Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-29T03:49:34.162Z Has data issue: false hasContentIssue false

Chapter Eight - The functional role of biodiversity in the context of global change

Published online by Cambridge University Press:  05 June 2014

Michael Scherer-Lorenzen
Affiliation:
University of Freiburg
David A. Coomes
Affiliation:
University of Cambridge
David F. R. P. Burslem
Affiliation:
University of Aberdeen
William D. Simonson
Affiliation:
University of Cambridge
Get access

Summary

Introduction

The various drivers of environmental global change, namely changes in land-use, climate and biogeochemical cycles, or the spread of invasive species, can have major impacts on the biological diversity of different ecosystems, including forests (Sala et al. 2000). Ongoing biodiversity loss has prompted concerns that the functioning of ecosystems and the services that humans derive from the environment may be compromised (Daily 1997; Millennium Ecosystem Assessment 2005). These losses and ecosystem degradation have substantial costs for society, as recently shown by The Economics of Ecosystems and Biodiversity study (TEEB 2009). The challenge of understanding the influence of biodiversity on ecosystem functioning (BEF) initiated a new interdisciplinary research area that emerged only two decades ago (Schulze & Mooney 1993), and the science of BEF has become one of the most active fields in ecology since then, as documented by a number of books and reviews (Hooper et al. 2005; Kinzig, Pacala & Tilman 2002; Loreau et al. 2001; Loreau, Naeem & Inchausti 2002; Naeem 2002; Naeem et al. 2009; Scherer-Lorenzen et al. 2005a; Schulze & Mooney 1993), and meta-analyses (Balvanera et al. 2006; Cardinale et al. 2006, 2007, 2011). A recent meta-analysis, for example, listed 574 independent experimental manipulations of species richness, published in 192 peer-reviewed papers, reporting 1417 observations on how species richness affects ecosystem processes (Cardinale et al. 2011).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarssen, L. W. (1997) High productivity in grassland ecosystems: effects by species diversity or productive species?Oikos, 80, 183–184.CrossRefGoogle Scholar
Balvanera, P., Pfisterer, A. B., Buchmann, N. et al.(2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9, 1146–1156.CrossRefGoogle ScholarPubMed
Baraloto, C., Marcon, E., Morneau, F. O., Pavoine, S. & Roggy, J.-C. (2010) Integrating functional diversity into tropical forest plantation designs to study ecosystem processes. Annals of Forest Science, 67, 303.CrossRefGoogle Scholar
Bauhus, J. & Schmerbeck, J. (2010) Silvicultural options to enhance and use forest plantation biodiversity. In Ecosystem Goods and Services from Plantation Forests (eds. Bauhus, J., van der Meer, P. & Kanninen, M.), pp. 96–139. London, Washington, DC: Earthscan.Google Scholar
Bolker, B. M., Pacala, S. W., Bazzaz, F. A., Canham, C. D. & Levin, S. A. (1995) Species diversity and ecosystem response to carbon dioxide fertilization: conclusions from a temperate forest model. Global Change Biology, 1, 373–381.CrossRefGoogle Scholar
Bormann, F. H., Likens, G. E., Fisher, D. W. & Pierce, R. S. (1968) Nutrient loss accelerated by clear-cutting of a forest ecosystem. Science, 159, 882.CrossRefGoogle ScholarPubMed
Both, S., Fang, T., Baruffol, M. et al. (2012) Effects of tree sapling diversity and nutrient addition on herb-layer invasibility in communities of subtropical species. Open Journal of Ecology, 2, 1–11.CrossRefGoogle Scholar
Both, S., Fang, T., Böhnke, M. et al. (2011) Lack of tree layer control on herb layer characteristics in a subtropical forest, China. Journal of Vegetation Science, 22, 1120–1131.CrossRefGoogle Scholar
Brassard, B. W., Chen, H. Y. H., Bergeron, Y. & Pare, D. (2011) Differences in fine root productivity between mixed- and single-species stands. Functional Ecology, 25, 238–246.CrossRefGoogle Scholar
