Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T04:03:20.895Z Has data issue: false hasContentIssue false

23 - Perturbation theory

Published online by Cambridge University Press:  05 March 2015

Roel Snieder
Affiliation:
Colorado School of Mines
Kasper van Wijk
Affiliation:
University of Auckland
Get access

Summary

From this book and most other books on mathematical physics, you may have obtained the impression that most equations in the physical sciences can be solved. This is actually not true; most textbooks (including this book) give an unrepresentative state of affairs by only showing the problems that can be solved in closed form. It is an interesting paradox that as our theories of the physical world become more accurate, the resulting equations become more difficult to solve. In classical mechanics the problem of two particles that interact with a central force can be solved in closed form, but the three-body problem in which three particles interact has no analytical solution. In quantum mechanics, the one-body problem of a particle that moves in a potential can be solved for a limited number of situations only: for the free particle, the particle in a box, the harmonic oscillator, and the hydrogen atom. In this sense the one-body problem in quantum mechanics has no general solution. This shows that as a theory becomes more accurate, the resulting complexity of the equations makes it often more difficult to actually find solutions.

One way to proceed is to compute numerical solutions of the equations. Computers are a powerful tool and can be extremely useful in solving physical problems. Another approach is to find approximate solutions to the equations. In Chapter 11, scale analysis was used to drop from the equations terms that are of minor importance. In this chapter, a systematic method is introduced to account for terms in the equations that are small but that make the equations difficult to solve. The idea is that a complex problem is compared to a simpler problem that can be solved in closed form, and to consider these small terms as a perturbation to the original equation. The theory of this chapter then makes it possible to determine how the solution is perturbed by the perturbation in the original equation; this technique is called perturbation theory.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Perturbation theory
  • Roel Snieder, Colorado School of Mines, Kasper van Wijk, University of Auckland
  • Book: A Guided Tour of Mathematical Methods for the Physical Sciences
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139013543.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Perturbation theory
  • Roel Snieder, Colorado School of Mines, Kasper van Wijk, University of Auckland
  • Book: A Guided Tour of Mathematical Methods for the Physical Sciences
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139013543.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Perturbation theory
  • Roel Snieder, Colorado School of Mines, Kasper van Wijk, University of Auckland
  • Book: A Guided Tour of Mathematical Methods for the Physical Sciences
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139013543.023
Available formats
×