Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T13:36:08.930Z Has data issue: false hasContentIssue false

Chapter 22 - Drug-induced liver disease

from Section III - Hepatitis and immune disorders

Published online by Cambridge University Press:  05 March 2014

Eve A. Roberts
Affiliation:
Departments of Medicine, Paediatrics and Gastroenterology, University of Toronto, and Hepatologist, Division of Gastroenterology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
Frederick J. Suchy
Affiliation:
University of Colorado Medical Center
Ronald J. Sokol
Affiliation:
University of Colorado Medical Center
William F. Balistreri
Affiliation:
University of Cincinnati College of Medicine
Get access

Summary

Introduction

Drug-induced liver disease has been regarded as rare in children. Large surveys have generally failed to detect drug hepatotoxicity as a major problem in children, although adverse drug reactions (not necessarily hepatotoxic) are somewhat more frequent in preschool children and in children of any age with cancer. A study examining deaths from adverse drug reactions in children found that approximately one-sixth of such deaths involved acute liver failure, usually associated with antiepileptic or antineoplastic drugs [1]. Drug hepatotoxicity is recognized as an important cause of acute liver failure in children, as in adults [2]. Why childhood drug hepatotoxicity is otherwise relatively uncommon remains unclear. Failure to diagnose and report drug hepatotoxicity in children is a likely explanation. However, most children take relatively few medications. Recent reports of drugs most frequently causing clinically evident hepatotoxicity in adults show that a drug has to be in broad general use to end up a major offender. Although trends may change, children uncommonly take the cardiovascular, antihypertensive, or antidepressant medications commonly associated with hepatotoxicity in adults. Despite increasing prevalence of childhood overweight/obesity, most children have a lean body mass and most do not abuse ethanol or smoke cigarettes. Therefore, children are usually free of factors predisposing to drug hepatotoxicity in adults. Hepatic drug metabolism in children may be sufficiently different from that in adults to shield against drug hepatotoxicity. Indeed, old age is a risk factor for more severe hepatotoxic reactions, perhaps because the aging liver metabolizes some drugs more slowly. Capacity for hepatocellular regeneration may be greater in children than in adults. Nevertheless, drug hepatotoxicity definitely occurs in children; adolescents are probably no different from adults in their risk for drug-induced liver disease.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clarkson, A, Choonara, I. Surveillance for fatal suspected adverse drug reactions in the UK. Arch Dis Child 2002;87:462–467.CrossRefGoogle ScholarPubMed
Squires, RH, Shneider, BL, Bucuvalas, J, et al. Acute liver failure in children: the first 348 patients in the pediatric acute liver failure study group. J Pediatr 2006;148:652–658.CrossRefGoogle ScholarPubMed
Zimmerman, HJ. Hepatotoxicity: The Adverse Effects of Drugs and Other Chemicals on the Liver. Philadelphia, PA: Lippincott, Williams & Wilkins, 1999.Google Scholar
Kaplowitz, N, DeLeve, L. Drug-induced Liver Disease. Waltham, MA: Academic Press, 2013.Google Scholar
Ingelman-Sundberg, M. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. N Schmied Arch Pharmacol 2004;369:89–104.CrossRefGoogle ScholarPubMed
McGraw, J, Waller, D. Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol 2012;8:371–382.CrossRefGoogle ScholarPubMed
Weinshilboum, R. Inheritance and drug response. N Engl J Med 2003;348:529–537.CrossRefGoogle ScholarPubMed
Cascorbi, I. Genetic basis of toxic reactions to drugs and chemicals. Toxicol Lett 2006;162:16–28.CrossRefGoogle ScholarPubMed
Russmann, S, Jetter, A, Kullak-Ublick, GA. Pharmacogenetics of drug-induced liver injury. Hepatology 2010;52:748–761.CrossRefGoogle ScholarPubMed
Burchell, B, Soars, M, Monaghan, G, et al. Drug-mediated toxicity caused by genetic deficiency of UDP-glucuronosyltransferases. Toxicol Lett 2000;112–113:333–340.CrossRefGoogle ScholarPubMed
Pessayre, D, Fromenty, B, Berson, A, et al. Central role of mitochondria in drug-induced liver injury. Drug Metab Rev 2012;44:34–87.CrossRefGoogle ScholarPubMed
Lucena, MI, Garcia-Martin, E, Andrade, RJ, et al. Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury. Hepatology 2010;52:303–312.CrossRefGoogle ScholarPubMed
Hines, RN, McCarver, DG. The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. J Pharmacol Exp Ther 2002;300:355–360.CrossRefGoogle ScholarPubMed
Kearns, GL, Abdel-Rahman, SM, Alander, SW, et al. Developmental pharmacology: drug disposition, action, and therapy in infants and children. N Engl J Med 2003;349:1157–1167.CrossRefGoogle ScholarPubMed
Tateishi, T, Nakura, H, Asoh, M, et al. A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci 1997;61:2567–2574.CrossRefGoogle ScholarPubMed
Aranda, JV, Collinge, JM, Zinman, R, Watters, G. Maturation of caffeine elimination in infancy. Arch Dis Child 1979;54:946–949.CrossRefGoogle ScholarPubMed
Treluyer, JM, Gueret, G, Cheron, G, Sonnier, M, Cresteil, T. Developmental expression of CYP2C- and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility. Pharmacogenetics 1997;7:441–452.CrossRefGoogle ScholarPubMed
Lang, C, Meier, Y, Stieger, B, et al. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics 2007;17:47–60.CrossRefGoogle ScholarPubMed
Walsh, SA, Creamer, D. Drug reaction with eosinophilia and systemic symptoms (DRESS): a clinical update and review of current thinking. Clin Exp Dermatol 2011;36:6–11.CrossRefGoogle ScholarPubMed
Cacoub, P, Musette, P, Descamps, V, et al. The DRESS syndrome: a literature review. Am J Med 2011;124:588–597.CrossRefGoogle ScholarPubMed
Jaeschke, H, Gores, GJ, Cederbaum, AI, et al. Mechanisms of hepatotoxicity. Toxicol Sci 2002;65:166–176.CrossRefGoogle ScholarPubMed