Brassard, B. W., Chen, H. Y. H., Cavard, X. et al. (2013) Tree species diversity increases fine root productivity through increased soil volume filling. Journal of Ecology 101, 210–219.CrossRefGoogle Scholar
Bruelheide, H., Böhnke, M., Both, S. et al. (2011) Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 81, 25–41.CrossRefGoogle Scholar
Bunker, D. E., DeClerck, F., Bradford, J. C. et al. (2005) Species loss and aboveground carbon storage in a tropical forest. Science, 310, 1029–1031.CrossRefGoogle Scholar
Burnham, K. P. & Anderson, D. R. (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York: Springer.Google Scholar
Cannell, M. G. R., Malcolm, D. C. & Robertson, P. A. (1992) The Ecology of Mixed-Species Stands of Trees. Oxford: Blackwell Scientific Publications.Google Scholar
Cardinale, B. J., Matulich, K. L., Hooper, D. U. et al. (2011) The functional role of producer diversity in ecosystems. American Journal of Botany, 98, 572–592.CrossRefGoogle ScholarPubMed
Cardinale, B. J., Srivastava, D. S., Duffy, E. et al. (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989–992.CrossRefGoogle ScholarPubMed
Cardinale, B. J., Wright, J. P., Cadotte, M. W. et al. (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences USA, 104, 18123–18128.CrossRefGoogle ScholarPubMed
Caspersen, J. P. & Pacala, S. W. (2001) Successional diversity and forest ecosystem function. Ecological Research, 16, 895–903.CrossRefGoogle Scholar
Cavard, X., Macdonald, S. E., Bergeron, Y. & Chen, H. Y. H. (2011) Importance of mixedwoods for biodiversity conservation: Evidence for understory plants, songbirds, soil fauna, and ectomycorrhizae in northern forests. Environmental Review, 19, 142–161.CrossRefGoogle Scholar
Cesarz, S., Fahrenholz, N., Migge-Kleian, S., Platner, C. & Schaefer, M. (2007) Earthworm communities in relation to tree diversity in a deciduous forest. European Journal of Soil Biology, 43, S61–S67.CrossRefGoogle Scholar
Cotta, J. H. (1828) Anweisung zum Waldbau. Dresden, Leipzig: Arnoldische Buchhandlung.Google Scholar
Daily, G. C. (1997) Nature’s Services – Societal Dependence on Natural Ecosystems. Washington DC, Covelo: Island Press.Google Scholar
de Groot, R. S., Alkemadeb, R., Braatc, L., Heina, L. & Willemen, L. (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity, 7, 260–272.CrossRefGoogle Scholar
Dhôte, J.-F. (2005) Implication of forest diversity in resistance to strong winds. In Forest Diversity and Function: Temperate and Boreal Systems (eds. Scherer-Lorenzen, M., Körner, C. & Schulze, E.-D.), pp. 291–307. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Díaz, S., Symstad, A. J., Stuart Chapin, I. F., Wardle, D. A. & Huenneke, L. F. (2003) Functional diversity revealed by removal experiments. Trends in Ecology & Evolution, 18, 140–146.CrossRefGoogle Scholar
Díaz, S., Wardle, D. A. & Hector, A. (2009) Incorporating biodiversity in climate change mitigation initiatives. Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (eds. Naeem, S., Bunker, D. E., Hector, A., Loreau, M. & Perrings, C.), pp. 149–166. Oxford: Oxford University Press.CrossRefGoogle Scholar
Don, A., Arenhövel, W., Jacob, R., Scherer-Lorenzen, M. & Schulze, E.-D. (2007) Anwuchserfolg von 19 verschiedenen Baumarten bei Erstaufforstungen – Ergebnisse eines Biodiversitätsexperiments. Allgemeine Jagd- und Forstzeitung, 178, 164–172.Google Scholar
Enquist, B. J. & Niklas, K. J. (2001) Invariant scaling relations across tree-dominated communities. Nature, 410, 655–660.CrossRefGoogle ScholarPubMed
Erskine, P. D., Lamb, D. & Bristow, M. (2006) Tree species diversity and ecosystem function: Can tropical multi-species plantations generate greater productivity?Forest Ecology and Management, 233, 205–210.CrossRefGoogle Scholar
Ewel, J. J. & Mazzarino, M. J. (2008) Competition from below for light and nutrients shifts productivity among tropical species. Proceedings of the National Academy of Sciences USA, 105, 18836–18841.CrossRefGoogle ScholarPubMed
