Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-27T04:02:37.492Z Has data issue: false hasContentIssue false

1 - The basics of neutrino physics

Published online by Cambridge University Press:  05 March 2013

Julien Lesgourgues
Affiliation:
École Polytechnique Fédérale de Lausanne
Gianpiero Mangano
Affiliation:
Istituto Nazionale di Fisica Nucleare (INFN), Napoli
Gennaro Miele
Affiliation:
Università degli Studi di Napoli 'Federico II'
Sergio Pastor
Affiliation:
IFIC (CSIC-Universitat de València), Spain
Get access

Summary

Like the actors in ancient Greek tragedy and comedy, neutrinos play more than one role in the drama of the expanding universe. They couple to gravity and contribute to Einstein equations which rule the expansion dynamics. Furthermore, they interact in the primordial plasma with charged leptons and hadrons via electroweak interactions, until the rates for these processes become so low compared with the typical expansion rate that they decouple and start to propagate freely along geodesic lines. Any quantitative description of their role in cosmology thus requires several inputs from the theory of fundamental interactions, as well as a knowledge of their basic properties, such as masses and, in some cases, the features of neutrino flavour oscillations.

Neutrino interactions have been well understood since the first theory of β- decay proposed by Enrico Fermi in 1934, and now are succesfully and beautifully described by the unified picture of electroweak interactions. In the low energy limit the strength of these interactions is encoded in a single coupling, the Fermi coupling constant GF, whose value, combined with the Newton constant, fixes the time of neutrino decoupling. From the strong experimental evidence in favour of neutrino oscillation, we also know that neutrinos are massive particles, and this, as we will see at length in the following, has a strong impact on how structures, i.e., inhomogeneities in the universe, grow on certain length scales.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×