James, LP, Farrar, HC, Darville, TL, et al. Elevation of serum interleukin 8 levels in acetaminophen overdose in children and adolescents. Clin Pharmacol Ther 2001;70:280–286.CrossRefGoogle ScholarPubMed
Ju, C, Reilly, TP, Bourdi, M, et al. Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem Res Toxicol 2002;15:1504–1513.CrossRefGoogle ScholarPubMed
Aithal, GP, Ramsay, L, Daly, AK, et al. Hepatic adducts, circulating antibodies, and cytokine polymorphisms in patients with diclofenac hepatotoxicity. Hepatology 2004;39:1430–1440.CrossRefGoogle ScholarPubMed
Molleston, JP, Fontana, RJ, Lopez, MJ, et al. Characteristics of idiosyncratic drug-induced liver injury in children: results from the DILIN prospective study. J Pediatr Gastroenterol Nutr 2011;53:182–189.CrossRefGoogle ScholarPubMed
Mahadevan, SB, McKiernan, PJ, Davies, P, Kelly, DA. Paracetamol induced hepatotoxicity. Arch Dis Child 2006;91:598–603.CrossRefGoogle ScholarPubMed
Makin, AJ, Wendon, J, Williams, R. A 7-year experience of severe acetaminophen-induced hepatotoxicity (1987–1993). Gastroenterology 1995;109:1907–1916.CrossRefGoogle Scholar
Smilkstein, MJ, Knapp, GL, Kulig, KW, Rumack, BH. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. N Engl J Med 1988;319:1557–1562.CrossRefGoogle ScholarPubMed
Harrison, PM, Keays, R, Bray, GP, Alexander, GJ, Williams, R. Improved outcome of paracetamol-induced fulminant hepatic failure by late administration of acetylcysteine. Lancet 1990;335:1572–1573.CrossRefGoogle ScholarPubMed
Keays, R, Harrison, PM, Wendon, JA, et al. Intravenous acetylcysteine in paracetamol induced fulminant hepatic failure: a prospective controlled trial. BMJ 1991;303:1026–1029.CrossRefGoogle ScholarPubMed
Yarema, MC, Johnson, DW, Berlin, RJ, et al. Comparison of the 20-hour intravenous and 72-hour oral acetylcysteine protocols for the treatment of acute acetaminophen poisoning. Ann Emerg Med 2009;54:606–614.CrossRefGoogle ScholarPubMed
Heubi, JE, Barbacci, MB, Zimmerman, HJ. Therapeutic misadventures with acetaminophen: hepatoxicity after multiple doses in children. J Pediatr 1998;132:22–27.CrossRefGoogle ScholarPubMed
Walls, L, Baker, CF, Sarkar, S. Acetaminophen-induced hepatic failure with encephalopathy in a newborn. J Perinatol 2007;27:133–135.CrossRefGoogle Scholar
Savino, F, Lupica, MM, Tarasco, V, et al. Fulminant hepatitis after 10 days of acetaminophen treatment at recommended dosage in an infant. Pediatrics 2011;127:e494–e497.CrossRefGoogle ScholarPubMed
Watkins, PB, Kaplowitz, N, Slattery, JT, et al. Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily: a randomized controlled trial. JAMA 2006;296:87–93.CrossRefGoogle ScholarPubMed
Webster, PA, Roberts, DW, Benson, RW, Kearns, GL. Acetaminophen toxicity in children: diagnostic confirmation using a specific antigenic biomarker. J Clin Pharmacol 1996;36:397–402.CrossRefGoogle ScholarPubMed
Jaeschke, H, Knight, TR, Bajt, ML. The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol Lett 2003;144:279–288.CrossRefGoogle ScholarPubMed
Fannin, RD, Russo, M, O’Connell, TM, et al. Acetaminophen dosing of humans results in blood transcriptome and metabolome changes consistent with impaired oxidative phosphorylation. Hepatology 2010;51:227–236.CrossRefGoogle ScholarPubMed
Goldring, CE, Kitteringham, NR, Elsby, R, et al. Activation of hepatic Nrf2 in vivo by acetaminophen in CD-1 mice. Hepatology 2004;39:1267–1276.CrossRefGoogle ScholarPubMed
Liu, HH, Lu, P, Guo, Y, et al. An integrative genomic analysis identifies Bhmt2 as a diet-dependent genetic factor protecting against acetaminophen-induced liver toxicity. Genome Res 2010;20:28–35.CrossRefGoogle ScholarPubMed
Harrill, AH, Watkins, PB, Su, S, et al. Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans. Genome Res 2009;19:1507–1515.CrossRefGoogle ScholarPubMed
Peterson, RG, Rumack, BH. Age as a variable in acetaminophen overdose. Arch Intern Med 1981;141:390–393.CrossRefGoogle ScholarPubMed
Rumack, BH. Acetaminophen overdose in young children. Treatment and effects of alcohol and other additional ingestants in 417 cases. Am J Dis Child 1984;138:428–433.CrossRefGoogle ScholarPubMed
Peterson, RG, Rumack, BH. Pharmacokinetics of acetaminophen in children. Pediatrics 1978;62:877–879.Google ScholarPubMed
Hickson, GB, Altemeier, WA, Martin, ED, Campbell, PW. Parental administration of chemical agents a cause of apparent life threatening events. J Pediatr 1989;83:772–776.Google ScholarPubMed
Rumack, BH. Acetaminophen misconceptions. Hepatology 2004;40:10–15.CrossRefGoogle ScholarPubMed
Al-Sinani, S, Al-Rawas, A, Dhawan, A. Mercury as a cause of fulminant hepatic failure in a child: case report and literature review. Clin Res Hepatol Gastroenterol 2011;35:580–582.CrossRefGoogle Scholar
Zimmerman, HJ, Maddrey, WC. Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure. Hepatology 1995;22:767–773.CrossRefGoogle ScholarPubMed
Bruun, LS, Elkjaer, S, Bitsch-Larsen, D, Andersen, O. Hepatic failure in a child after acetaminophen and sevoflurane exposure. Anesth Analg 2001;92:1446–1448.CrossRefGoogle Scholar
Ceschi, A, Hofer, KE, Rauber-Luthy, C, Kupferschmidt, H. Paracetamol orodispersible tablets:a risk for severe poisoning in children? Eur J Clin Pharmacol 2011;67:97–99.CrossRefGoogle ScholarPubMed
Yagupsky, P, Gazala, E, Sofer, S. Fatal hepatic failure and encephalopathy associated with amiodarone therapy. J Pediatr 1985;107:967–970.CrossRefGoogle ScholarPubMed
Floyd, J, Mirza, I, Sachs, B, Perry, MC. Hepatotoxicity of chemotherapy. Semin Oncol 2006;33:50–67.CrossRefGoogle ScholarPubMed
Pratibha, R, Sameer, R, Rataboli, PV, Bhiwgade, DA, Dhume, CY. Enzymatic studies of cisplatin induced oxidative stress in hepatic tissue of rats. Eur J Pharmacol 2006;532:290–293.CrossRefGoogle ScholarPubMed
Lu, Y, Cederbaum, AI. Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P450 2E1. Toxicol Sci 2006;89:515–523.CrossRefGoogle ScholarPubMed
Honjo, I, Suou, T, Hirayama, C. Hepatotoxicity of cyclophosphamide in man:pharmacokinetic analysis. Res Commun Chem Pathol Pharmacol 1988;61:149–165.Google ScholarPubMed