Ewel, J. J., Mazzarino, M. J. & Berish, C. W. (1991) Tropical soil fertility changes under monocultures and successional communities of different structure. Ecological Applications, 1, 289–302.CrossRefGoogle ScholarPubMed
Firn, J., Erskine, P. D. & Lamb, D. (2007) Woody species diversity influences productivity and nutrient availability in tropical plantations. Oecologia 154, 521–533.CrossRefGoogle ScholarPubMed
Forrester, D. I., Bauhus, J., Cowie, A. L. & Vanclay, J. K. (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. Forest Ecology and Management, 233, 211–230.CrossRefGoogle Scholar
Forrester, D. I., Theiveyanathan, S., Collopy, J. J. & Marcar, N. E. (2010) Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. Forest Ecology and Management, 259, 1761–1770.CrossRefGoogle Scholar
Gamfeldt, L., Hillebrand, H. & Jonsson, P. R. (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89, 1223–1231.CrossRefGoogle ScholarPubMed
Gamfeldt, L., Snall, T., Bagchi, R. et al. (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications 4, 1340.CrossRefGoogle ScholarPubMed
Gayer, K. (1886) Der gemischte Wald, seine Begründung und Pflege, insbesondere durch Horst- und Gruppenwirtschaft. Berlin: Paul Parey.CrossRefGoogle Scholar
Geißler, C., Lang, A. C., von Oheimb, G. et al. (2012) Impact of tree saplings on the kinetic energy of rainfall – The importance of stand density, species identity and tree architecture in subtropical forests in China. Agricultural and Forest Meteorology, 156, 31–40.CrossRefGoogle Scholar
Guckland, A., Brauns, M., Flessa, H., Thomas, F. M. & Leuschner, C. (2009a) Acidity, nutrient stocks and organic matter content in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.). Journal of Plant Nutrition and Soil Science, 172, 500–511.CrossRefGoogle Scholar
Guckland, A., Corre, M. D. & Flessa, H. (2010) Variability of soil N cycling and N2O emission in a mixed deciduous forest with different abundance of beech. Plant and Soil, 336, 25–38.CrossRefGoogle Scholar
Guckland, A., Flessa, H. & Prenzel, J. (2009b) Controls of temporal and spatial variability of methane uptake in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.). Soil Biology & Biochemistry, 41, 1659–1667.CrossRefGoogle Scholar
Haas, S. E., Hooten, M. B., Rizzo, D. M. & Meentemeyer, R. K. (2011) Forest species diversity reduces disease risk in a generalist plant pathogen invasion. Ecology Letters, 14, 1108–1116.CrossRefGoogle Scholar
Harper, J. L. (1977) Population Biology of Plants. London: Academic Press.Google Scholar
Hartig, G. L. (1791) Anweisung zur Holzzucht für Förster. Marburg: Neue Akademische Buchhandlung.Google Scholar
Hartig, G. L. (1804) Anweisung zur Taxation und Beschreibung der Forste. Gießen: Heyer.Google Scholar
Hättenschwiler, S. (2005) Effects of tree species diversity on litter quality and decomposition. Forest Diversity and Function. Temperate and Boreal Systems (eds. Scherer-Lorenzen, M., Körner, C. & Schulze, E.-D.), pp. 149–164. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Healy, C., Gotelli, N. J. & Potvin, C. (2008) Partitioning the effects of biodiversity and environmental heterogeneity for productivity and mortality in a tropical tree plantation. Journal of Ecology, 96, 903–913.CrossRefGoogle Scholar
Hector, A. & Bagchi, R. (2007) Biodiversity and ecosystem multifunctionality. Nature, 446, 188–190.CrossRefGoogle Scholar
Hector, A. & Hooper, R. (2002) Darwin and the first ecological experiment. Science, 295, 639–640.CrossRefGoogle ScholarPubMed
Hector, A., Philipson, C., Saner, P. et al. (2011) The Sabah Biodiversity Experiment: a long-term test of the role of tree diversity in restoring tropical forest structure and functioning. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 3303–3315.CrossRefGoogle ScholarPubMed
Hillebrand, H. & Matthiessen, B. (2009) Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters, 12, 1405–1419.CrossRefGoogle Scholar
