964), 129–143. (Cited in Chapter 4.)Google Scholar
[318] J., Galambos, Representations of Real Numbers by Infinite Series, Lecture Notes in Math., Vol. 502, Springer, Berlin, 1976. (Cited in Chapter 9.)
[319] A., Gelfond, On fractional parts of linear combinations of polynomials and exponential functions, Rec. Math. [Mat. Sbornik] N.S. 9 (1941), 721–726 (in Russian). (Cited in Chapter 2.)Google Scholar
[320] I., Gheorghiciuc, The subword complexity of a class of infinite binary words, Adv. Appl. Math. 39 (2007), 237–259. (Cited in Chapter 8.)Google Scholar
[321] S., Glasner, Almost periodic sets and measures on the torus, Israel J. Math. 32 (1979), 161–172. (Cited in Chapter 8.)Google Scholar
[322] M., Goldstern, J., Schmeling and R., Winkler, Metric, fractal dimensional and Baire results on the distribution of subsequences, Math. Nachr. 219 (2000), 97–108. (Cited in Chapter 2.)Google Scholar
[323] M., Goldstern, J., Schmeling and R., Winkler, Further Baire results on the distribution of subsequences, Unif. Distrib. Theory 2 (2007), 127–149. (Cited in Chapter 2.)Google Scholar
[324] I. J., Good, Normal recurring decimals, J. London Math. Soc. 21 (1946), 167–169. (Cited in Chapter 5.)Google Scholar
[325] G. S., Goodman, Statistical independence and normal numbers: an aftermath to Mark Kac's Carus Monograph, Amer. Math. Monthly 106 (1999), 112–126. (Cited in Chapter 4.)Google Scholar
[326] A., Gorodnik and S., Kadyrov, Algebraic numbers, hyperbolicity, and density modulo one. Preprint. (Cited in Chapter 2.)
[327] P. J., Grabner, On digit expansions with respect to second order linear recurring sequences. In: Number-theoretic Analysis (Vienna, 19881989), 58–64, Lecture Notes in Math., 1452, Springer, Berlin, 1990. (Cited in Chapter 9.)
[328] R. L., Graham and H. O., Pollak, Note on a nonlinear recurrence related to √2, Math. Mag. 43 (1970), 143–145. (Cited in Chapter 8.)Google Scholar
[329] G., Grisel, Length of continued fractions in principal quadratic fields, Acta Arith. 85 (1998), 35–49. (Cited in Chapter 9.)Google Scholar
[330] X., Gu, J. H., Lutz and P., Moser, Dimensions of Copeland–Erdős sequences, Inform. and Comput. 205 (2007), 1317–1333. (Cited in Chapter 4.)Google Scholar
[331] L., Habsieger, Explicit lower bounds for ∥(3/2)k∥, Acta Arith. 106 (2003), 299–309. (Cited in Chapter 3.)Google Scholar
[332] H. A., Hanson, Some relations between various types of normality of numbers, Canadian J. Math. 6 (1954), 477–485. (Cited in Chapter 4.)Google Scholar
[333] G. H., Hardy, A problem of Diophantine approximation, J. Indian Math. Soc. 11 (1919), 162–166. (Cited in Chapters 2 & 10.)Google Scholar
[334] G. H., Hardy and E. M., Wright, An Introduction to the Theory of Numbers, 5th edition, Clarendon Press, Oxford, 1979. (Cited in Chapters 1, 3 & 4 and Appendix D.)
[335] G., Harman, Metric Number Theory, LMS Monographs New Series, vol. 18, Clarendon Press, Oxford, 1998. (Cited in Preface.)
[336] S., Harrap and A., Haynes, The mixed Littlewood conjecture for pseudoabsolute values. Preprint. (Cited in Chapter 2.)
[337] M., Hata, Note on the fractional parts of λθn, Acta Arith. 120 (2005), 153–157. (Cited in Chapter 2.)Google Scholar
[338] M., Hata, A lower estimate for ∥en∥, J. Number Theory 130 (2010), 1685–1704. (Cited in Chapter 2.)Google Scholar
[339] F., Hausdorff, Dimension und äusseres Maß, Math. Ann. 79 (1919), 157–179. (Cited in Appendix C.)Google Scholar
[340] G., Helmberg, On subsequences of normal sequences. In: Proceedings of the Conf. on Ergodic Theory and Related Topics, II (Georgenthal, 1986), 70–71, Teubner-Texte Math., 94, Teubner, Leipzig, 1987. (Cited in Chapter 4.)
[341] H., Helson and J.-P., Kahane, A Fourier method in Diophantine problems, J. Analyse Math. 15 (1965), 245–262. (Cited in Chapter 2.)Google Scholar
[342] P., Hertling, Disjunctive ω-words and real numbers, J. UCS 2 (1996), 549–568. (Cited in Chapters 4, 5, 6 & 10.)Google Scholar
[343] P., Hertling, The Kolmogorov complexity of real numbers, Theoret. Comput. Sci. 284 (2002), 455–466. (Cited in Chapter 5.)Google Scholar
[344] P., Hertling, Simply normal numbers to different bases, J. UCS 8 (2002), 235–242. (Cited in Chapter 4.)Google Scholar
[345] D., Hilbert, Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl nter Potenzen (Waringsches Problem), Math. Ann. 67 (1909), 281–300. (Cited in Chapter 3.)Google Scholar
[346] M., Hochman and P., Shmerkin, Local entropy averages and projections of fractal measures, Ann. of Math. To appear. (Cited in Chapters 2 & 10.)
[347] F., Hofbauer, β-shifts have unique maximal measure, Monatsh. Math. 85 (1978), 189–198. (Cited in Chapter 9.)Google Scholar
[348] B., Host, Nombres normaux, entropie, translations, Israel J. Math. 91 (1995), 419–428. (Cited in Chapters 2 & 10.)Google Scholar
[349] B., Host, Some results of uniform distribution in the multidimensional torus, Ergodic Theory Dynam. Systems 20 (2000), 439–452. (Cited in Chapters 2 & 10.)Google Scholar
[350] J., Hyde, V., Laschos, L., Olsen, I., Petrykiewicz and A., Shaw, Iterated Cesàro averages, frequencies of digits, and Baire Category, Acta Arith. 144 (2010), 287–293. (Cited in Chapter 4.)Google Scholar
[351] M., Iosifescu and C., Kraaikamp, Metrical theory of continued fractions, Mathematics and its Applications 547, Kluwer Academic Publishers, Dordrecht, 2002. (Cited in Appendix D.)
[352] S., Ito and I., Shiokawa, A constructionof β-normal sequences, J. Math. Soc. Japan 27 (1975), 20–23. (Cited in Chapter 9.)Google Scholar
[353] V., Jarník, Zur metrischen Theorie der diophantischen Approximationen, Prace Mat.-Fiz. 36 (1928/1929), 91–106. (Cited in Chapter 7.)Google Scholar
[354] J. L., JensenOn lower bounded orbits of the times-q map, Unif. Distrib. Theory 6 (2011), 157–175. (Cited in Chapter 7.)Google Scholar
[355] A. S. A., Johnson, Measures on the circle invariant under multiplication by a nonlacunary subsemigroup of the integers, Israel J. Math. 77 (1992), 211–240. (Cited in Chapters 2 & 10.)Google Scholar
[356] A., Johnson and D. J., Rudolph, Convergence under ×q of ×p invariant measures on the circle, Adv. Math. 115 (1995), 117–140. (Cited in Chapters 2 & 10.)Google Scholar
[357] S.-M., Jung and B., Volkmann, Remarks on a paper of Wagner, J. Number Theory 56 (1996), 329–335. (Cited in Chapters 5 & 6.)Google Scholar
[358] J.-P., Kahane and R., Salem, Distribution modulo 1 and sets of uniqueness, Bull. Amer. Math. Soc. 70 (1964), 259–261. (Cited in Chapter 7.)Google Scholar
[359] T., Kamae, Subsequences of normal sequences, Israel J. Math. 16 (1973), 121–149. (Cited in Chapters 4 & 10.)Google Scholar
[360] T., Kamae, Cyclic extensions of odometer transformations and spectral disjointness, Israel J. Math. 59 (1987), 41–63. (Cited in Chapter 6.)Google Scholar
[361] T., Kamae, Number-theoretic problems involving two independent bases. In: Number Theory and Cryptography (Sydney, 1989), 196–203, London Math. Soc. Lecture Note Ser., 154, Cambridge University Press, Cambridge, 1990. (Cited in Chapter 3.)
[362] T., Kamae and B., Weiss, Normal numbers and selection rules, Israel J. Math. 21 (1975), 101–110. (Cited in Chapter 4.)Google Scholar
[363] H., Kaneko, Distribution of geometric sequences modulo 1, Results Math. 52 (2008), 91–109. (Cited in Chapters 2 & 3.)Google Scholar
[364] H., Kaneko, Limit points of fractional parts of geometric sequences, Unif. Distrib. Theory 4 (2009), 1–37. (Cited in Chapter 3.)Google Scholar
[365] H., Kaneko, On normal numbers and powers of algebraic numbers, Integers 10 (2010), 31–64. (Cited in Chapter 3.)Google Scholar
[366] H., Kaneko, On the binary digits of algebraic numbers, J. Austral. Math. Soc. 89 (2010), 233–244. (Cited in Chapter 8.)Google Scholar
[367] H., Kaneko, Algebraic independence of real numbers with low density of nonzero digits. Preprint. (Cited in Chapter 8.)
[368] H., Kaneko, On the number of digit changes in base-b expansions of algebraic numbers. Preprint. (Cited in Chapter 8.)
[369] H., Kano, A remark on Wagner's ring of normal numbers, Arch. Math. (Basel) 60 (1993), 46–50. (Cited in Chapter 6.)Google Scholar
[370] H., Kaneko, General constructions of normal numbers of Korobov type, Osaka J. Math. 30 (1993), 909–919. (Cited in Chapter 5.)Google Scholar
[371] H., Kano and I., Shiokawa, Rings of normal and nonnormal numbers, Israel J. Math. 84 (1993), 403–416. (Cited in Chapter 6.)Google Scholar
[372] J., Karhumäki and J. O., Shallit, Polynomial versus exponential growth in repetition-free binary words, J. Combin. Theory, Ser. A 105 (2004), 335–347. (Cited in Appendix A.)Google Scholar
[373] Y., Katznelson, Chromatic numbers of Cayley graphs on ℤ and recurrence, Combinatorica 21 (2001), 211–219. (Cited in Chapter 2.)Google Scholar
[374] R., Kaufman, Continued fractions and Fourier transforms, Mathematika 27 (1980), 262–267. (Cited in Chapter 7.)Google Scholar
[375] R., Kaufman, On the theorem of Jarník and Besicovitch, Acta Arith. 39 (1981), 265–267. (Cited in Chapter 7.)Google Scholar
[376] A. S., Kechris, Classical Descriptive Set Theory, Springer, Berlin, 1995. (Cited in Chapter 4.)