Berkovitch, M, Matsui, D, Zipursky, A, et al. Hepatotoxicity of 6-mercaptopurine in childhood acute lymphocytic leukemia: pharmacokinetic characteristics. Med Pediatr Oncol 1996;26:85–89.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Hazar, V, Kutluk, T, Akyuz, C, et al. Veno-occlusive disease-like hepatotoxicity in two children receiving chemotherapy for Wilms’ tumor and clear cell sarcoma of kidney. Pediatr Hematol Oncol 1998;15:85–89.CrossRefGoogle ScholarPubMed
Topley, J, Benson, J, Squier, MV, Chessells, JM. Hepatotoxicity in the treatment of acute lymphoblastic leukemia. Med Pediatr Oncol 1979;7:393–399.CrossRefGoogle Scholar
Pratt, CB, Johnson, WW. Duration and severity of fatty metamorphosis of the liver following l-asparaginase therapy. Cancer 1971;28:361–364.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Sahoo, S, Hart, J. Histopathological features of l-asparaginase-induced liver disease. Semin Liver Dis 2003;23:295–299.Google ScholarPubMed
Hruban, RH, Sternberg, SS, Meyers, P, et al. Fatal thrombocytopenia and liver failure associated with carboplatin therapy. Cancer Invest 1991;9:263–268.CrossRefGoogle ScholarPubMed
DeLeve, LD, Shulman, HM, McDonald, GB. Toxic injury to hepatic sinusoids:sinusoidal obstruction syndrome (veno-occlusive disease). Semin Liver Dis 2002;22:27–42.CrossRefGoogle Scholar
D’Antiga, L, Baker, A, Pritchard, J, Pryor, D, Mieli-Vergani, G. Veno-occlusive disease with multi-organ involvement following actinomycin-D. Eur J Cancer 2001;37:1141–1148.CrossRefGoogle ScholarPubMed
Barker, CC, Anderson, RA, Sauve, RS, Butzner, JD. GI complications in pediatric patients post-BMT. Bone Marrow Transplant 2005;36:51–58.CrossRefGoogle ScholarPubMed
Sulis, ML, Bessmertny, O, Granowetter, L, Weiner, M, Kelly, KM. Veno-occlusive disease in pediatric patients receiving actinomycin D and vincristine only for the treatment of rhabdomyosarcoma. J Pediatr Hematol Oncol 2004;26:843–846.Google ScholarPubMed
Elli, M, Pinarli, FG, Dagdemir, A, Acar, S. Veno-occlusive disease of the liver in a child after chemotherapy for brain tumor. Pediatr Blood Cancer 2006;46:521–523.CrossRefGoogle Scholar
McDonald, GB, Sharma, P, Matthews, DE, et al. The clinical course of 53 patients with veno-occlusive disease of the liver after marrow transplantation. Transplantation 1985;39:603–608.CrossRefGoogle Scholar
McDonald, GB, Slattery, JT, Bouvier, ME, et al. Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood 2003;101:2043–2048.CrossRefGoogle ScholarPubMed
El-Sayed, MH, El-Haddad, A, Fahmy, OA, Salama, II, Mahmoud, HK. Liver disease is a major cause of mortality following allogeneic bone-marrow transplantation. Eur J Gastroenterol Hepatol 2004;16:1347–1354.CrossRefGoogle ScholarPubMed
Srivastava, A, Poonkuzhali, B, Shaji, RV, et al. Glutathione S-transferase M1 polymorphism: a risk factor for hepatic venoocclusive disease in bone marrow transplantation. Blood 2004;104:1574–1577.CrossRefGoogle ScholarPubMed
Stoneham, S, Lennard, L, Coen, P, Lilleyman, J, Saha, V. Veno-occlusive disease in patients receiving thiopurines during maintenance therapy for childhood acute lymphoblastic leukaemia. Br J Haematol 2003;123:100–102.CrossRefGoogle ScholarPubMed
Reiss, U, Cowan, M, McMillan, A, Horn, B. Hepatic venoocclusive disease in blood and bone marrow transplantation in children and young adults: incidence, risk factors, and outcome in a cohort of 241 patients. J Pediatr Hematol Oncol 2002;24:746–750.CrossRefGoogle Scholar
Ravikumara, M, Hill, FG, Wilson, DC, et al. 6-Thioguanine-related chronic hepatotoxicity and variceal haemorrhage in children treated for acute lymphoblastic leukaemia-a dual-centre experience. J Pediatr Gastroenterol Nutr 2006;42:535–538.CrossRefGoogle ScholarPubMed
Corbacioglu, S, Greil, J, Peters, C, et al. Defibrotide in the treatment of children with veno-occlusive disease (VOD): a retrospective multicentre study demonstrates therapeutic efficacy upon early intervention. Bone Marrow Transplant 2004;33:189–195.CrossRefGoogle ScholarPubMed
Shin-Nakai, N, Ishida, H, Yoshihara, T, et al. Control of hepatic veno-occlusive disease with an antithrombin-III concentrate-based therapy. Pediatr Int 2006;48:85–87.CrossRefGoogle ScholarPubMed
Ringden, O, Remberger, M, Lehmann, S, et al. N-Acetylcysteine for hepatic veno-occlusive disease after allogeneic stem cell transplantation. Bone Marrow Transplant 2000;25:993–996.CrossRefGoogle ScholarPubMed
Lee, AC, Goh, PY. Dactinomycin-induced hepatic sinusoidal obstruction syndrome responding to treatment with N-acetylcysteine. J Cancer 2011;2:527–531.CrossRefGoogle ScholarPubMed
DeLeve, LD. Dacarbazine toxicity in murine liver cells: a model of hepatic endothelial injury and glutathione defense. J Pharmacol Exp Ther 1994;268:1261–1270.Google ScholarPubMed
DeLeve, LD. Cellular target of cyclophosphamide toxicity in the murine liver: role of glutathione and site of metabolic activation. Hepatology 1996;24:830–837.CrossRefGoogle ScholarPubMed
DeLeve, LD, Wang, X, Kanel, GC, et al. Decreased hepatic nitric oxide production contributes to the development of rat sinusoidal obstruction syndrome. Hepatology 2003;38:900–908.CrossRefGoogle ScholarPubMed
Iguchi, A, Kobayashi, R, Yoshida, M, et al. Vascular endothelial growth factor (VEGF) is one of the cytokines causative and predictive of hepatic veno-occlusive disease (VOD) in stem cell transplantation. Bone Marrow Transplant 2001;27:1173–1180.CrossRefGoogle Scholar
Geller, SA, Dubinsky, MC, Poordad, FF, et al. Early hepatic nodular hyperplasia and submicroscopic fibrosis associated with 6-thioguanine therapy in inflammatory bowel disease. Am J Surg Pathol 2004;28:1204–1211.CrossRefGoogle ScholarPubMed
Rawat, D, Gillett, PM, Devadason, D, Wilson, DC, McKiernan, PJ. Long-term follow-up of children with 6-thioguanine-related chronic hepatoxicity following treatment for acute lymphoblastic leukaemia. J Pediatr Gastroenterol Nutr 2011;53:478–479.Google ScholarPubMed