Hooper, D. U., Adair, E. C., Cardinale, B. J. et al. (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105–108.CrossRefGoogle ScholarPubMed
Hooper, D. U., Chapin, F. S. I., Ewel, J. J. et al. (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for future research. Ecological Monographs, 75, 3–36.CrossRefGoogle Scholar
Hubbell, S. P. (2006) Neutral theory and the evolution of ecological equivalence. Ecology, 87, 1387–1398.CrossRefGoogle ScholarPubMed
Huston, M. A. (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia, 110, 449–460.CrossRefGoogle ScholarPubMed
Huxham, M., Kumara, M. P., Jayatissa, L. P. et al. (2010) Intra- and interspecific facilitation in mangroves may increase resilience to climate change threats. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2127–2135.CrossRefGoogle ScholarPubMed
Isbell, F., Calcagno, V., Hector, A. et al. (2011) High plant diversity is needed to maintain ecosystem services. Nature, 477, 199–202.CrossRefGoogle ScholarPubMed
Jacob, M., Leuschner, C. & Thomas, F. M. (2010a) Productivity of temperate broad-leaved forest stands differing in tree species diversity. Annals of Forest Science, 67, 503.CrossRefGoogle Scholar
Jacob, M., Viedenz, K., Polle, A. & Thomas, F. (2010b) Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia 164, 1083–1094.CrossRefGoogle Scholar
Jactel, H., Brockerhoff, E. & Duelli, P. (2005) A test of the biodiversity-stability theory: meta-analysis of tree species diversity effects on insect pest infestations, and re-examination of responsible factors. In Forest Diversity and Function: Temperate and Boreal Systems (eds. Scherer-Lorenzen, M., Körner, C. & Schulze, E.-D.), pp. 235–262. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Jones, H. E., McNamara, N. & Mason, W. L. (2005) Functioning of mixed-species stands: evidence from a long-term experiment. Forest Diversity and Function. Temperate and Boreal Systems (eds. Scherer-Lorenzen, M., Körner, C. & Schulze, E.-D.), pp. 111–130. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Kelty, M. J. & Cameron, I. R. (1995) Plot design for the analysis of species interactions in mixed stands. Commenwealth Forestry Review, 74, 322–332.Google Scholar
Kelty, M. J., Larson, B. C. & Oliver, C. D. (1992) The Ecology and Silviculture of Mixed-Species Forests. Dordrecht, Boston, London. Kluwer Academic Publishers.CrossRefGoogle Scholar
Kinzig, A. P., Pacala, S. W. & Tilman, D. (2002) The functional consequences of biodiversity: Empirical progress and theoretical extensions. In Monographs in Population Biology (eds. Levin, S. A. & Horn, H. S.), p. 365. Princeton, Oxford: Princeton University Press.Google Scholar
Kirui, B., Huxham, M., Kairo, J. & Skov, M. (2008) Influence of species richness and environmental context on early survival of replanted mangroves at Gazi Bay, Kenya. Hydrobiologia 603, 171–181.CrossRefGoogle Scholar
Koricheva, J., Vehviläinen, H., Riimaki, J. et al. (2006) Diversification of tree stands as a means to manage pests and diseases in boreal forests: Myth or reality?Canadian Journal of Forest Research, 36, 324–336.CrossRefGoogle Scholar
Körner, C. (2005) An introduction to the functional diversity of temperate forest trees. Forest Diversity and Function. Temperate and Boreal Systems (eds. Scherer-Lorenzen, M., Körner, C. & Schulze, E.-D.), pp. 13–38. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Krämer, I. & Hölscher, D. (2009) Rainfall partitioning along a tree diversity gradient in a deciduous old-growth forest in Central Germany. Ecohydrology 2, 102–114.CrossRefGoogle Scholar
Laliberté, E. & Legendre, P. (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299–305.CrossRefGoogle ScholarPubMed
Lang, A. C., Härdtle, W., Baruffol, M. et al. (2012) Mechanisms promoting tree species co-existence: Experimental evidence with saplings of subtropical forest ecosystems of China. Journal of Vegetation Science, 23, 837–846.CrossRefGoogle Scholar