[377] A. J., Kempner, On transcendental numbers, Trans. Amer. Math. Soc. 17 (1916), 476–482. (Cited in Chapter 8.)Google Scholar
[378] R. E., Kennedy and C., Cooper, A generalization of a result by Narkiewicz concerning large digits of powers, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 11 (2000), 36–40. (Cited in Chapter 6.)Google Scholar
[379] A. Ya., Khintchine, Über eine Klasse linearer diophantischer Approximationen, Rendiconti Circ. Mat. Palermo 50 (1926), 170–195. (Cited in Chapter 2.)Google Scholar
[380] A. Ya., Khintchine, Continued fractions. The University of Chicago Press, Chicago, IL, 1964. (Cited in Chapter 9 and Appendix D.)
[381] H., Ki and T., Linton, Normal numbers and subsets of ℕ with given densities, Fund. Math. 144 (1994), 163–179. (Cited in Chapter 4.)Google Scholar
[382] P., Kiss and S., Molnár, On distribution of linear recurrences modulo 1, Studia Sci. Math. Hungar. 17 (1982), 113–127. (Cited in Chapter 3.)Google Scholar
[383] D., Kleinbock, E., Lindenstrauss and B., Weiss, On fractal measures and Diophantine approximation, Selecta Math. 10 (2004), 479–523. (Cited in Chapter 7.)Google Scholar
[384] D., Kleinbock and B., Weiss, Badly approximable vectors on fractals, Israel J. Math. 149 (2005), 137–170. (Cited in Chapter 7.)Google Scholar
[385] V., Knichal, Dyadische Entwicklungen und Hausdor?sches Mass, Časopis Mat. Fys., Praha, 65 (1936), 195–210. (Cited in Chapter 7.)Google Scholar
[386] M. J., Knight, An ‘ocean of zeroes’ proof that a certain non-Liouville number is transcendental, Amer. Math. Monthly 98 (1991), 947–949. (Cited in Chapter 8.)Google Scholar
[387] D. E., Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, Second edition. Addison-Wesley Ser. in Comput. Sci. Inform. Process., Addison-Wesley Publishing Co., Reading, MA, 1981. (Cited in Chapter 5.)
[388] J. F., Koksma, Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins, Compositio Math. 2 (1935), 250–258. (Cited in Chapter 1.)Google Scholar
[389] J. F., Koksma, Diophantische Approximationen, Ergebnisse d. Math. u. ihrer Grenzgebiete, vol. 4, Springer, Berlin, 1936. (Cited in Preface, Chapters 1 & 4.)
[390] J. F., Koksma, Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen, Monatsh. Math. Phys. 48 (1939), 176–189. (Cited in Appendix E.)Google Scholar
[391] J. F., Koksma, Sur la théorie métrique des approximations diophantiques, Indag. Math. 7 (1945), 54–70. (Cited in Chapters 2 & 10.)Google Scholar
[392] A. N., Kolmogorov, Three approaches to the definition of the concept “quantity of information”, Problemy Peredafici Informacii 1 (1965), 3–11 (in Russian). (Cited in Chapter 5.)Google Scholar
[393] V., Komornik, Expansions in noninteger bases, Integers 11B (2011), A9, 30 pp. (Cited in Chapter 9.)Google Scholar
[394] I., Környei, On a theorem of Pisot, Publ. Math. Debrecen 34 (1987), 169–179. (Cited in Chapter 2.)Google Scholar
[395] A. N., Korobov, Continued fractions of some normal numbers, Mat.Zametki 47 (1990), 28–33, 158 (in Russian).Google Scholar
English translation in Math. Notes 47 (1990), 128–132. (Cited in Chapters 5 & 7.)
[396] N. M., Korobov, Concerning some questions of uniform distribution, Izv. Akad. Nauk SSSR. Ser. Mat. 14 (1950), 215–238 (in Russian). (Cited in Chapters 1 & 5.)Google Scholar
[397] N. M., Korobov, Normal periodic systems and their applications to the estimation of sums of fractional parts, Izv. Akad. Nauk SSSR. Ser. Mat. 15 (1951), 17–46 (in Russian).Google Scholar
English translation in Amer.Math. Soc. Translations 4 (1962), 31–58. (Cited in Chapter 5.)
[398] N. M., Korobov, Numbers with bounded quotient and their applications to questions of Diophantine approximation, Izv. Akad. Nauk SSSR. Ser. Mat. 19 (1955), 361–380 (in Russian). (Cited in Chapter 6.)Google Scholar
[399] N. M., Korobov, On completely uniform distribution and conjunctly normal numbers, Izv. Akad. Nauk SSSR. Ser. Mat. 20 (1956), 649–660 (in Russian). (Cited in Chapter 1.)Google Scholar
[400] N. M., Korobov, Distribution of fractional parts of exponential functions, Vestnik Moskov. Univ. Ser. I Mat. Meh. 21 (1966), 42–46 (in Russian). (Cited in Chapter 4.)Google Scholar
[401] N. M., Korobov, The distribution of digits in periodic fractions, Mat. Sb. (N.S.) 89 (131) (1972), 654–670, 672.Google Scholar
English translation in Math. USSR-Sb. 18 (1972), 659–676. (Cited in Chapter 5.)
[402] N. M., Korobov, Exponential Sums and their Applications. Translated from the 1989 Russian original by Yu. N., Shakhov. Mathematics and its Applications (Soviet Series), 80, Kluwer Academic Publishers Group, Dordrecht, 1992. (Cited in Chapters 1, 5 & 6.)
[403] N. M., Korobov and A. G., Postnikov, Some general theorems on the uniform distribution of fractional parts, Doklady Akad. Nauk SSSR 84 (1952), 217–220 (in Russian). (Cited in Chapter 1.)Google Scholar
[404] O. V., Kotova, Continuum cardinality of the set of solutions of a class of equations that contain the function of the frequency of ternary digits of anumber, Ukraïn. Mat. Zh. 60 (2008), 1414–1421.Google Scholar
English translation in Ukrainian Math. J. 60 (2008), 1650–1659. (Cited in Chapter 7.)
[405] B., Kra, A generalization of Furstenberg's Diophantine theorem, Proc. Amer. Math. Soc. 127 (1999), 1951–1956. (Cited in Chapter 2.)Google Scholar
[406] C., Kraaikamp and H., Nakada, On normal numbers for continued fractions, Ergodic Theory Dynam. Systems 20 (2000), 1405–1421. (Cited in Chapter 9.)Google Scholar
[407] C., Kraaikamp and H., Nakada, On a problem of Schweiger concerning normal numbers, J. Number Theory 86 (2001), 330–340. (Cited in Chapter 6.)Google Scholar
[408] S., Kristensen, Approximating numbers with missing digits by algebraic numbers, Proc. Edinb. Math. Soc. 49 (2006), 657–666. (Cited in Chapter 7.)Google Scholar
[409] S., Kristensen, R., Thorn and S., Velani, Diophantine approximation and badly approximable sets, Adv. Math. 203 (2006), 132–169. (Cited in Chapter 7.)Google Scholar
[410] L., Kronecker, Näherungsweise ganzzahlige Auflösung linearer Gleichungen, Berl. Ber. (1884), 1179–1193, 1271–1299. (Cited in Chapter 1.)
[411] L., Kuipers and H., Niederreiter, Uniform distribution of sequences. Wiley–Interscience, New York, 1974. (Cited in Preface and Chapter 1.)
[412] M. F., Kulikova, A construction problem connected with the distribution of fractional parts of the exponential function, Dokl. Akad. Nauk SSSR 143 (1962), 522–524 (in Russian). (Cited in Chapters 2 & 4.)Google Scholar
[413] M. F., Kulikova, Construction of a number a whose fractional parts {αgv} are rapidly and uniformly distributed, Dokl. Akad. Nauk SSSR 143 (1962), 782–784 (in Russian). (Cited in Chapter 4.)Google Scholar
[414] J., Kwapisz, A dynamical proof of Pisot's theorem, Canad. Math. Bull. 49 (2006), 108–112. (Cited in Chapter 2.)Google Scholar
[415] D. Y., Kwon, The orbit of a β-transformation cannot lie in a small in terval, J. Korean Math. Soc. To appear. (Cited in Chapters 3 & 9.)
[416] R., Labarca and C. G., Moreira, Essential dynamics for Lorenz maps on the real line and the lexicographical world, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), 683–694. (Cited in Chapter 7.)Google Scholar
[417] J. C., Lagarias, On the normality of arithmetical constants, Experiment. Math. 10 (2001), 355–368. (Cited in Chapter 5.)Google Scholar
[418] J. C., Lagarias, Ternary expansions of powers of 2, J. London Math. Soc. 79 (2009), 562–588. (Cited in Chapter 6.)Google Scholar
[419] J. L., Lagrange, Additions au mémoire sur la résolution des équations numériques, Mém. Berl. 24 (1770). (Cited in Appendix D.)Google Scholar
[420] S., Lang and H., Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112–134;Google Scholar
S., Lang and H., Trotter, addendum, J. Reine Angew. Math. 267 (1974), 219–220. (Cited in Chapter 9.)
[421] H., Lebesgue, Sur certaines démonstrations d'existence, Bull. Soc. Math. France 45 (1917), 132–144. (Cited in Chapter 5.)Google Scholar
[422] A.-M., Legendre, Théorie des Nombres, troisièmé edition, Tome 1, Paris, 1830. (Cited in Appendix D.)
[423] E., Lehrer, The game of normal numbers, Math. Oper. Res. 29 (2004), 259–265. (Cited in Chapter 4.)Google Scholar
[424] M. A., Lerma, Construction of a number greater than one whose powers are uniformly distributed modulo one. Preprint. See http://www.math.northwestern.edu/mlerma/papers/.(Cited in Chapter 2.)
[425] J., Levesley, C., Salp and S. L., Velani, On a problem of K. Mahler: Diophantine approximation and Cantor sets, Math. Ann. 338 (2007), 97–118. (Cited in Chapter 7.)Google Scholar
[426] M. B., Levin, The uniform distribution of the sequence {αλx}, Mat. Sb. (N.S.) 98(140) (1975), 207–222, 333 (in Russian). (Cited in Chapters 1 & 4.)Google Scholar
[427] M. B., Levin, The distribution of the fractional parts of the exponential function, Soviet Math. (Iz. VUZ) 21 (1977), 41–47. (Cited in Chapter 4.)Google Scholar
[428] M. B., Levin, On absolutely normal numbers, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1979), 31–37, 87 (in Russian).