Chen, TC, Ng, KF, Jeng, LB, Yeh, TS, Chen, CM, Aspirin-related hepatotoxicity in a child after liver transplant. Dig Dis Sci 2001;46:486–488.CrossRefGoogle Scholar
Hamdan, JA, Manasra, K, Ahmed, M. Salicylate-induced hepatitis in rheumatic fever. Am J Dis Child 1985;139:453–455.Google ScholarPubMed
Garnock-Jones, KP, Keating, GM. Atomoxetine: a review of its use in attention-deficit hyperactivity disorder in children and adolescents. Paediatr Drugs 2009;11:203–226.CrossRefGoogle ScholarPubMed
Lim, JR, Faught, PR, Chalasani, NP, Molleston, JP, Severe liver injury after initiating therapy with atomoxetine in two children. J Pediatr 2006;148:831–834.CrossRefGoogle ScholarPubMed
DePinho, RA, Goldberg, CS, Lefkowitch, JH. Azathioprine and the liver. Evidence favoring idiosyncratic, mixed cholestatic-hepatocellular injury in humans. Gastroenterology 1984;86:162–165.Google ScholarPubMed
Sterneck, M, Wiesner, R, Ascher, N, et al. Azathioprine hepatotoxicity after liver transplantation. Hepatology 1991;14:806–810.CrossRefGoogle ScholarPubMed
Seiderer, J, Zech, CJ, Diebold, J, et al. Nodular regenerative hyperplasia: a reversible entity associated with azathioprine therapy. Eur J Gastroenterol Hepatol 2006;18:553–555.CrossRefGoogle ScholarPubMed
Lennard, L. The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 1992;43:329–339.CrossRefGoogle ScholarPubMed
Adam de Beaumais, T, Fakhoury, M, Medard, Y, et al. Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy. Br J Clin Pharmacol 2011;71:575–584.CrossRefGoogle ScholarPubMed
Shear, NH, Spielberg, SP. Anticonvulsant hypersensitivity syndrome. In vitro assessment of risk. J Clin Invest 1988;82:1826–1832.CrossRefGoogle Scholar
Zucker, P, Daum, F, Cohen, MI. Fatal carbamazepine hepatitis. J Pediatr 1977;91:667–668.CrossRefGoogle ScholarPubMed
Smith, DW, Cullity, GJ, Silberstein, EP. Fatal hepatic necrosis associated with multiple anticonvulsant therapy. Aust N Z J Med 1988;18:575–581.CrossRefGoogle ScholarPubMed
Hadzic, N, Portmann, B, Davies, ET, Mowat, AP, Mieli-Vergani, G. Acute liver failure induced by carbamazepine. Arch Dis Child 1990;65:315–317.CrossRefGoogle ScholarPubMed
Morales-Diaz, M, Pinilla-Roa, E, Ruiz, I. Suspected carbamazepine-induced hepatotoxicity. Pharmacotherapy 1999;19:252–255.CrossRefGoogle ScholarPubMed
Sierra, NM, Garcia, B, Marco, J, et al. Cross hypersensitivity syndrome between phenytoin and carbamazepine. Pharm World Sci 2005;27:170–174.CrossRefGoogle ScholarPubMed
McCormack, M, Alfirevic, A, Bourgeois, S, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med 2011;364:1134–1143.CrossRefGoogle ScholarPubMed
D’Orazio, JL. Oxcarbazepine-induced drug reaction with eosinophilia and systemic symptoms (DRESS). Clin Toxicol 2008;46:1093–1094.CrossRefGoogle Scholar
Bosdure, E, Cano, A, Roquelaure, B, et al. [Oxcarbazepine and DRESS syndrome:a paediatric cause of acute liver failure.] Arch Pediatr 2004;11:1073–1077.CrossRefGoogle ScholarPubMed
Wanless, IR, Dore, S, Gopinath, G, et al. Histopathology of cocaine hepatotoxicity. Report of four cases. Gastroenterology 1990;98:497–501.CrossRefGoogle Scholar
Kassianides, C, Nussenblatt, R, Palestine, AG, Mellow, SD, Hoofnagle, JH. Liver injury from cyclosporine A. Dig Dis Sci 1990;35:693–697.CrossRefGoogle ScholarPubMed
Stieger, B, Fattinger, K, Madon, J, Kullak-Ublick, GA, Meier, PJ. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 2000;118:422–430.CrossRefGoogle ScholarPubMed
Bramow, S, Ott, P, Thomsen, Nielsen F, et al. Cholestasis and regulation of genes related to drug metabolism and biliary transport in rat liver following treatment with cyclosporine A and sirolimus (Rapamycin). Pharmacol Toxicol 2001;89:133–139.CrossRefGoogle Scholar
Yasumiba, S, Tazuma, S, Ochi, H, Chayama, K, Kajiyama, G. Cyclosporin A reduces canalicular membrane fluidity and regulates transporter function in rats. Biochem J 2001;354:591–596.CrossRefGoogle ScholarPubMed
Brauer, RB, Heidecke, CD, Nathrath, W, et al. Liver transplantation for the treatment of fulminant hepatic failure induced by the ingestion of ecstasy. Transplant Int 1997;10:229–233.CrossRefGoogle ScholarPubMed
Andreu, V, Mas, A, Bruguera, M, et al. Ecstasy: a common cause of severe acute hepatotoxicity. J Hepatol 1998;29:394–397.CrossRefGoogle ScholarPubMed
Greene, SL, Dargan, PI, O’Connor, N, Jones, AL, Kerins, M. Multiple toxicity from 3,4-methylenedioxymethamphetamine (“ecstasy”). Am J Emerg Med 2003;21:121–124.CrossRefGoogle Scholar
Smith, ID, Simpson, KJ, Garden, OJ, Wigmore, SJ. Non-paracetamol drug-induced fulminant hepatic failure among adults in Scotland. Eur J Gastroenterol Hepatol 2005;17:161–167.CrossRefGoogle ScholarPubMed
Antolino-Lobo, I, Meulenbelt, J, van den Berg, M, van Duursen, MB. A mechanistic insight into 3,4-methylenedioxymethamphetamine (“ecstasy”)-mediated hepatotoxicity. Vet Q 2011;31:193–205.CrossRefGoogle ScholarPubMed
Ellis, AJ, Wendon, JA, Portmann, B, Williams, R. Acute liver damage and ecstasy ingestion. Gut 1996;38:454–458.CrossRefGoogle ScholarPubMed
Munoz, P, Drobinska, A, Bianchi, L, Zuger, C, Pirovino, M. [Acute giant cell hepatitis in a 17-year old man.] Schweiz Rundsch Med Prax 2004;93:2109–2112.Google Scholar
Zafrani, ES, Ishak, KG, Rudzki, C. Cholestatic and hepatocellular injury associated with erythromycin esters. Report of nine cases. Dig Dis Sci 1979;24:385–396.CrossRefGoogle ScholarPubMed
Phillips, KG. Hepatotoxicity of erythromycin ethylsuccinate in a child. CMAJ 1983;129:411–412.Google Scholar
Principi, N, Esposito, S. Comparative tolerability of erythromycin and newer macrolide antibacterials in paediatric patients. Drug Saf 1999;20:25–41.CrossRefGoogle ScholarPubMed
Giannattasio, A, D’Ambrosi, M, Volpicelli, M, Iorio, R. Steroid therapy for a case of severe drug-induced cholestasis. Ann Pharmacother 2006;40:1196–1199.CrossRefGoogle ScholarPubMed
Fox, JC, Szyjkowski, RS, Sanderson, SO, Levine, RA. Progressive cholestatic liver disease associated with clarithromycin treatment. J Clin Pharmacol 2002;42:676–680.CrossRefGoogle ScholarPubMed