Lang, C. & Polle, A. (2011) Ectomycorrhizal fungal diversity, tree diversity and root nutrient relations in a mixed Central European forest. Tree Physiology, 31, 531–538.CrossRefGoogle Scholar
Lawton, J. H. & Brown, V. K. (1993) Redundancy in ecosystems. In Biodiversity and Ecosystem Function (eds. Schulze, E.-D. & A. Mooney, H.), pp. 255–270. Berlin, Heidelberg, New York: Springer.Google Scholar
Lei, P., Scherer-Lorenzen, M. & Bauhus, J. (2012a) Belowground facilitation and competition in young tree species mixtures. Forest Ecology and Management, 265, 191–200.CrossRefGoogle Scholar
Lei, P., Scherer-Lorenzen, M. & Bauhus, J. (2012b) The effect of tree species diversity on fine-root production in a young temperate forest. Oecologia, 169, 1105–1115.CrossRefGoogle Scholar
Lepš, J. (2004) What do the biodiversity experiments tell us about consequences of plant species loss in the real world?Basic and Applied Ecology, 5, 529–534.CrossRefGoogle Scholar
Leuschner, C., Jungkunst, H. F. & Fleck, S. (2009) Functional role of forest diversity: Pros and cons of synthetic stands and across-site comparisons in established forests. Basic and Applied Ecology, 10, 1–9.CrossRefGoogle Scholar
Liang, J. J., Buongiorno, J., Monserud, R. A., Kruger, E. L. & Zhou, M. (2007) Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality. Forest Ecology and Management, 243, 116–127.CrossRefGoogle Scholar
Loreau, M. (1998) Biodiversity and ecosystem function: a mechanistic model. Proceedings of the National Academy of Sciences USA, 95, 5632–5636.CrossRefGoogle Scholar
Loreau, M. & Hector, A. (2001) Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72–76.CrossRefGoogle ScholarPubMed
Loreau, M., Naeem, S. & Inchausti, P. (2002) Biodiversity and Ecosystem Functioning: Synthesis and Perspectives. Oxford, New York: Oxford University Press.Google Scholar
Loreau, M., Naeem, S., Inchausti, P. et al. (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804–808.CrossRefGoogle ScholarPubMed
McNaughton, S. J. (1993) Biodiversity and function of grazing ecosystems. In Biodiversity and Ecosystem Function (eds. Schulze, E.-D. & Mooney, H. A.), pp. 361–383. Berlin, Heidelberg, New York: Springer.Google Scholar
Meinen, C., Hertel, D. & Leuschner, C. (2009a) Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity: is there evidence of below-ground overyielding?Oecologia, 161, 99–111.CrossRefGoogle ScholarPubMed
Meinen, C., Hertel, D. & Leuschner, C. (2009b) Root growth and recovery in temperate broad-leaved forest stands differing in tree species diversity. Ecosystems 12, 1103–1116.CrossRefGoogle Scholar
Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-being: Biodiversity Synthesis. Washington: World Resources Institute.Google Scholar
Mölder, A., Bernhardt-Römermann, M. & Schmidt, W. (2008) Herb-layer diversity in deciduous forests: raised by tree richness or beaten by beech?Forest Ecology and Management 256, 272–281.CrossRefGoogle Scholar
Möller, A. (1922) Der Dauerwaldgedanke. Sein Sinn und seine Bedeutung. Berlin: Verlag Julius Springer.Google Scholar
Mooney, H. A., Cushman, J. H., Medina, E., Sala, O. E. & Schulze, E.-D. (1996) Functional Roles of Biodiversity: A Global Perspective. Chichester, New York, Brisbane, Toronto, Singapore: John Wiley & Sons.Google Scholar
Mooney, H. A., Lubchenco, J., Dirzo, R. & Sala, O. E. (1995) Biodiversity and ecosystem functioning: ecosystem analyses. In Global Biodiversity Assessment (eds. Heywood, V. H. & Watson, R. T.), pp. 327–452. Cambridge: Cambridge University Press.Google Scholar
Morin, X., Fahse, L., Scherer-Lorenzen, M. & Bugmann, H. (2011) Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecology Letters, 14, 1211–1219.CrossRefGoogle ScholarPubMed