English translation in Moscow Univ. Math. Bull. 34 (1979), 32–39. (Cited in Chapters 4 & 5.)
[429] M. B., Levin, On the complete uniform distribution of the fractional parts of the exponential function, Trudy Sem. Petrovsk. 7 (1981), 245–256 (in Russian). (Cited in Chapter 2.)Google Scholar
[430] M. B., Levin, Effectivization of the Koksma theorem, Mat. Zametki 47 (1990), 163–166 (in Russian). (Cited in Chapter 2.)Google Scholar
[431] M. B., Levin, Jointly absolutely normal numbers, Mat. Zametki 48 (1990), 61–71 (in Russian).Google Scholar
English translation in Math.Notes 48 (1990), 1213–1220. (Cited in Chapters 2, 4 & 6.)
[432] M. B., Levin, On the discrepancy of Markov-normal sequences, J. Théor. Nombres Bordeaux 8 (1996), 413–428. (Cited in Chapter 7.)Google Scholar
[433] M. B., Levin, On the discrepancy estimate of normal numbers, Acta Arith. 88 (1999), 99–111. (Cited in Chapters 4 & 10.)Google Scholar
[434] M. B., Levin, On normal lattice configurations and simultaneously normal numbers, J. Théor. Nombres Bordeaux 13 (2001), 483–527. (Cited in Chapter 6.)Google Scholar
[435] M. B., Levin and I. E., Shparlinskii, Uniform distribution of fractional parts of recurrent sequences, Uspekhi Mat. Nauk 34 (1979), 203–204. (Cited in Chapter 4.)Google Scholar
[436] M. B., Levin and M., Smorodinsky, A ℤd generalization of the Davenport Erdős construction of normal numbers, Colloq. Math. 84/85 (2000), 431–441. (Cited in Chapter 4.)Google Scholar
[437] M. B., Levin and M., Smorodinsky, Explicit construction of normal lattice configurations, Colloq. Math. 102 (2005), 33–47. (Cited in Chapter 4.)Google Scholar
[438] S., Leys, Le Bonheur des Petits Poissons, J.-C., Lattès, 2008.
[439] B., Li and Y.-C., Chen, Chaotic and topological properties of β-transformations, J. Math. Anal. Appl. 383 (2011), 585–596. (Cited in Chapter 9.)Google Scholar
[440] B., Li and J., Wu, Beta-expansion and continued fraction expansion, J. Math. Anal. Appl. 339 (2008), 1322–1331. (Cited in Chapter 9.)Google Scholar
[441] W., Li and F. M., Dekking, Hausdorff dimension of subsets of Moran fractals with prescribed group frequency of their codings, Nonlinearity 16 (2003), 187–199. (Cited in Chapter 7.)Google Scholar
[442] W., Li, L., Olsen and Z., Wen, Hausdorff and packing dimensions of subsets of Moran fractals with prescribed mixed group frequency of their codings, Aequationes Math. 77 (2009), 171–185. (Cited in Chapter 7.)Google Scholar
[443] L., Liao and W., Steiner, Dynamical properties of the negative beta transformation, Ergodic Theory Dynam. Systems. To appear. (Cited in Chapter 9.)
[444] E., Lindenstrauss, p-adic foliation and equidistribution, Israel J. Math. 122 (2001), 29–42. (Cited in Chapters 2 & 10.)Google Scholar
[445] J., Liouville, Remarques relatives à des classes très-étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationnelles algébriques, C. R. Acad. Sci. Paris 18 (1844), 883–885. (Cited in Appendix E.)Google Scholar
[446] J., Liouville, Nouvelle démonstration d'un théor ème sur les irrationnelles algébriques, C. R. Acad. Sci. Paris 18 (1844), 910–911. (Cited in Appendix E.)Google Scholar
[447] J. E., Littlewood, Some Problems in Real and Complex Analysis. D. C. Heath and Co. Raytheon Education Co., Lexington, MA, 1968. (Cited in Chapter 2.)
[448] G., Lochs, Vergleich der Genauigkeit von Dezimalbruch und Kettenbruch, Abh. Math. Sem. Univ. Hamburg 27 (1964), 142–144. (Cited in Chapter 9.)Google Scholar
[449] C. T., Long, Note on normal numbers, Pacific J. Math. 7 (1957), 1163–1165. (Cited in Chapter 4.)Google Scholar
[450] M., Lothaire, Algebraic Combinatorics on Words, Encyclopaedia Math. Appl. 90, Cambridge University Press, Cambridge, 2002. (Cited in Appendix A.)
[451] F., Luca, On a question of G. Kuba, Arch. Math. (Basel) 74 (2000), 269–275. (Cited in Chapter 3.)Google Scholar
[452] F., Luca, .121221222 … is not quadratic, Rev. Mat. Comput. 18 (2005), 353–362. (Cited in Chapter 8.)Google Scholar
[453] R., Lyons, Characterizations of measures whose Fourier–Stieltjes transforms vanish at infinity, Bull. Amer. Math. Soc. 10 (1984), 93–96. (Cited in Chapter 7.)Google Scholar
[454] R., Lyons, The measure of non-normal sets, Invent. Math. 83 (1986), 605–616. (Cited in Chapter 7.)Google Scholar
[455] C., McMullen, Uniformly Diophantine numbers in a fixed real quadraticfield, Compos. Math. 145 (2009), 827–844. (Cited in Chapter 9.)Google Scholar
[456] C., McMullen, Winning sets, quasiconformal maps and Diophantine approximation, Geom. Funct. Anal. 20 (2010), 726–740. (Cited in Chapter 7.)Google Scholar
[457] M. G., Madritsch, A note on normal numbers in matrix number systems, Math. Pannon. 18 (2007), 219–227. (Cited in Chapter 4.)Google Scholar
[458] C., McMullen, Generating normal numbers over Gaussian integers, Acta Arith. 135 (2008), 63–90. (Cited in Chapter 4.)Google Scholar
[459] M. G., Madritsch, J. M., Thuswaldner and R. F., Tichy, Normality of numbers generated by the values of entire functions, J. Number Theory 128 (2008), 1127–1145. (Cited in Chapter 4.)Google Scholar
[460] K., Mahler, Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen, Math. Ann. 103 (1930), 573–587. (Cited in Chapter 8.)Google Scholar
[461] K., Mahler, Zur Approximation der Exponentialfunktionen und des Logarithmus. I, II, J. Reine Angew. Math. 166 (1932), 118–150. (Cited in Appendix E.)Google Scholar
[462] K., Mahler, Über die Dezimalbruchentwicklung gewisser Irrationalzahlen, Mathematica 4B (Zutphen) (1937), 15 pp. (Cited in Chapters 4 & 8.)Google Scholar
[463] K., Mahler, Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen, Proc. Akad. v. Wetensch. 40 (1937), 421–428. (Cited in Chapter 4.)Google Scholar
[464] K., Mahler, On the approximation of logarithms of algebraic numbers, Philos. Trans. Roy. Soc. London 245 (1953), 371–398. (Cited in Chapter 2.)Google Scholar
[465] K., Mahler, On the fractional parts of the powers of a rational number, II, Mathematika 4 (1957), 122–124. (Cited in Chapters 3 & 9.)Google Scholar
[466] K., Mahler, Lectures on Diophantine approximation, Part 1: g-adic Numbers and Roth's theorem, University of Notre Dame, Ann Arbor, MI, 1961. (Cited in Appendix E.)
[467] K., Mahler, Applications of some formulas by Hermite to the approximation of exponentials and logarithms, Math. Ann. 168 (1967), 200–227. (Cited in Chapter 2.)Google Scholar
[468] K., Mahler, An unsolved problem on the powers of 3/2, J. Austral. Math. Soc. 8 (1968), 313–321. (Cited in Chapters 3 & 10.)Google Scholar
[469] K., Mahler, Arithmetical properties of the digits of the multiples of an irrational number, Bull. Austral. Math. Soc. 8 (1973), 191–203. (Cited in Chapter 8.)Google Scholar
[470] K., Mahler, On a class of transcendental decimal fractions, Comm. Pure Appl. Math. 29 (1976), 717–725. (Cited in Chapter 4.)Google Scholar
[471] K., Mahler, On some irrational decimal fractions, J. Number Theory 13 (1981), 268–269. (Cited in Chapter 10.)Google Scholar
[472] K., Mahler, Fifty years as a mathematician, J. Number Theory 14 (1982), 121–155. (Cited in Chapter 4.)Google Scholar
[473] K., Mahler, Some suggestions for further research, Bull. Austral. Math. Soc. 29 (1984), 101–108. (Cited in Chapter 8.)Google Scholar
[474] K., Mahler and G., Szekeres, On the approximation of real numbers by roots of integers, Acta Arith. 12 (1966/1967), 315–320. (Cited in Chapter 2.)Google Scholar
[475] E., Maillet, Introduction à la Théorie des Nombres Transcendants et des Propriétés Arithmétiques des Fonctions, Gauthier-Villars, Paris, 1906. (Cited in Chapter 9.)
[476] B., Mance, Construction of normal numbers with respect to the Q-Cantor series expansion for certain Q, Acta Arith. To appear. (Cited in Chapter 9.)
[477] G., Margulis, Problems and conjectures in rigidity theory, In: Mathematics: Frontiers and Perspectives, 161–174, American Mathematical Society, Providence, RI, 2000. (Cited in Chapter 10.)
[478] G., Martin, Absolutely abnormal numbers, Amer. Math. Monthly 108 (2001), 746–754. (Cited in Chapter 5.)Google Scholar
[479] G., Martin, The unreasonable effectualness of continued function expansions, J. Aust. Math. Soc. 77 (2004), 305–319. (Cited in Chapter 9.)Google Scholar
[480] P., Martin-Löf, The definition of random sequences, Information and Control 9 (1966), 602–619. (Cited in Chapter 5.)Google Scholar
[481] B., de Mathan, Sur un probl`eme de densité modulo 1, C. R. Acad. Sci. Paris 287 (1978), A277–A279. (Cited in Chapter 2.)Google Scholar
[482] B., de Mathan, Numbers contravening a condition in density modulo 1, Acta Math. Acad. Sci. Hungar. 36 (1980), 237–241. (Cited in Chapter 2.)Google Scholar
[483] B., de Mathan and O., Teulié, Problèmes diophantiens simultanés, Monatsh. Math. 143 (2004), 229–245. (Cited in Chapters 2 & 10.)Google Scholar
[484] P., Mattila, Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge, 1995. (Cited in Appendix C.)