Brinker, AD, Wassel, RT, Lyndly, J, et al. Telithromycin-associated hepatotoxicity: clinical spectrum and causality assessment of 42 cases. Hepatology 2009;49:250–257.CrossRefGoogle ScholarPubMed
Lewis, JH, Tice, HL, Zimmerman, HJ. Budd–Chiari syndrome associated with oral contraceptive steroids. Review of treatment of 47 cases. Dig Dis Sci 1983;28:673–683.CrossRefGoogle ScholarPubMed
Neuberger, J, Nunnerley, HB, Davis, M, et al. Oral-contraceptive-associated liver tumours: Occurrence of malignancy and difficulties in diagnosis. Lancet 1980;i:273–276.CrossRefGoogle Scholar
Pellock, JM. Felbamate. Epilepsia 1999;40(Suppl 5):S57–S62.CrossRefGoogle ScholarPubMed
Popovic, M, Nierkens, S, Pieters, R, Uetrecht, J. Investigating the role of 2-phenylpropenal in felbamate-induced idiosyncratic drug reactions. Chem Res Toxicol 2004;17:1568–1576.CrossRefGoogle ScholarPubMed
Gaertner, I, Altendorf, K, Batra, A, Gaertner, HJ. Relevance of liver enzyme elevations with four different neuroleptics: a retrospective review of 7263 treatment courses. J Clin Psychopharmacol 2001;21:215–222.CrossRefGoogle ScholarPubMed
Lo, SK, Wendon, J, Mieli-Vergani, G, Williams, R. Halothane-induced acute liver failure: continuing occurrence and use of liver transplantation. Eur J Gastroenterol Hepatol 1998;10:635–639.Google ScholarPubMed
Kenna, JG, Newberger, J, Mieli-Vergani, G, Mowat, AP, Williams, R. Halothane hepatitis in children. BMJ 1987;294:1209–1211.CrossRefGoogle ScholarPubMed
Hassall, E, Israel, DM, Gunasekaran, T, Steward, D. Halothane hepatitis in children. J Pediatr Gastroenterol Nutr 1990;11:553–557.CrossRefGoogle ScholarPubMed
Wark, HJ. Postoperative jaundice in children. Anaesthesia 1983;38:237–242.Google ScholarPubMed
Warner, LO, Beach, TP, Gariss, JP, Warner, EJ. Halothane and children: the first quarter century. Anesth Analg 1984;63:838–840.CrossRefGoogle ScholarPubMed
Psacharopoulos, HJ, Mowat, AP, Davies, M, et al. Fulminant hepatic failure in childhood: an analysis of 31 cases. Arch Dis Child 1980;55:252–258.CrossRefGoogle ScholarPubMed
Farrell, GC. Mechanism of halothane-induced liver injury: is it immune or metabolic idiosyncrasy? J Gastroenterol Hepatol 1988;3:465–482.CrossRefGoogle Scholar
Pohl, LR, Satoh, H, Christ, DD, Kenna, J. The immunologic and metabolic basis of drug hypersensitivities. Annu Rev Pharmacol Toxicol 1988;28:367–387.CrossRefGoogle ScholarPubMed
Kenna, JG, Satoh, H, Christ, DD, Pohl, LR. Metabolic basis for a drug hypersensitivity: antibodies in sera from patients with halothane hepatitis recognize liver neoantigens that contain the trifluoroacetyl group derived from halothane. J Pharm Exp Ther 1988;245:1103–1109.Google ScholarPubMed
Kenna, JG, Neuberger, J, Williams, R. Evidence for expression in human liver of halothane-induced neoantigens recognized by antibodies in sera from patients with halothane hepatitis. Hepatology 1988;8:1635–1641.CrossRefGoogle ScholarPubMed
Satoh, H, Martin, BM, Schulick, AH, et al. Human anti-endoplasmic reticulum antibodies in sera of patients with halothane-induced hepatitis are directed against a trifluoroacetylated carboxylesterase. Proc Natl Acad Sci USA 1989;86:322–326.CrossRefGoogle ScholarPubMed
Rode, D. Comfrey toxicity revisited. Trends Pharmacol Sci 2002;23:497–499.CrossRefGoogle ScholarPubMed
Zuckerman, M, Steenkamp, V, Stewart, MJ. Hepatic veno-occlusive disease as a result of a traditional remedy: confirmation of toxic pyrrolizidine alkaloids as the cause, using an in vitro technique. J Clin Pathol 2002;55:676–679.CrossRefGoogle ScholarPubMed
Laliberte, L, Villeneuve, JP. Hepatitis after the use of germander, a herbal remedy. CMAJ 1996;154:1689–1692.Google ScholarPubMed
Lekehal, M, Pessayre, D, Lereau, JM, et al. Hepatotoxicity of the herbal medicine germander: metabolic activation of its furano diterpenoids by cytochrome P450 3A depletes cytoskeleton-associated protein thiols and forms plasma membrane blebs in rat hepatocytes. Hepatology 1996;24:212–218.CrossRefGoogle ScholarPubMed
Fau, D, Lekehal, M, Farrell, G, et al. Diterpenoids from germander, an herbal medicine, induce apoptosis in isolated rat hepatocytes. Gastroenterology 1997;113:1334–1346.CrossRefGoogle ScholarPubMed
Clouatre, DL. Kava kava: examining new reports of toxicity. Toxicol Lett 2004;150:85–96.CrossRefGoogle ScholarPubMed
Campo, JV, McNabb, J, Perel, JM, et al. Kava-induced fulminant hepatic failure. J Am Acad Child Adolesc Psychiatry 2002;41:631–632.CrossRefGoogle ScholarPubMed
Anke, J, Ramzan, I. Pharmacokinetic and pharmacodynamic drug interactions with Kava (Piper methysticum Forst. f.). J Ethnopharmacol 2004;93:153–160.CrossRefGoogle Scholar
Batchelor, WB, Heathcote, J, Wanless, IR. Chaparral-induced hepatic injury. Am J Gastroenterol 1995;90:831–833.Google ScholarPubMed
Sheikh, NM, Philen, RM, Love, LA. Chaparral-associated hepatotoxicity. Arch Intern Med 1997;157:913–919.CrossRefGoogle ScholarPubMed
Horowitz, RS, Feldhaus, K, Dart, RC, Stermitz, FR, Beck, JJ. The clinical spectrum of Jin Bu Huan toxicity. Arch Intern Med 1996;156:899–903.CrossRefGoogle ScholarPubMed
Skoulidis, F, Alexander, GJ, Davies, SE. Ma huang associated acute liver failure requiring liver transplantation. Eur J Gastroenterol Hepatol 2005;17:581–584.CrossRefGoogle ScholarPubMed
Webb, N, Hardikar, W, Cranswick, NE, Somers, GR. Probable herbal medication induced fulminant hepatic failure. J Paediatr Child Health 2005;41:530–531.CrossRefGoogle Scholar
Tobon, GJ, Canas, C, Jaller, JJ, Restrepo, JC, Anaya, JM. Serious liver disease induced by infliximab. Clin Rheumatol 2007;26:578–581.CrossRefGoogle ScholarPubMed
Goldfeld, DA, Verna, EC, Lefkowitch, J, Swaminath, A. Infliximab-induced autoimmune hepatitis with successful switch to adalimumab in a patient with Crohn’s disease: the index case. Dig Dis Sci 2011;56:3386–3388.CrossRefGoogle Scholar
Moum, B, Konopski, Z, Tufteland, KF, Jahnsen, J. Occurrence of hepatoxicity and elevated liver enzymes in a Crohn’s disease patient treated with infliximab. Inflamm Bowel Dis 2007;13:1584–1586.CrossRefGoogle Scholar
