Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T03:49:09.206Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  25 August 2018

Get access

Summary

The challenge

THERE ARE HUNDREDS OF BILLIONS of galaxies in the observable Universe, with each galaxy such as our own containing some hundred billion stars. Surrounded by this seemingly limitless ocean of stars, mankind has long speculated about the existence of planetary systems other than our own, and the possibility of life existing elsewhere in the Universe.

Only recently has evidence become available to begin to distinguish the extremes of thinking that has pervaded for more than 2000 years, with opinions ranging from ‘There are infinite worlds both like and unlike this world of ours’ (Epicurus, 341–270 BCE) to ‘There cannot be more worlds than one’ (Aristotle, 384–322 BCE).

Shining by reflected starlight, exoplanets comparable to solar system planets will be billions of times fainter than their host stars and, depending on their distance, at angular separations from their accompanying star of, at most, a few seconds of arc. This combination makes direct detection extraordinarily demanding, particularly at optical wavelengthswhere the star/planet intensity ratio is large, and especially from the ground given the perturbing effect of the Earth's atmosphere.

Alternative detection methods, based on dynamical perturbation of the star by the orbiting planet, delivered the first tangible results around 1990. Radio pulsar timing achieved the first convincing detection of planetary mass bodies beyond the solar system (Wolszczan & Frail, 1992). High-accuracy radial velocity (Doppler) measurements yielded the first suggestions of planetary-mass objects surrounding main sequence stars from the late 1980s (Campbell et al., 1988; Latham et al., 1989; Hatzes & Cochran, 1993), with the first essentially unambiguous detection in 1995 (Mayor & Queloz, 1995).

Progress since 1995 This discovery precipitated a changing mindset. The search for exoplanets, and their characterisation, rapidly became a respectable domain for scientific research, and one equally quickly supported by funding authorities. More planets were discovered by radial velocity search teams in the following years. In 1998, the technique of gravitational microlensing provided evidence for a low-mass planet orbiting a star near the centre of the Galaxy nearly 30 000 light-years away, with the first confirmed microlensing planet reported in 2004. In the photometric search for transiting exoplanets, the first transit of a previouslydetected exoplanetwas reported in 1999, the first discovery by transit photometry in 2003, the first of the widefield bright star survey discoveries in 2004, and the first discovery from space observations in 2008.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Michael Perryman
  • Book: The Exoplanet Handbook
  • Online publication: 25 August 2018
  • Chapter DOI: https://doi.org/10.1017/9781108304160.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Michael Perryman
  • Book: The Exoplanet Handbook
  • Online publication: 25 August 2018
  • Chapter DOI: https://doi.org/10.1017/9781108304160.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Michael Perryman
  • Book: The Exoplanet Handbook
  • Online publication: 25 August 2018
  • Chapter DOI: https://doi.org/10.1017/9781108304160.002
Available formats
×