[485] Ch., Mauduit, Automates finis et ensembles normaux, Ann. Inst. Fourier (Grenoble) 36 (1986), 1–25. (Cited in Chapter 4.)Google Scholar
[486] Ch., Mauduit, Caractérisation des ensembles normaux substitutifs, Invent. Math. 95 (1989), 133–147. (Cited in Chapter 4.)Google Scholar
[487] Ch., Mauduit, Problem session dedicated to Gérard Rauzy. In: Dynamical Systems (Luminy-Marseille, 1998), 1–19, World Scientific Publishing, River Edge, NJ, 2000. (Cited in Chapter 10.)
[488] Ch., Mauduit, Multiplicative properties of the Thue–Morse sequence, Period. Math. Hungar. 43 (2001), 137–153. (Cited in Appendix A.)Google Scholar
[489] Ch., Mauduit and C. G., Moreira, Complexity of in?nite sequences with zero entropy, Acta Arith. 142 (2010), 331–346. (Cited in Chapters 4 & 9.)Google Scholar
[490] Ch., Mauduit, Generalized Hausdorff dimensions of sets of real numbers with zero entropy expansion, Ergodic Theory Dynam. Systems. To appear. (Cited in Chapters 4 & 9.)
[491] Ch., Mauduit, Generalized fractal dimensions and complexity of infinite sequences with positive entropy. Preprint. (Cited in Chapter 4.)
[492] J. E., Maxfield, Sums and products of normal numbers, Amer. Math. Monthly 59 (1952), 98. (Cited in Chapter 4.)Google Scholar
[493] J. E., Maxfield, A short proof of Pillai's theorem on normal numbers, Pacific J. Math. 2 (1952), 23–24. (Cited in Chapter 4.)Google Scholar
[494] J. E., Maxfield, Normal k-tuples, Pacific J. Math. 3 (1953), 189–196. (Cited in Chapters 4, 5 & 6.)Google Scholar
[495] D., Meiri, Entropy and uniform distribution of orbits in Td, Israel J. Math. 105 (1998), 155–183. (Cited in Chapters 2 & 10.)Google Scholar
[496] M. Mendès, France, Nombres normaux et fonctions pseudo-aléatoires, Ann. Inst. Fourier (Grenoble) 13 (1963), 91–104. (Cited in Chapter 4.)Google Scholar
[497] M. Mendès, France, A set of nonnormal numbers, Pacific J. Math. 15 (1965), 1165–1170. (Cited in Chapter 4.)Google Scholar
[498] M. Mendès, France, Nombres normaux. Applications aux fonctions pseudo aléatoires, J. Analyse Math. 20 (1967), 1–56. (Cited in Chapters 4 & 10.)Google Scholar
[499] M. Mendès, France, Deux remarques concernant l'équirépartition des suites, Acta Arith. 14 (1967/1968), 163–167. (Cited in Chapter 4.)Google Scholar
[500] M. Mendès, France, Nombres transcendants et ensembles normaux, Acta Arith. 15 (1968/1969), 189–192. (Cited in Chapter 4.)Google Scholar
[501] M. Mendès, France, Sur les fractions continues limitées, Acta Arith. 23 (1973), 207–215. (Cited in Chapter 9 and Appendix D.)Google Scholar
[502] M. Mendès, France, Les ensembles de Bésineau, Séminaire Delange-Pisot-Poitou (15e année: 1973/74), Théorie des nombres, Fasc. 1, Exp. No. 7, 6 pp. Secrétariat Mathématique, Paris, 1975. (Cited in Chapters 6 & 10.)
[503] M. Mendès, France, On a theorem of Davenport concerning continued fractions, Mathematika 23 (1976), 136–141. (Cited in Chapter 9.)Google Scholar
[504] M. Mendès, France, Sur les décimales des nombres algébriques réels, Séminaire de Théorie des Nombres de Bordeaux, 19791980, Exp. No. 28, 7 pp., Univ. Bordeaux I, Talence, 1980. (Cited in Chapter 10.)
[505] M. Mendès, France, Nombres algébriques et théorie des automates, Enseign. Math. 26 (1980), 193–199. (Cited in Chapters 8 & 10.)Google Scholar
[506] M. Mendès, France, Remarks on problems on finite and periodic continued fractions, Enseign. Math. 39 (1993), 249–257. (Cited in Chapters 9 & 10.)Google Scholar
[507] W., Merkle and J., Reimann, Selection functions that do not preserve normality, Theory Comput. Syst. 39 (2006), 685–697. (Cited in Chapter 4.)Google Scholar
[508] Y., Meyer, Nombres algébriques, nombres transcendants et équirépartition modulo 1, Acta Arith. 16 (1969/1970), 347–350. (Cited in Chapter 4.)Google Scholar
[509] Y., Meyer, Nombres de Pisot, Nombres de Salem et Analyse Harmonique, Lecture Notes in Mathematics, Vol. 117, Springer, Berlin, 1970. (Cited in Chapter 4.)
[510] Y., Meyer, Nombres transcendants et partition modulo 1. In: Colloque de Théorie des Nombres (Univ. Bordeaux, Bordeaux, 1969), pp. 143–149. Bull. Soc. Math. France, Mem. 25, Soc. Math. France, Paris, 1971. (Cited in Chapter 4.)
[511] Y., Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland Mathematical Library, Vol. 2, North-Holland Publishing Co., Amsterdam, 1972. (Cited in Chapter 3.)
[512] M., Mignotte, Approximations rationnelles de p et quelques autres nombres, Bull. Soc. Math. France 37 (1974), 121–132. (Cited in Chapter 2.)Google Scholar
[513] Y., Meyer, An application of W. Schmidt's theorem: transcendental numbers and golden number, Fibonacci Quart. 15 (1977), 15–16. (Cited in Chapter 8.)Google Scholar
[514] Y., Meyer, A characterization of integers, Amer. Math. Monthly 84 (1977), 278–281. (Cited in Chapter 2.)Google Scholar
[515] Y., Meyer, Sur les entiers qui s'crivent simplement en difirentes bases, European J. Combin. 9 (1988), 307–316. (Cited in Chapter 6.)Google Scholar
[516] R., von Mises, Über Zahlenfolgen, die ein kollektiv-ähnliches Verhalten zeigen, Math. Ann. 108 (1933), 757–772. (Cited in Chapter 4.)Google Scholar
[517] H. M., Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, American Mathematical Society, Providence, RI, 1994. (Cited in Chapter 7.)
[518] W., Moran and C. E. M., Pearce, Discrepancy results for normal numbers. In: Miniconferences on Harmonic Analysis and Operator Algebras (Canberra, 1987), 203–210, Proc. Centre Math. Anal. Austral. Nat Univ, 16,. Australian National University, Canberra, 1988. (Cited in Chapter 6.)
[519] W., Moran and A. D., Pollington, Normality to non-integer bases. In: Analytic Number Theory and Related Topics (Tokyo, 1991), 109–117, World Scientific Publishing, River Edge, NJ, 1993. (Cited in Chapter 6.)
[520] W., Moran and A. D., Pollington, Metrical results on normality to distinct bases, J. Number Theory 54 (1995), 180–189. (Cited in Chapter 6.)Google Scholar
[521] W., Moran and A. D., Pollington, A problem in multi-index normality. In: Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), J. Fourier Anal. Appl. 1995, Special Issue, 455–466. (Cited in Chapter 6.)
[522] W., Moran and A. D., Pollington, The discrimination theorem for normality to non-integer bases, Israel J. Math. 100 (1997), 339–347. (Cited in Chapter 6.)Google Scholar
[523] M., Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921), 84–100. (Cited in Appendix A.)Google Scholar
[524] M., Morse and G. A., Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938), 815–866. (Cited in Appendix A.)Google Scholar
[525] M., Morse and G. A., Hedlund, Symbolic dynamics II, Amer. J. Math. 62 (1940), 1–42. (Cited in Appendix A.)Google Scholar
[526] N. G., Moshchevitin, On sublacunary sequences and winning sets, Mat. Zametki 78 (2005), 634–637 (in Russian).Google Scholar
English translation in Math.Notes 78 (2005), 592–596. (Cited in Chapters 2 & 7.)
[527] N. G., Moshchevitin, Density modulo 1 of lacunary and sublacunary sequences: application of Peres–Schlag's construction, Fundam. Prikl. Mat. 16 (2010), 117–138 (in Russian). (Cited in Chapter 2.)Google Scholar
[528] N. G., Moshchevitin, A note on badly approximable affine forms and winning sets, Moscow Math. J. 11 (2011), 129–137. (Cited in Chapter 7.)Google Scholar
[529] N. G., Moshchevitin and I. D., Shkredov, On the Pyatetskii–Shapiro criterion for normality, Mat. Zametki 73 (2003), 577–589 (in Russian).Google Scholar
English translation in Math.Notes 73 (2003), 539–550. (Cited in Chapter 4.)
[530] R. H., Muhutdinov, A test for the nonuniform distribution of the fractional parts of the exponential function, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 1975, 23–26, 104 (in Russian). (Cited in Chapter 4.)
[531] K., Nagasaka, On the Hausdorff dimension of sets missing statistical laws, Proc. Inst. Statist. Math. 25 (1978), 1–9 (in Japanese). (Cited in Chapter 6.)Google Scholar
[532] K., Nagasaka, La dimension de Hausdorff de certains ensembles dans [0, 1], Proc. Japan Acad. Ser. A Math. Sci. 54 (1978), 109–112. (Cited in Chapter 6.)Google Scholar
[533] K., Nagasaka, Nonnormal numbers to diffierent bases and their Hausdorff dimension, Tsukuba J. Math. 10 (1986), 89–99. (Cited in Chapter 6.)Google Scholar
[534] Y., Nakai and I., Shiokawa, A class of normal numbers, Japan. J. Math. (N.S.) 16 (1990), 17–29. (Cited in Chapter 4.)Google Scholar
[535] Y., Nakai, A class of normal numbers. II. In: Number Theory and Cryptography (Sydney, 1989), 204–210, London Math. Soc. Lecture Note Ser., 154, Cambridge University Press, Cambridge, 1990. (Cited in Chapter 4.)