Kinnunen, U, Farkkila, M, Makisalo, H. A case report: ulcerative colitis, treatment with an antibody against tumor necrosis factor (infliximab), and subsequent liver necrosis. J Crohns Colitis 2012;6:724–727.CrossRefGoogle Scholar
Mancini, S, Amorotti, E, Vecchio, S, Ponz de Leon, M, Roncucci, L. Infliximab-related hepatitis: discussion of a case and review of the literature. Intern Emerg Med 2010;5:193–200.CrossRefGoogle ScholarPubMed
Zimmerman, HJ. Update of hepatotoxicity due to classes of drugs in common clinical use: Non-steroidal drugs, anti-inflammatory drugs, antibiotics, antihypertensives, and cardiac and psychotropic drugs. Sem Liver Dis 1990;10:322–338.CrossRefGoogle Scholar
Wu, SS, Chao, CS, Vargas, JH, et al. Isoniazid-related hepatic failure in children: a survey of liver transplantation centers. Transplantation 2007;84:173–179.CrossRefGoogle ScholarPubMed
Spyridis, P, Sinantios, C, Papadea, I, et al. Isoniazid liver injury during chemoprophylaxis in children. Arch Dis Child 1979;54:65–67.CrossRefGoogle ScholarPubMed
Palusci, VJ, O’Hare, D, Lawrence, RM. Hepatotoxicity and transaminase measurement during isoniazid chemoprophylaxis in children. Pediatr Infect Dis J 1995;14:144–148.Google ScholarPubMed
Campos-Franco, J, Gonzalez-Quintela, A, Alende-Sixto, MR. Isoniazid-induced hyperacute liver failure in a young patient receiving carbamazepine. Eur J Intern Med 2004;15:396–397.CrossRefGoogle Scholar
Metushi, IG, Cai, P, Zhu, X, Nakagawa, T, Uetrecht, JP. A fresh look at the mechanism of isoniazid-induced hepatotoxicity. Clin Pharmacol Ther 2011;89:911–914.CrossRefGoogle Scholar
Vuilleumier, N, Rossier, MF, Chiappe, A, et al. CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. Eur J Clin Pharmacol 2006;62:423–429.CrossRefGoogle ScholarPubMed
Lewis, JH, Zimmerman, HJ, Benson, GD, Ishak, KG. Hepatic injury associated with ketoconazole therapy. Analysis of 33 cases. Gastroenterology 1984;86:503–513.Google ScholarPubMed
Schlienger, RG, Knowles, SR, Shear, NH. Lamotrigine-associated anticonvulsant hypersensitivity syndrome. Neurology 1998;51:1172–1175.CrossRefGoogle ScholarPubMed
Fayad, M, Choueiri, R, Mikati, M. Potential hepatotoxicity of lamotrigine. Pediatr Neurol 2000;22:49–52.CrossRefGoogle ScholarPubMed
Overstreet, K, Costanza, C, Behling, C, Hassanin, T, Masliah, E. Fatal progressive hepatic necrosis associated with lamotrigine treatment: a case report and literature review. Dig Dis Sci 2002;47:1921–1925.CrossRefGoogle ScholarPubMed
Zidd, AG, Hack, JB, Pediatric ingestion of lamotrigine. Pediatr Neurol 2004;31:71–72.CrossRefGoogle ScholarPubMed
Kremer, JM, Lee, RG, Tolman, KG. Liver histology in rheumatoid arthritis patients receiving long-term methotrexate therapy. A prospective study with baseline and sequential biopsy samples. Arthritis Rheum 1989;32:121–127.CrossRefGoogle ScholarPubMed
Kremer, JM, Furst, DE, Weinblatt, ME, Blotner, SD. Significant changes in serum AST across hepatic histological grades:prospective analysis of 3 cohorts receiving methotrxate therapy for rheumatoid arthritis. J Rheumatol 1996;23:459–461.Google Scholar
Hashkes, PJ, Balistreri, WF, Bove, KE, Ballard, ET, Passo, MH. The relationship of hepatotoxic risk factors and liver histology in methotrexate therapy for juvenile rheumatoid arthritis. J Pediatr 1999;134:47–52.CrossRefGoogle ScholarPubMed
Graham, LD, Myones, BL, Rivas-Chacon, RF, Pachman, LM. Morbidity associated with long-term methotrexate therapy in juvenile rheumatoid arthritis. J Pediatr 1992;120:468–473.CrossRefGoogle ScholarPubMed
Kugathasam, S, Newman, AJ, Dahms, BB, Boyle, JT. Liver biopsy findings in patients with juvenile rheumatoid arthritis receiving long-term, weekly methotrexate therapy. J Pediatr 1996;128:149–151.CrossRefGoogle Scholar
Keim, D, Ragsdale, C, Heidelberger, K, Sullivan, D. Hepatic fibrosis with the use of methotrexate for juvenile rheumatoid arthritis. J Rheumatol 1990;17:846–848.Google ScholarPubMed
Fisher, MC, Cronstein, BN. Metaanalysis of methylenetetrahydrofolate reductase (MTHFR) polymorphisms affecting methotrexate toxicity. J Rheumatol 2009;36:539–545.CrossRefGoogle ScholarPubMed
Locasciulli, A, Mura, R, Fraschini, D, et al. High-dose methotrexate administration and acute liver damage in children treated for acute lymphoblastic leukemia. A prospective study. Haematologica 1992;77:49–53.Google ScholarPubMed
Malcolm, A, Heap, TR, Eckstein, RP, Lunzer, MR. Minocycline-induced liver injury. Am J Gastroenterol 1996;91:1641–1643.Google ScholarPubMed
Gough, A, Chapman, S, Wagstaff, K, Emery, P, Elias, E. Minocycline induced autoimmune hepatitis and systemic lupus erythematosus-like syndrome. BMJ 1996;312:169–172.CrossRefGoogle ScholarPubMed
Bhat, G, Jordan, J, Sokalski, S, et al. Minocycline-induced hepatitis with autoimmune features and neutropenia. J Clin Gastroenterol 1998;27:74–75.CrossRefGoogle ScholarPubMed
Davies, MG, Kersey, PJW. Acute hepatitis and exfoliative dermatitis associated with minocycline. BMJ 1989;298:1523–1524.CrossRefGoogle ScholarPubMed
Boudreaux, JP, Hayes, DH, Mizrahi, S, et al. Fulminant hepatic failure, hepatorenal syndrome, and necrotizing pancreatitis after minocycline hepatotoxicity. Transplant Proc 1993;25:1873.Google ScholarPubMed
McKoy, JM, Bennett, CL, Scheetz, MH, et al. Hepatotoxicity associated with long- versus short-course HIV-prophylactic nevirapine use: a systematic review and meta-analysis from the Research on Adverse Drug events And Reports (RADAR) project. Drug Saf 2009;32:147–158.CrossRefGoogle ScholarPubMed
Ciccacci, C, Borgiani, P, Ceffa, S, et al. Nevirapine-induced hepatotoxicity and pharmacogenetics: a retrospective study in a population from Mozambique. Pharmacogenomics 2010;11:23–31.CrossRefGoogle Scholar
Agundez, JA, Lucena, MI, Martinez, C, et al. Assessment of nonsteroidal anti-inflammatory drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2011;7:817–828.CrossRefGoogle ScholarPubMed
Titchen, T, Cranswick, N, Beggs, S. Adverse drug reactions to nonsteroidal anti-inflammatory drugs, COX-2 inhibitors and paracetamol in a paediatric hospital. Br J Clin Pharmacol 2005;59:718–723.CrossRefGoogle Scholar