[536] Y., Nakai, Discrepancy estimates for a class of normal numbers, Acta Arith. 62 (1992), 271–284. (Cited in Chapter 4.)Google Scholar
[537] Y., Nakai, Normality of numbers generated by the values of polynomials at primes, Acta Arith. 81 (1997), 345–356. (Cited in Chapter 4.)Google Scholar
[538] W., Narkiewicz, A note on a paper of H. Gupta concerning powers of 2 and 3, Univ. Beograd Publ. Elecktrotehn. Fak. Ser. Mat. Fiz. 678–715 (1980), 173–174. (Cited in Chapter 6.)
[539] H., Niederreiter, On an irrationality theorem of Mahler and Bundschuh, J. Number Theory 24 (1986), 197–199. (Cited in Chapter 10.)Google Scholar
[540] A., Nies, Computability and Randomness, Oxford Logic Guides, 51, Oxford University Press, Oxford, 2009. (Cited in Chapter 5.)
[541] J., Nilsson, On numbers badly approximable by dyadic rationals, Israel J. Math. 171 (2009), 93–110. (Cited in Chapter 7.)Google Scholar
[542] J., Nilsson, The fine structure of dyadically badly approximable numbers. Preprint. (Cited in Chapter 7.)
[543] I., Niven, Irrational Numbers, The Carus Mathematical Monographs, No. 11, The Mathematical Association of America. Distributed by John Wiley and Sons, Inc., New York, 1956. (Cited in Preface.)
[544] I., Niven and H. S., Zuckerman, On the definition of normal numbers, Pacific J. Math. 1 (1951), 103–109. (Cited in Chapter 4.)Google Scholar
[545] L., Olsen, Extremely non-normal numbers, Math. Proc. Cambridge Philos. Soc. 137 (2004), 43–53. (Cited in Chapter 4.)Google Scholar
[546] L., Olsen, Applications of multifractal divergence points to sets of numbers defined by their N-adic expansion, Math. Proc. Cambridge Philos. Soc. 136 (2004), 139–165. (Cited in Chapter 7.)Google Scholar
[547] L., Olsen, A generalization of a result by W. Li and F. Dekking on the Hausdorrff dimension of subsets of self-similar sets with prescribed group frequency of their codings, Aequationes Math. 72 (2006), 10–26. (Cited in Chapter 7.)Google Scholar
[548] L., Olsen, Frequencies of digits, divergence points, and Schmidt games, Chaos Solitons Fractals 40 (2009), 2222–2232. (Cited in Chapter 7.)Google Scholar
[549] L., Olsen, Hausdorff and packing dimensions of non-normal tuples of numbers: Non-linearity and divergence points, Bull. Sci. Math. 134 (2010), 64–96. (Cited in Chapter 7.)Google Scholar
[550] J. C., Oxtoby, The Banach–Mazur game and Banach category theorem, Annals of Mathematics Studies, no. 39, pp. 159–163, Princeton University Press, Princeton, NJ, 1957. (Cited in Chapter 7.)
[551] F., Parreau and M., Queffélec, M0 measures for the Walsh system, J. Fourier Anal. Appl. 15 (2009), 502–514. (Cited in Chapter 7.)Google Scholar
[552] W., Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hung. 11 (1960), 401–416. (Cited in Chapter 9.)Google Scholar
[553] R. P., Pass, On the partial quotients of algebraic integers, J. Number Theory 11 (1979), 14–15. (Cited in Chapter 9.)Google Scholar
[554] C. E. M., Pearce and M. S., Keane, On normal numbers, J. Austral. Math. Soc. Ser. A 32 (1982), 79–87. (Cited in Chapter 6.)Google Scholar
[555] D., Pellegrino, On normal numbers, Proyecciones 25 (2006), 19–30. (Cited in Chapter 4.)Google Scholar
[556] Yu., Peres and W., Schlag, Two Erdős problems on lacunary sequences: chromatic numbers and Diophantine approximations, Bull. London Math. Soc. 42 (2010), 295–300. (Cited in Chapter 2.)Google Scholar
[557] O., Perron, Die Lehre von den Ketterbrüchen, Teubner, Leipzig, 1929. (Cited in Appendix D.)
[558] T., Persson and J., Schmeling, Dyadic Diophantine approximation and Katok's horseshoe approximation, Acta Arith. 132 (2008), 205–230. (Cited in Chapter 9.)Google Scholar
[559] I. I., Piatetski-Shapiro, On the laws of distribution of the fractional parts of an exponential function, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 47–52 (in Russian). (Cited in Chapter 4.)Google Scholar
[560] I. I., Piatetski-Shapiro, On the distribution of the fractional parts of the exponential function, Moskov. Gos. Ped. Inst. Uč. Zap. 108 (1957), 317–322 (in Russian). (Cited in Chapter 4.)Google Scholar
[561] S. S., Pillai, On normal numbers, Proc. Indian Acad. Sci. 10 (1939), 13–15. (Cited in Chapters 4 & 10.)Google Scholar
[562] S. S., Pillai, On normal numbers, Proc. Indian Acad. Sci. 12 (1940), 179–184. (Cited in Chapter 4.)Google Scholar
[563] Ch., Pisot, Sur une propriété caractéristique de certains entiers algébriques, C. R. Acad. Sci. Paris 202 (1936), 892–894. (Cited in Chapter 2.)Google Scholar
[564] Ch., Pisot, Sur la répartition modulo 1 des puissances successives d'un même nombre, C. R. Acad. Sci. Paris 204 (1937), 312–314. (Cited in Chapter 2.)Google Scholar
[565] Ch., Pisot, La répartition modulo 1 et les nombres algébriques, Ann. Sc. Norm. Sup. Pisa 7 (1938), 205–248. (Cited in Chapter 2.)Google Scholar
[566] Ch., Pisot, Répartition (mod 1) des puissances successives des nombres réels, Comment. Math. Helv. 19 (1946), 153–160. (Cited in Chapter 2.)Google Scholar
[567] Ch., Pisot and R., Salem, Distribution modulo 1 of the powers of real numbers larger than 1, Compositio Math. 16 (1964), 164–168. (Cited in Chapters 2 & 3.)Google Scholar
[568] A. D., Pollington, Interval constructions in the theory of numbers, Thesis, University of London, 1978. (Cited in Chapter 3.)Google Scholar
[569] A. D., Pollington, The Hausdorff dimension of a set of non-normal well approximable numbers, Number Theory, Carbondale (1979), Lectures Notes in Math.751, Springer-Verlag, Berlin, 1979, 256–264. (Cited in Chapter 7.)
[570] A. D., Pollington, On the density of sequence nkξ, Illinois J. Math. 23 (1979), 511–515. (Cited in Chapter 2.)Google Scholar
[571] A. D., Pollington, The Hausdorff dimension of certain sets related to sequences which are not dense mod 1, Quart. J. Math. Oxford Ser. (2) 31 (1980), 351–361. (Cited in Chapter 2.)Google Scholar
[572] A. D., Pollington, Progressions arithmétiques généralisées et le problème des (32;)n, C. R. Acad. Sci. Paris 292 (1981), 383–384. (Cited in Chapter 3.)Google Scholar
[573] A. D., Pollington, The Hausdorff dimension of a set of normal numbers, Pacific J. Math. 95 (1981), 193–204. (Cited in Chapter 6.)Google Scholar
[574] A. D., Pollington, Sur les suites kθn, C. R. Acad. Sci. Paris 296 (1983), 941–943. (Cited in Chapter 3.)Google Scholar
[575] A. D., Pollington, The Hausdorff dimension of a set of normal numbers. II, J. Austral. Math. Soc. Ser. A 44 (1988), 259–264. (Cited in Chapter 6.)Google Scholar
[576] A. D., Pollington and S. L., Velani, Metric Diophantine approximation and ‘absolutely friendly’ measures, Selecta Math. 11 (2005), 297–307. (Cited in Chapter 7.)Google Scholar
[577] A. M., Polosuev, Uniform distribution of a system of functions representing a solution of linear first order difference equations, Dokl. Akad. Nauk SSSR 123 (1958), 405–406 (in Russian). (Cited in Chapter 4.)Google Scholar
[578] A. M., Polosuev, On the uniformity of the distribution of a system of functions forming the solution of a system of linear finite-difference equations of first order, Vestnik Moskov. Univ. Ser. I Mat. Meh. (1960), no. 5, 29–39 and no. 6, 20–25 (in Russian). (Cited in Chapter 6.)
[579] A. J., van der Poorten, Some problems of recurrent interest. In: Topics in Classical Number Theory, Vol. I, II (Budapest, 1981), 1265–1294, Colloq. Math. Soc. Jnos Bolyai, 34, North-Holland, Amsterdam, 1984. (Cited in Chapter 9.)
[580] A. J., van der Poorten, An introduction to continued fractions, Diophantine Analysis (Kensington, 1985), 99–138, London Math. Soc. Lecture Note Ser.109, Cambridge University Press, Cambridge, 1986. (Cited in Appendix D.)
[581] E. C., Posner, Diophantine problems involving powers modulo one, Illinois J. Math. 6 (1962), 251–263. (Cited in Chapter 2.)Google Scholar
[582] A. G., Postnikov, A criterion for testing the uniform distribution of an exponential function in the complex domain, Vestnik Leningrad. Univ. 12 (1957), 81–88 (in Russian). (Cited in Chapter 4.)Google Scholar
[583] A. G., Postnikov, Arithmetic modeling of random processes, Trudy Mat. Inst. Steklov. 57 (1960), 84 pp. (in Russian).Google Scholar
English translation in Selected Translations in Mathematical Statistics and Probability, Vol. 13, American Mathematical Society, Providence, RI, 1973. (Cited in Chapters 1, 5, 6 & 9.)
[584] A. G., Postnikov, Ergodic problems in the theory of congruences and of Dio-phantine approximations, Trudy Mat. Inst. Steklov 82 (1966), 3–112 (in Russian).Google Scholar
English translation in Proceedings of the Steklov Institute of Mathematics, 82, American Mathematical Society, Providence, RI, 1967. (Cited in Chapters 4 & 5.)
[585] A. G., Postnikov and I. I., Pyateckii, A Markov-sequence of symbols and a normal continued fraction, Izv. Akad. Nauk SSSR. Ser. Mat. 21 (1957), 729–746 (in Russian). (Cited in Chapters 6 & 9.)Google Scholar
[586] L. P., Postnikova, A quantitative form of Borel's problem, Acta Arith. 21 (1972), 235–250 (in Russian). (Cited in Chapter 4.)Google Scholar
[587] Y., Pourchet. Private letter to Mendés France, 1972. (Cited in Chapter 9.)
[588] L. N., Pushkin, A metric variant of the Cassels–Schmidt theorem, Mat. Zametki 46 (1989), 60–66, 124 (in Russian).Google Scholar
English translation in Math. Notes 46 (1989), 538–542. (Cited in Chapter 6.)
[589] L. N., Pushkin, Vectors that are Borel normal on a manifold in ℝn, Teor. Veroyatnost. i Primenen. 36 (1991), 372–376 (in Russian).Google Scholar
English translation in Theory Probab. Appl. 36 (1991), 391–395. (Cited in Chapter 5.)
[590] L. N., Pushkin, Ergodic properties of sets defined by frequencies of num-bers, Teor. Veroyatnost. i Primenen. 41 (1996), 672–677 (in Russian).Google Scholar
English translation in Theory Probab. Appl. 41 (1996), 593–597. (Cited in Chapter 6.)
[591] L. N., Pushkin, Small digitwise perturbations of a number make it normal to unrelated bases, Lobachevskii J. Math. 11 (2002), 22–25. (Cited in Chapter 6.)Google Scholar
[592] L. N., Pushkin, On the behavior of the spectrum of the limit frequencies of digits under perturbations of a real number, Mat. Zametki 86 (2009), 884–891 (in Russian).Google Scholar
English translation in Math. Notes 86 (2009), 824–830. (Cited in Chapter 6.)
[593] L. N., Pushkin and E. Sh., Rakhmatullina, On the category of numerical sets defined by frequencies of numbers. In: Studies in Information Sci-ence, No. 4, 95–98, Izd. ‘Otechestvo’, Kazan, 2002 (in Russian). (Cited in Chapter 4.)
[594] M., Queffélec, Transcendance des fractions continues de Thue–Morse, J. Number Theory 73 (1998), 201–211. (Cited in Chapter 9.)Google Scholar
[595] M., Queffélec, Approximations diophantiennes des nombres sturmiens, J. Théor. Nombres Bordeaux 14 (2002), 613–628. (Cited in Chapter 8.)Google Scholar
[596] M., Queffélec, Fourier analysis and continued fractions. In: European Women in Mathematics—Marseille 2003, 47–57, CWI Tract, 135, Centrum Wisk. Inform., Amsterdam, 2005. (Cited in Chapter 7.)
[597] M., Queffélec, Old and new results on normality. In: Dynamics and Stochastics, 225–236, IMS Lecture Notes Monogr. Ser., 48, Institute of Mathematics and Statistics, Beachwood, OH, 2006. (Cited in Chapters 6 & 10.)
[598] M., Queffélec, An introduction to Littlewood's conjecture. In: Dynamical Systems and Diophantine Approximation, (eds. Yann, Bugeaud, Françoise, Dal'Bo, Cornelia, Druţu), Séminaires et Congrès 19, pp. 129–152, Société Mathématique de France, 2009. (Cited in Chapter 2.)
[599] M., Queffélec and O., Ramaré, Analyse de Fourier des fractions continues à quotients restreints, Enseign. Math. 49 (2003), 335–356. (Cited in Chapter 7.)Google Scholar
[600] P., Rath, Two exceptional classes of real numbers, Funct. Approx. Comment. Math. 38 (2008), 81–91. (Cited in Chapter 3.)Google Scholar
[601] G., Rauzy, Suites partiellement recurrentes (Applications la répartition modulo 1 et aux propriétés arithmétiques des fonctions analytiques), Ann. Inst. Fourier (Grenoble) 16 (1966), 159–234. (Cited in Chapter 2.)Google Scholar
[602] G., Rauzy, Caractérisation des ensembles normaux, Bull. Soc. Math. France 98 (1970), 401–414. (Cited in Chapter 4.)Google Scholar
[603] G., Rauzy, Normalitéde ℚ*, Acta Arith. 19 (1971), 43–47. (Cited in Chapter 4.)Google Scholar
[604] G., Rauzy, Nombres normaux et processus déterministes, Acta Arith. 29 (1976), 211–225. (Cited in Chapters 4 & 10.)Google Scholar
[605] G., Rauzy, Propriétés Statistiques de Suites Arithmétiques, Le Mathématicien, No. 15, Collection SUP, Presses Universitaires de France, Paris, 1976, 133 pp. (Cited in Preface and Chapter 1.)
[606] L., Rédei, Zu einem Approximationssatz von Koksma, Math. Z. 48 (1942), 500–502. (Cited in Chapter 2.)Google Scholar
[607] L., Rédei, Über eine diophantische Approximation im bereich der algebraischen Zahlen, Math. Naturwiss. Anz. Ungar. Akad. Wiss. 61 (1942), 460–470. (Cited in Chapter 2.)Google Scholar
[608] A., Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957), 477–493. (Cited in Chapter 9.)Google Scholar
[609] R. D., Richtmyer, M., Devaney and N., Metropolis, Continued fraction expansions of algebraic numbers, Numer. Math. 4 (1962), 68–84. (Cited in Chapter 9.)Google Scholar
[610] D., Ridout, Rational approximations to algebraic numbers, Mathematika 4 (1957), 125–131. (Cited in Appendix E.)Google Scholar
[611] T., Rivoal, On the bits counting function of real numbers, J. Austral. Math. Soc. 85 (2008), 95–111. (Cited in Chapters 8 & 10.)Google Scholar
[612] I., Rochev, On distribution of fractional parts of linear forms, Fundam. Prikl. Mat. 16 (2010), 123–137 (in Russian). (Cited in Chapter 2.)Google Scholar
[613] C. A., Rogers, Hausdorff Measures, Cambridge University Press, Cambridge, 1970. (Cited in Appendix C.)
[614] K. F., Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1–20; corrigendum, 168. (Cited in Appendix E.)Google Scholar
[615] D. J., Rudolph, × 2 and × 3 invariant measures and entropy, Ergodic Theory Dynam. Systems 10 (1990), 395–406. (Cited in Chapters 2 & 10.)Google Scholar
[616] Yu. N., Šahov, The construction of a sequence of signs that is normal in the sense of Markov, Moskov. Gos. Ped. Inst. Učen. Zap. No. 375 (1971), 143–155 (in Russian). (Cited in Chapter 4.)
[617] Yu. N., Šahov, Certain estimates in the construction of Bernoulli-normal sequences of symbols, Mat. Zametki 10 (1971), 501–510 (in Russian). (Cited in Chapter 4.)Google Scholar
[618] T., Šalát, A remark on normal numbers, Rev. Roumaine Math. Pures Appl. 11 (1966), 53–56. (Cited in Chapter 4.)Google Scholar
[619] R., Salem, Algebraic Numbers and Fourier Analysis, D. C. Heath and Co., Boston, MA, 1963. (Cited in Preface and Chapter 2.)
[620] L., Schaeffer and J., Shallit, The critical exponent is computable for automatic sequences. Preprint. (Cited in Chapter 8.)
[621] J., Schiffer, Discrepancy of normal numbers, Acta Arith. 47 (1986), 175–186. (Cited in Chapter 4.)Google Scholar
[622] A., Schinzel, On the reduced length of a polynomial with real coefficients, Funct. Approx. Comment. Math. 35 (2006), 271–306. (Cited in Chapter 3.)Google Scholar
[623] A., Schinzel, On the reduced length of a polynomial with real coefficients. II, Funct. Approx. Comment. Math. 37 (2007), 445–459. (Cited in Chapter 3.)Google Scholar
[624] H. P., Schlickewei, On products of special linear forms with algebraic coefficients, Acta Arith. 31 (1976), 389–398. (Cited in Appendix E.)Google Scholar
[625] J., Schmeling, Symbolic dynamics for β-shifts and self-normal numbers, Ergodic Theory Dynam. Systems 17 (1997), 675–694. (Cited in Chapter 9.)Google Scholar
[626] K., Schmidt, On periodic expansions of Pisot and Salem numbers, Bull. London Math. Soc. 12 (1980), 269–278. (Cited in Chapter 9.)Google Scholar
[627] W. M., Schmidt, On normal numbers, Pacific J. Math. 10 (1960), 661–672. (Cited in Chapters 6 & 10.)Google Scholar
[628] W. M., Schmidt, Über die Normalität von Zahlen zu verschiedenen Basen, Acta Arith. 7 (1961/1962), 299–309. (Cited in Chapters 5 & 6.)Google Scholar
[629] W. M., Schmidt, Normalität bezüglich Matrizen, J. reine angew. Math. 214/215 (1964), 227–260. (Cited in Chapter 6.)Google Scholar
[630] W. M., Schmidt, Über simultane Approximation algebraischer Zahlen durch Rationale, Acta Math. 114 (1965), 159–206. (Cited in Chapter 8.)Google Scholar
[631] W. M., Schmidt, On badly approximable numbers and certain games, Trans. Amer. Math. Soc. 123 (1966), 178–199. (Cited in Chapter 7.)Google Scholar
[632] W. M., Schmidt, Simultaneous approximations to algebraic numbers by rationals, Acta Math. 125 (1970), 189–201. (Cited in Appendix E.)Google Scholar
[633] W. M., Schmidt, Norm form equations, Ann. of Math. 96 (1972), 526–551. (Cited in Appendix E.)Google Scholar
[634] W. M., Schmidt, Irregularities of distribution. VII, Acta Arith. 21 (1972), 45–50. (Cited in Chapter 1.)Google Scholar
[635] W. M., Schmidt, Diophantine Approximation, Lecture Notes in Math.785, Springer, Berlin, 1980. (Cited in Preface, Chapter 7, and Appendices D & E.)
[636] W. M., Schmidt, The subspace theorem in Diophantine approximation, Compositio Math. 69 (1989), 121–173. (Cited in Appendix E.)Google Scholar
[637] Th., Schneider, Einführung in die transzendenten Zahlen, Springer, Berlina, 1957. (Cited in Chapters 8 & 9.)
[638] C.-P., Schnorr und H., Stimm, Endliche Automaten und Zufallsfolgen, Acta Informat. 1 (1971/19772), 345–359. (Cited in Chapter 4.)Google Scholar
[639] A., Scremin, On the period of the continued fraction for values of the square root of power sums, Acta Arith. 123 (2006), 297–312. (Cited in Chapter 9.)Google Scholar
[640] F., Schweiger, Normalität bezüglich zahlentheoretischer Transformationen, J. Number Theory 1 (1969), 390–397. (Cited in Chapter 6.)Google Scholar
[641] F., Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford Science Publications, The Clarendon Press, New York, 1995. (Cited in Appendix D.)