Whittaker, SJ, Amar, JN, Wanless, IR, , Heathcote J.Sulindac hepatotoxicity. Gut 1982;23:875–877.CrossRefGoogle ScholarPubMed
Boelsterli, UA. Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Toxicol Appl Pharmacol 2003;192:307–322.CrossRefGoogle ScholarPubMed
Merlani, G, Fox, M, Oehen, HP, et al. Fatal hepatoxicity secondary to nimesulide. Eur J Clin Pharmacol 2001;57:321–326.CrossRefGoogle ScholarPubMed
Marotta, PJ, Roberts, EA. Pemoline hepatotoxicity in children. J Pediatr 1998;132:894–897.CrossRefGoogle ScholarPubMed
Rosh, JR, Dellert, SF, Narkewicz, M, Birnbaum, A, Whitington, G. Four cases of severe hepatotoxicity associated with pemoline: possible autoimmune pathogenesis. Pediatrics 1998;101:921–923.CrossRefGoogle ScholarPubMed
Gresser, U. Amoxicillin-clavulanic acid therapy may be associated with severe side effects review of the literature. Eur J Med Res 2001;6:139–149.Google ScholarPubMed
Stricker, BH, Van den Broek, JW, Keuning, J, et al. Cholestatic hepatitis due to antibacterial combination of amoxicillin and clavulanic acid (augmentin). Dig Dis Sci 1989;34:1576–1580.CrossRefGoogle Scholar
Yu, MK, Yu, MC, Lee, F. Association of DRESS syndrome with chylous ascites. Nephrol Dial Transplant 2006;21:3301–3303.CrossRefGoogle ScholarPubMed
Fontana, RJ, Shakil, AO, Greenson, JK, Boyd, I, Lee, WM. Acute liver failure due to amoxicillin and amoxicillin/clavulanate. Dig Dis Sci 2005;50:1785–1790.CrossRefGoogle ScholarPubMed
Daly, AK, Donaldson, PT, Bhatnagar, P, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 2009;41:816–819.CrossRefGoogle ScholarPubMed
Lucena, MI, Molokhia, M, Shen, Y, et al. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterol 2011;141:338–347.CrossRefGoogle Scholar
Chawla, A, Kahn, E, Yunis, EJ, Daum, F. Rapidly progressive cholstasis: an unusual reaction to amoxicillin/clavulinic acid in a child. J Pediatr 2000;136:121–123.CrossRefGoogle Scholar
Roberts, EA, Spielberg, SP, Goldbach, M, Phillips, MJ. Phenobarbital hepatotoxicity in an 8-month-old infant. J Hepatol 1990;10:235–239.CrossRefGoogle Scholar
Li, AM, Nelson, EA, Hon, EK, et al. Hepatic failure in a child with anti-epileptic hypersensitivity syndrome. J Paediatr Child Health 2005;41:218–220.CrossRefGoogle Scholar
Bessmertny, O, Hatton, RC, Gonzalez-Peralta, RP. Antiepileptic hypersensitivity syndrome in children. Ann Pharmacother 2001;35:533–538.CrossRefGoogle ScholarPubMed
Mullick, FG, Ishak, KG. Hepatic injury associated with diphenylhydantoin therapy. Am J Clin Pathol 1980;74:442–452.CrossRefGoogle ScholarPubMed
Spielberg, SP, Gordon, GB, Blake, DA, Mellits, ED, Bross, DS. Anticonvulsant toxicity in vitro:possible role of arene oxides. J Pharmacol Exp Ther 1981;217:386–389.Google ScholarPubMed
Spielberg, SP, Gordon, GB, Blake, DA, Goldstein, DA, Herlong, HF. Predisposition to phenytoin hepatotoxicity assessed in vitro. N Engl J Med 1981;305:722–727.CrossRefGoogle ScholarPubMed
Rivkees, SA, Mattison, DR. Propylthiouracil (PTU) hepatoxicity in children and recommendations for discontinuation of use. Int J Pediatr Endocrinol 2009;2009:1320–1341.CrossRefGoogle Scholar
Maggiore, G, Larizza, D, Lorini, R, et al. PTU hepatotoxicity mimicking autoimmune chronic active hepatitis in a girl. J Pediatr Gastroenterol Nutr 1989;8:547–548.CrossRefGoogle Scholar
Hayashida, CY, Duarte, AJ, Sato, AE, Yamashiro-Kanashiro, EH. Neonatal hepatitis and lymphocyte sensitization by placental transfer of propylthiouracil. J Endocrinol Invest 1990;13:937–941.CrossRefGoogle ScholarPubMed
Loomba-Albrecht, LA, Bremer, AA, Wong, A, Philipps, A. Neonatal cholestasis due to hyperthyroidism: an unusual case and clinical implications. J Pediatr Gastroenterol Nutr 2012;54:433–434.CrossRefGoogle Scholar
Fallon, MB, Boyer, JL. Hepatic toxicity of vitamin A and synthetic retinoids. J Gastroenterol Hepatol 1990;5:334–342.CrossRefGoogle ScholarPubMed
Kumra, S, Herion, D, Jacobsen, LK, Briguglia, C, Grothe, D. Case study: risperidone-induced hepatotoxicity in pediatric patients. J Am Acad Child Adolesc Psychiatry 1997;36:701–705.CrossRefGoogle ScholarPubMed
Krebs, S, Dormann, H, Muth-Selbach, U, et al. Risperidone-induced cholestatic hepatitis. Eur J Gastroenterol Hepatol 2001;13:67–69.CrossRefGoogle ScholarPubMed
Copur, M, Erdogan, A. Risperidone rechallenge for marked liver function test abnormalities in an autistic child. Recent Pat Endocr Metab Immune Drug Discov 2011;5:237–239.CrossRefGoogle Scholar
Shear, NH, Spielberg, SP, Grant, DM, Tang, BK, Kalow, W. Differences in metabolism of sulfonamides predisposing to idiosyncratic toxicity. Ann Intern Med 1986;105:179–184.CrossRefGoogle ScholarPubMed
Besnard, M, Debray, D, Durand, P, et al. [Fulminant hepatitis in two children treated with sulfasalazine for Crohn disease.]Arch Pediatr 1999;6:643–646.CrossRefGoogle Scholar
Karpman, E, Kurzrock, EA. Adverse reactions of nitrofurantoin, trimethoprim and sulfamethoxazole in children. J Urol 2004;172:448–453.CrossRefGoogle ScholarPubMed
Bucaretchi, F, Vicente, DC, Pereira, RM, Tresoldi, AT. Dapsone hypersensitivity syndrome in an adolescent during treatment of leprosy. Rev Inst Med Trop Sao Paulo 2004;46:331–334.CrossRefGoogle Scholar
Rieder, MJ, Uetrecht, J, Shear, NH, et al. Diagnosis of sulfonamide hypersensitivity reactions by in-vitro “rechallenge” with hydroxylamine metabolites. Ann Intern Med 1989;110:286–289.Google ScholarPubMed
Cribb, AE, Spielberg, SP. Hepatic microsomal metabolism of sulfamethoxazole to the hydroxylamine. Drug Metab Dispos 1990;18:784–787.Google ScholarPubMed
Sztajnkrycer, MD. Valproic acid toxicity: overview and management. J Toxicol Clin Toxicol 2002;40:789–801.CrossRefGoogle ScholarPubMed
Suchy, FJ, Balistreri, WF, Buchino, J, et al. Acute hepatic failure associated with the use of sodium valproate. Report of two fatal cases. N Engl J Med 1979;300:962–966.CrossRefGoogle Scholar
Zimmerman, HJ, Ishak, KG. Valproate-induced hepatic injury: Analysis of 23 fatal cases. Hepatology 1982;2:591–597.CrossRefGoogle ScholarPubMed