[642] F., Schweiger and T., Šalát, Some sets of sequences of positive integers and normal numbers, Rev. Roumaine Math. Pures Appl. 26 (1981), 1255–1264. (Cited in Chapter 4.)Google Scholar
[643] H. G., Senge and E. G., Straus, PV-numbers and sets of multiplicity, Period. Math. Hungar. 3 (1973), 93–100. (Cited in Chapter 6.)Google Scholar
[644] J. O., Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), 209–217. (Cited in Chapter 7.)Google Scholar
[645] J. O., Shallit, Simple continued fractions for some irrational numbers, II, J. Number Theory 14 (1982), 228–231. (Cited in Chapter 7.)Google Scholar
[646] J. O., Shallit, Real numbers with bounded partial quotients: a survey, Enseign. Math. 38 (1992), 151–187. (Cited in Chapter 9.)Google Scholar
[647] Z., Shan, A note on irrationality of some numbers, J. Number Theory 25 (1987), 211–212. (Cited in Chapter 10.)Google Scholar
[648] D., Sherwell, Note on normal numbers and uniform distribution of sequences, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 43 (2000), 117–123. (Cited in Chapter 4.)Google Scholar
[649] I., Shiokawa, A remark on a theorem of Copeland–Erdőos, Proc. Japan Acad. 50 (1974), 273–276. (Cited in Chapter 4.)Google Scholar
[650] I., Shiokawa and S., Uchiyama, On some properties of the dyadic Champernowne numbers, Acta Math. Acad. Sci. Hungar. 26 (1975), 9–27. (Cited in Chapter 4.)Google Scholar
[651] T. N., Shorey and R., Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Mathematics, 87, Cambridge University Press, Cambridge, 1986. (Cited in Appendix F.)
[652] T. N., Shorey and R., Tijdeman, Irrationality criteria for numbers of Mahler's type. In: Analytic Number Theory (Kyoto, 1996), 343–351, London Math. Soc. Lecture Note Ser., 247, Cambridge University Press, Cambridge, 1997. (Cited in Chapter 10.)
[653] M. W., Sierpiński, Sur la valeur asymptotique d'une certaine somme, Krakau Anz. A (1910), 9–11. (Cited in Chapter 1.)
[654] M. W., Sierpiński, Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d'un tel nombre, Bull. Soc. Math. France 45 (1917), 127–132. (Cited in Chapters 4 & 5.)Google Scholar
[655] K., Sigmund, Normal and quasiregular points for automorphisms of the torus, Math. Systems Theory 8 (1974/1975), 251–255. (Cited in Chapter 6.)Google Scholar
[656] J. G., Simonsen, Beta-shifts, their languages, and computability, Theory Comput. Syst. 48 (2011), 297–318. (Cited in Chapter 9.)Google Scholar
[657] J., Slivka and N. C., Severo, Measures of sets decomposing the simply normal numbers in the unit interval, Mathematika 41 (1994), 164–172. (Cited in Chapter 4.)Google Scholar
[658] M., Smorodinsky and B., Weiss, Normal sequences for Markov shifts and intrinsically ergodic subshifts, Israel J. Math. 59 (1987), 225–233. (Cited in Chapter 9.)Google Scholar
[659] J. L., Spears and J. E., Maxfield, Further examples of normal numbers, Publ. Math. Debrecen 16 (1969), 119–127. (Cited in Chapter 4.)Google Scholar
[660] L., Staiger, The Kolmogorov complexity of real numbers, Theoret. Comput. Sci. 284 (2002), 455–466. (Cited in Chapter 5.)Google Scholar
[661] L. P., Starčenko, Construction of sequences jointly normal with a given one, Izv. Akad. Nauk SSSR. Ser. Mat. 22 (1958), 757–770; erratum 23 (1958) 635–636 (in Russian). (Cited in Chapters 1, 5 & 6.)Google Scholar
[662] L. P., Starčenko, The construction of a completely uniformly distributed sequence, Dokl. Akad. Nauk SSSR 129 (1959), 519–521 (in Russian). (Cited in Chapter 1.)Google Scholar
[663] H., Steinhaus, Problem 144, The New Scottish book, Wrocław 19461958. (Cited in Chapter 6.)
[664] C. L., Stewart, On the representation of an integer in two different bases, J. Reine Angew. Math. 319 (1980), 63–72. (Cited in Chapter 6.)Google Scholar
[665] T., Stoll, On a problem of Erdős and Graham concerning digits, Acta Arith. 125 (2006), 89–100. (Cited in Chapter 8.)Google Scholar
[666] T., Stoll, A fancy way to obtain the binary digits of 759250125v 2, Amer. Math. Monthly 117 (2010), 611–617. (Cited in Chapter 8.)Google Scholar
[667] R. G., Stoneham, The reciprocals of integral powers of primes and normal numbers, Proc. Amer. Math. Soc. 15 (1964), 200–208. (Cited in Chapter 5.)Google Scholar
[668] R. G., Stoneham, A study of 60, 000 digits of the transcendental “e”, Amer. Math. Monthly 72 (1965), 483–500. (Cited in Chapter 8.)Google Scholar
[669] R. G., Stoneham, On (j, ε)-normality in the rational fractions, Acta Arith. 16 (1969/1970), 221–237. (Cited in Chapter 5.)Google Scholar
[670] R. G., Stoneham, A general arithmetic construction of transcendental non-Liouville normal numbers from rational fractions, Acta Arith. 16 (1969/1970), 239–253. (Cited in Chapter 5.)Google Scholar
[671] R. G., Stoneham, On absolute (j, ε)-normality in the rational fractions with applications to normal numbers, Acta Arith. 22 (1972/1973), 277–286. (Cited in Chapter 5.)Google Scholar
[672] R. G., Stoneham, On the uniform e-distribution of residues within the periods of rational fractions with applications to normal numbers, Acta Arith. 22 (1973), 371–389. (Cited in Chapter 5.)Google Scholar
[673] R. G., Stoneham, Some further results concerning (j, ε)-normality in the rationals, Acta Arith. 26 (1974/1975), 83–96. (Cited in Chapter 5.)Google Scholar
[674] R. G., Stoneham, Normal recurring decimals, normal periodic systems (j, ε)-normality, and normal numbers, Acta Arith. 28 (1975/1976), 349–361. (Cited in Chapter 5.)Google Scholar
[675] R. G., Stoneham, On a sequence of (j, ε)-normal approximations to π/4 and the Brouwer conjecture, Acta Arith. 42 (1983), 265–279. (Cited in Chapter 5.)Google Scholar
[676] O., Strauch, On distribution functions of ξ(3/2)n mod1, Acta Arith. 81 (1997), 25–35. (Cited in Chapter 3.)Google Scholar
[677] O., Strauch and R., Nair. Unsolved problems. Available at http://www.boku.ac.at/MATH/udt/. (Cited in Chapter 10.)
[678] O., Strauch and Š., Porubský, Distribution of Sequences: A Sampler, Schriftenreihe der Slowakischen Akademie der Wissenschaften, 1, Peter Lang, Frankfurt am Main, 2005. (Cited in Preface and Chapter 10.)
[679] E., Strzelecki, On sequences {ξtn}(mod1), Canad. Math. Bull. 18 (1975), 727–738. (Cited in Chapter 2.)Google Scholar
[680] F., Supnick, H. J., Cohen, and J. F., Keston, On the powers of a real number reduced modulo one, Trans. Amer. Math. Soc. 94 (1960), 244–257. (Cited in Chapter 2.)Google Scholar
[681] P., Szüsz and B., Volkmann, On numbers containing each block infinitely often, J. Reine Angew. Math. 339 (1983), 199–206. (Cited in Chapter 8.)Google Scholar
[682] P., Szüsz and B., Volkmann, On numbers with given digit distributions, Arch. Math. (Basel) 52 (1989), 237–244. (Cited in Chapter 4.)Google Scholar
[683] P., Szüsz and B., Volkmann, A combinatorial method for constructing normal numbers, Forum Math. 6 (1994), 399–414. (Cited in Chapter 4.)Google Scholar
[684] A., Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909), 284–305. (Cited in Appendix E.)Google Scholar
[685] A., Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Kra. Vidensk Selsk. Skr. Mat. Nat. Kl. 2 (1912) No. 1; reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, ed., Universitetsforlaget, Oslo, 1977, pp. 413–478. (Cited in Chapter 8 and Appendix A.)Google Scholar
[686] A., Thue, Über eine Eigenschaft, die keine transcendente Grössen haben kann, Kra. Vidensk Selsk. Skr. Mat. Nat. Kl. 2 (1912) No. 20, 15 pp.; reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, ed., Universitetsforlaget, Oslo, 1977, pp. 479–491. (Cited in Chapter 2.)Google Scholar
[687] R., Tijdeman, Note on Mahler's 3/2-problem, Norske Vid. Selsk. Skr. 16 (1972), 1–4. (Cited in Chapters 2 & 3.)Google Scholar
[688] G., Troi and U., Zannier, Note on the density constant in the distribution of self-numbers. II, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 2 (1999), 397–399. (Cited in Chapter 8.)Google Scholar
[689] A., Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. Lond. Math. Soc. 42 (1936), 230–265. (Cited in Chapter 5.)Google Scholar
[690] A., Turing, A note on normal numbers. In: Collected Works of A. M. Turing, Pure Mathematics, (ed. J. L., Britton), North-Holland, Amsterdam, 1992, pp. 117–119. (Cited in Chapter 5.)
[691] E., Ugalde, An alternative construction of normal numbers, J. Théor. Nombres Bordeaux 12 (2000), 165–177. (Cited in Chapter 5.)Google Scholar
[692] E., Ugalde, A constructible set of normals with positive measure. In: Dynamical Systems (Luminy-Marseille, 1998), 220–228, World Scientific Publishing, River Edge, NJ, 2000. (Cited in Chapter 5.)
[693] R., Urban, On density modulo 1 of some expressions containing algebraic integers, Acta Arith. 127 (2007), 217–229.Google Scholar
Corrigendum in Acta Arith. 141 (2010), 209–210. (Cited in Chapter 2.)
[694] R., Urban, Sequences of algebraic integers and density modulo 1, J. Théor. Nombres Bordeaux 19 (2007), 755–762. (Cited in Chapter 2.)Google Scholar
[695] R., Urban, Sequences of algebraic numbers and density modulo 1, Publ. Math. Debrecen 72 (2008), 141–154. (Cited in Chapter 2.)Google Scholar
[696] R., Urban, A survey of results on density modulo 1 of double sequences containing algebraic numbers, Acta Math. Univ. Ostrav. 16 (2008), 31–43. (Cited in Chapter 2.)Google Scholar
[697] R., Urban, Algebraic numbers and density modulo 1, J. Number Theory128 (2008), 645–661.Google Scholar
Corrigendum in J. Number Theory 129 (2009), 2879–288. (Cited in Chapter 2.)