Koenig, SA, Siemes, H, Blaker, F, et al. Severe hepatotoxicity during valproate therapy: an update and report of eight new fatalities. Epilepsia 1994;35:1005–1015.CrossRefGoogle Scholar
Price, KE, Pearce, RE, Garg, UC, et al. Effects of valproic acid on organic acid metabolism in children: a metabolic profiling study. Clin Pharmacol Ther 2011;89:867–874.CrossRefGoogle ScholarPubMed
McCall, M, Bourgeois, JA. Valproic acid-induced hyperammonemia: a case report. J Clin Psychopharmacol 2004;24:521–526.CrossRefGoogle ScholarPubMed
Gerstner, T, Buesing, D, Longin, E, et al. Valproic acid induced encephalopathy – 19 new cases in Germany from 1994 to 2003: a side effect associated to VPA-therapy not only in young children. Seizure 2006;15:443–448.CrossRefGoogle Scholar
Eadie, MJ, Hooper, WD, Dickinson, RG. Valproate-associated hepatotoxicity and its biochemical mechanisms. Med Toxicol Adverse Drug Exper 1988;3:85–106.Google ScholarPubMed
Li, X, Norwood, DL, Mao, L-F, Schulz, H. Mitochondrial metabolism of valproic acid. Biochemistry 1991;30:388–394.Google ScholarPubMed
Gopaul, S, Farrell, K, Abbott, F. Effects of age and polytherapy, risk factors of valproic acid (VPA) hepatotoxicity, on the excretion of thiol conjugates of (E)-2,4-diene VPA in people with epilepsy taking VPA. Epilepsia 2003;44:322–328.CrossRefGoogle Scholar
Eadie, MJ, McKinnon, GE, Dunstan, PR, MacLaughlin, D, Dickinson, RG. Valproate metabolism during hepatotoxicity associated with the drug. Q J Med 1990;77:1229–1240.CrossRefGoogle ScholarPubMed
Kossak, BD, Schmidt-Sommerfeld, E, Schoeller, DA, et al. Impaired fatty acid oxidation in children on valproic acid and the effect of l-carnitine. Neurology 1993;43:2362–2368.CrossRefGoogle ScholarPubMed
Tong, V, Teng, XW, Chang, TK, Abbott, FS. Valproic acid I: time course of lipid peroxidation biomarkers, liver toxicity, and valproic acid metabolite levels in rats. Toxicol Sci 2005;86:427–435.CrossRefGoogle ScholarPubMed
Tong, V, Teng, XW, Chang, TK, Abbott, FS. Valproic acid II: effects on oxidative stress, mitochondrial membrane potential, and cytotoxicity in glutathione-depleted rat hepatocytes. Toxicol Sci 2005;86:436–443.CrossRefGoogle ScholarPubMed
Konig, SA, Schenk, M, Sick, C, et al. Fatal liver failure associated with valproate therapy in a patient with Friedreich’s disease: review of valproate hepatotoxicity in adults. Epilepsia 1999;40:1036–1040.CrossRefGoogle Scholar
Schwabe, MJ, Dobyns, WB, Burke, B, Armstrong, DL. Valproate-induced liver failure in one of two siblings with Alpers disease. Pediatr Neurol 1997;16:337–343.CrossRefGoogle ScholarPubMed
Kayihan, N, Nennesmo, I, Ericzon, BG, Nemeth, A. Fatal deterioration of neurological disease after orthotopic liver transplantation for valproic acid-induced liver damage. Pediatr Transplant 2000;4:211–214.CrossRefGoogle ScholarPubMed
Stewart, JD, Horvath, R, Baruffini, E, et al. Polymerase gamma gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology 2010;52:1791–1796.CrossRefGoogle ScholarPubMed
Saneto, RP, Lee, IC, Koenig, MK, et al. POLG DNA testing as an emerging standard of care before instituting valproic acid therapy for pediatric seizure disorders. Seizure 2010;19:140–146.CrossRefGoogle ScholarPubMed
Beghi, E, Bizzi, A, Codegoni, AM, Trevisan, D, Torri, W. Valproate, carnitine metabolism, and biochemical indicators of liver function. Epilepsia 1990;31:346–352.CrossRefGoogle ScholarPubMed
Lheureux, PE, Hantson, P. Carnitine in the treatment of valproic acid-induced toxicity. Clin Toxicol 2009;47:101–111.CrossRefGoogle ScholarPubMed
Bohan, TP, Helton, E, McDonald, I, et al. Effect of l-carnitine treatment for valproate-induced hepatotoxicity. Neurology 2001;56:1405–1409.CrossRefGoogle ScholarPubMed
Suzuki, A, Brunt, EM, Kleiner, DE, et al. The use of liver biopsy evaluation in discrimination of idiopathic autoimmune hepatitis versus drug-induced liver injury. Hepatology 2011;54:931–939.CrossRefGoogle ScholarPubMed
Naranjo, CA, Busto, U, Sellers, EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther 1981;30:239–245.CrossRefGoogle ScholarPubMed
Garcia-Cortes, M, Stephens, C, Lucena, MI, Fernandez-Castaner, A, Andrade, RJ. Causality assessment methods in drug induced liver injury: strengths and weaknesses. J Hepatol 2011;55:683–691.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Drug-induced liver disease
    • By Eve A. Roberts, Departments of Medicine, Paediatrics and Gastroenterology, University of Toronto, and Hepatologist, Division of Gastroenterology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
  • Edited by Frederick J. Suchy, University of Colorado Medical Center, Ronald J. Sokol, University of Colorado Medical Center, William F. Balistreri
  • Book: Liver Disease in Children
  • Online publication: 05 March 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139012102.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Drug-induced liver disease
    • By Eve A. Roberts, Departments of Medicine, Paediatrics and Gastroenterology, University of Toronto, and Hepatologist, Division of Gastroenterology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
  • Edited by Frederick J. Suchy, University of Colorado Medical Center, Ronald J. Sokol, University of Colorado Medical Center, William F. Balistreri
  • Book: Liver Disease in Children
  • Online publication: 05 March 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139012102.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Drug-induced liver disease
    • By Eve A. Roberts, Departments of Medicine, Paediatrics and Gastroenterology, University of Toronto, and Hepatologist, Division of Gastroenterology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
  • Edited by Frederick J. Suchy, University of Colorado Medical Center, Ronald J. Sokol, University of Colorado Medical Center, William F. Balistreri
  • Book: Liver Disease in Children
  • Online publication: 05 March 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139012102.023
Available formats
×