[698] R., Urban, Multiplicatively independent integers and dense modulo 1 sets of sums, Unif. Distrib. Theory 4 (2009), 27–33. (Cited in Chapter 2.)Google Scholar
[699] R., Urban, A note on density modulo 1 of certain sets of sums, Funct. Approx. Comment. Math. 42 (2010), 29–35. (Cited in Chapter 2.)Google Scholar
[700] M., Urbański, Diophantine approximation and self-conformal measures, J. Number Theory 110 (2005), 219–235. (Cited in Chapter 7.)Google Scholar
[701] M., Urbański, Diophantine approximation for conformal measures of one dimensional iterated function systems, Compos. Math. 141 (2005), 869–886. (Cited in Chapter 7.)Google Scholar
[702] R. C., Vaughan and T. D., Wooley, Waring's problem: a survey. In: Number Theory for the Millennium, III (Urbana, IL, 2000), 301–340, A. K. Peters, Natick, MA, 2002. (Cited in Chapter 3.)
[703] P., Veerman, Symbolic dynamics and rotation numbers, Phys. A 134 (1986), 543–576. (Cited in Chapter 3.)Google Scholar
[704] P., Veerman, Symbolic dynamics of order-preserving orbits, Phys. D 29 (1987), 191–201. (Cited in Chapter 3.)Google Scholar
[705] A., Venkatesh, The work of Einsiedler, Katok and Lindenstrauss on the Littlewood conjecture, Bull. Amer. Math. Soc. 45 (2008), 117–134. (Cited in Chapter 2.)Google Scholar
[706] T., Vijayarhagavan, On decimals of irrational numbers, Proc. Indian Acad. Sci., Sect. A. 12 (1940), 20. (Cited in Chapter 3.)Google Scholar
[707] T., Vijayarhagavan, On the fractional parts of the powers of a number. I, J. London Math. Soc. 15 (1940), 159–160. (Cited in Chapter 2.)Google Scholar
[708] T., Vijayarhagavan, On the fractional parts of the powers of a number. II, Proc. Cambridge Philos. Soc. 37 (1941), 349–357. (Cited in Chapters 2 & 3.)Google Scholar
[709] T., Vijayarhagavan, On the fractional parts of the powers of a number. III, J. London Math. Soc. 17 (1942), 137–138. (Cited in Chapter 2.)Google Scholar
[710] T., Vijayarhagavan, On the fractional parts of powers of a number. IV, J. Indian Math. Soc. (N.S.) 12, (1948), 33–39. (Cited in Chapter 2.)Google Scholar
[711] J., Ville, Étude Critique de la Notion de Collectif, Monographie des Probabilités, Gauthier-Villars, Paris, 1939. (Cited in Chapter 4.)
[712] B., Volkmann, Über Hausdorffsche Dimensionen von Mengen die durch Zifferneigenschaften charakterisiert sind. III, Math. Z. 59 (1953), 259–270. (Cited in Chapter 7.)Google Scholar
[713] B., Volkmann, Über Hausdorffsche Dimensionen von Mengen die durch Zifferneigenschaften charakterisiert sind. V, Math. Z. 65 (1956), 389–413. (Cited in Chapter 7.)Google Scholar
[714] B., Volkmann, Über Hausdorffsche Dimensionen von Mengen, die durch Zifferneigenschaften charakterisiert sind. VI, Math. Z. 68 (1958), 439–449. (Cited in Chapters 4 & 7.)Google Scholar
[715] B., Volkmann, Gewinnmengen, Arch. Math. 10 (1959), 235–240. (Cited in Chapter 7.)Google Scholar
[716] B., Volkmann, On non-normal numbers, Compositio Math. 16 (1964), 186–190. (Cited in Chapter 10.)Google Scholar
[717] B., Volkmann, Über extreme Anormalität bei Ziffernentwicklungen, Math. Ann. 190 (1970/1971), 149–153. (Cited in Chapter 6.)Google Scholar
[718] B., Volkmann, Verallgemeinerung eines Satzes von Maxfield, J. Reine Angew. Math. 271 (1974), 203–213. (Cited in Chapter 4.)Google Scholar
[719] B., Volkmann, On modifying constructed normal numbers, Ann. Fac. Sci. Toulouse Math. 1 (1979), 269–285. (Cited in Chapter 4.)Google Scholar
[720] B., Volkmann, On the Cassels–Schmidt theorem. I, Bull. Sci. Math. 108 (1984), 321–336. (Cited in Chapter 6.)Google Scholar
[721] B., Volkmann, On the Cassels–Schmidt theorem. II, Bull. Sci. Math. 109 (1985), 209–223. (Cited in Chapter 6.)Google Scholar
[722] G., Wagner, On rings of numbers which are normal to one base but non-normal to another, J. Number Theory 54 (1995), 211–231. (Cited in Chapter 5 & 6.)Google Scholar
[723] M., Waldschmidt, Linear independence measures for logarithms of algebraic numbers. In: Diophantine Approximation (Cetraro, 2000), 250–344, Lecture Notes in Math., 1819, Springer, Berlin, 2003. (Cited in Chapter 10.)
[724] M., Waldschmidt, Words and transcendence. In: Analytic Number Theory, 449–470, Cambridge University Press, Cambridge, 2009. (Cited in Chapter 10.)
[725] D. D., Wall, Normal numbers. PhD thesis, University of California, Berkeley, CA, 1949. (Cited in Chapter 4.)Google Scholar
[726] P., Walters, Ergodic Theory — Introductory Lectures, Lecture Notes in Mathematics, Vol. 458, Springer, Berlin, 1975. (Cited in Chapter 1 and Appendix C.)
[727] T. C., Watson, An improved characterization of normal sets and some counter-examples, Israel J. Math. 109 (1999), 173–179. (Cited in Chapter 4.)Google Scholar
[728] B., Weiss, Almost no points on a Cantor set are very well approximable, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 949–952. (Cited in Chapter 7.)Google Scholar
[729] B., Weiss, Dynamics on parameter spaces: submanifold and fractal subset questions, Rigidity in Dynamics and Geometry (Cambridge, 2000), 425–440, Springer, Berlin, 2002. (Cited in Chapter 7.)
[730] B., Weiss, Single Orbit Dynamics, CBMS Regional Conference Series in Mathematics, 95, American Mathematical Society, Providence, RI, 2000. (Cited in Chapters 2 & 4.)
[731] H., Weyl, Über die Gibbssche Erscheinung und verwandte Konvergenzphänomene, Rend. Circ. Mat. Palermo 30 (1910), 377–407. (Cited in Chapter 1.)Google Scholar
[732] H., Weyl, Über ein Problem aus dem Gebiete der diophantischen Approximationen, Gött. Nachr. (1914), 234–244. (Cited in Chapter 1.)
[733] H., Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352. (Cited in Chapter 1.)Google Scholar
[734] F., Wielonsky, Hermite–Padé approximants to exponential functions and an inequality of Mahler, J. Number Theory 74 (1999), 230–249. (Cited in Chapter 2.)Google Scholar
[735] J. M., Wills, Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen, Monatsh. Math. 71 (1967), 263–269. (Cited in Chapter 2.)Google Scholar
[736] S. M. J., Wilson, Limit points in the Lagrange spectrum of a quadraticfield, Bull. Soc. Math. France 108 (1980), 137–141. (Cited in Chapter 9.)Google Scholar
[737] R., Winkler, Some constructive examples in uniform distribution on finite sets and normal numbers, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 126 (1989), 1–8. (Cited in Chapter 4.)Google Scholar
[738] T. H., Wolff, Lectures on Harmonic Analysis, University Lecture Series, 29, American Mathematical Society, Providence, RI, 2003. (Cited in Chapter 7.)
[739] J., Wu, Continued fraction and decimal expansions of an irrational number, Adv. Math. 206 (2006), 684–694. (Cited in Chapter 9.)Google Scholar
[740] J., Wu, An iterated logarithm law related to decimal and continued fraction expansions, Monatsh. Math. 153 (2008), 83–87. (Cited in Chapter 9.)Google Scholar
[741] T., Zaïmi, On integer and fractional parts of powers of Salem numbers, Arch. Math. (Basel) 87 (2006), 124–128. (Cited in Chapter 3.)Google Scholar
[742] T., Zaïmi, An arithmetical property of powers of Salem numbers, J. Number Theory 120 (2006), 179–191. (Cited in Chapter 3.)Google Scholar
[743] T., Zaïmi, On the spectra of Pisot numbers, Glasgow Math. J. 54 (2012), 127–132. (Cited in Chapter 2.)Google Scholar
[744] T., Zaïmi, Comments on the distribution modulo one of powers of Pisot and Salem numbers, Publ. Math. Debrecen. To appear. (Cited in Chapter 2.)
[745] A., Zame, The distribution of sequences modulo 1, Canad. J. Math. 19 (1967), 697–709. (Cited in Chapter 2.)Google Scholar
[746] A., Zame, On normal sets of numbers, Acta Arith. 20 (1972), 147–154. (Cited in Chapter 4.)Google Scholar
[747] U., Zannier, Some Applications of Diophantine Approximation to Diophantine Equations, Editrice Forum, Udine, 2003. (Cited in Chapter 9 and Appendix E.)
[748] Y. C., Zhu, On a problem of Mahler concerning the transcendence of a decimal fraction, Acta Math. Sinica 24 (1981), 246–253 (in Chinese). (Cited in Chapter 4.)Google Scholar
[749] Y. C., Zhu, A note of irrationality measure of Mahler's transcendental fractions, Acta Math. Sinica 43 (2000), 1–8 (in Chinese). (Cited in Chapter 4.)Google Scholar
[750] Y. C., Zhu, L. X., Wang, and G. S., Xu, On the transcendence of a class of series, Kexue Tongbao (English Edition) 25 (1980), 1–6. (Cited in Chapter 8.)
[751] W., Zudilin, A new lower bound for ∥(3/2)k∥, J. Théor. Nombres Bordeaux 19 (2007), 311–323. (Cited in Chapter 3.)Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Yann Bugeaud, Université de Strasbourg
  • Book: Distribution Modulo One and Diophantine Approximation
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139017732.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Yann Bugeaud, Université de Strasbourg
  • Book: Distribution Modulo One and Diophantine Approximation
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139017732.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Yann Bugeaud, Université de Strasbourg
  • Book: Distribution Modulo One and Diophantine Approximation
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139017732.019
Available formats
×