Moser, W. K. & Hansen, M. (2009) The relationship between diversity and productivity in selected forests of the Lake States Region (USA): relative impact of species versus structural diversity. In Proceedings of the Eighth Annual Forest Inventory and Analysis Symposium 2006 (eds. McRoberts, R. E., Reams, G. A., Van Deusen, P. C. & McWilliams, W. H.), pp. 149–157. Washington, DC: US Department of Agriculture, Forest Service.Google Scholar
Mouquet, N., Moore, J. L. & Loreau, M. (2002) Plant species richness and community productivity: why the mechanism that promotes coexistence matters. Ecology Letters, 5, 56–65.CrossRefGoogle Scholar
Müller-Starck, G., Ziehe, M. & Schubert, R. (2005) Genetic diversity parameters associated with viability selection, reproductive efficiency, and growth in forest tree species. In Forest Diversity and Function. Temperate and Boreal Systems (eds. Scherer-Lorenzen, M., Körner, C. & Schulze, E.-D.), pp. 87–108., Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Murphy, M., Balser, T., Buchmann, N., Hahn, V. & Potvin, C. (2008) Linking tree biodiversity to belowground process in a young tropical plantation: Impacts on soil CO2 flux. Forest Ecology and Management, 255, 2577–2588.CrossRefGoogle Scholar
Nadrowski, K., Wirth, C. & Scherer-Lorenzen, M. (2010) Is forest diversity driving ecosystem function and service?Current Opinion in Environmental Sustainability, 2, 75–79.CrossRefGoogle Scholar
Naeem, S. (2002) Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology, 83, 1537–1552.CrossRefGoogle Scholar
Naeem, S. & Bunker, D. E. (2009) TraitNet: furthering biodiversity research through the curation, discovery, and sharing of species trait data. In Biodiversity, Ecosystem Functioning, and Human Wellbeing (eds. Naeem, S., Bunker, D. E., Hector, A., Loreau, M. & Perrings, C.), pp. 281–289. Oxford: Oxford University Press.CrossRefGoogle Scholar
Naeem, S., Bunker, D. E., Hector, A., Loreau, M. & Perrings, C. (eds.) (2009) Biodiversity, Ecosystem Functioning, and Human Wellbeing. Oxford: Oxford University Press.CrossRef
Oelmann, Y., Potvin, C., Mark, T. et al. (2009) Tree mixture effects on aboveground nutrient pools of trees in an experimental plantation in Panama. Plant and Soil, 326, 199–212.CrossRefGoogle Scholar
Olsthoorn, A. F. M., Bartelink, H. H., Gardiner, J. J. et al. (1999) Management of mixed-species forests: silviculture and economics. In IBN Scientific Contributions. Wageningen: DLO Institute for Forestry and Nature Research (IBN-DLO).Google Scholar
Orians, G. H., Dirzo, R. & Cushman, J. H. (1996) Impact of biodiversity on tropical forest ecosystem processes. In Functional Roles of Biodiversity: A Global Perspective (eds. Mooney, H. A., Cushman, J. H., Medina, E., Sala, O. E. & Schulze, E.-D.), pp. 213–244. Chichester, New York, Brisbane: John Wiley & Sons.Google Scholar
Pacala, S. & Tilman, D. (2002) The transition from sampling to complementarity. In The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions (eds. Kinzig, A. P., Pacala, S. W. & Tilman, D.), pp. 151–166. Princeton, Oxford: Princeton University Press.Google Scholar
Pacala, S. W. & Deutschman, D. H. (1995) Details that matter – the spatial distribution of individual trees maintains forest ecosystem function. Oikos, 74, 357–365.CrossRefGoogle Scholar
Paquette, A. & Messier, C. (2010) The effect of biodiversity on tree productivity: from temperate to boreal forests. Global Ecology and Biogeography, 20, 170–180.CrossRefGoogle Scholar
Pastor, J., Mladenoff, D. J., Haila, Y., Bryant, J. & Payette, S. (1996) Biodiversity and ecosystem processes in boreal regions. In Functional Roles of Biodiversity. A Global Perspective (eds. Mooney, H. A., Cushman, J. H., Medina, E., Sala, O. E. & Schulze, E. D.), pp. 33–69. Chichester, New York, Brisbane: John Wiley & Sons.Google Scholar
Pautasso, M., Holdenrieder, O. & Stenlid, J. (2005) Susceptibility to fungal pathogens of forests differing in tree diversity. In Forest Diversity and Function: Temperate and Boreal Systems (eds. Scherer-Lorenzen, M., Körner, C. & Schulze, E.-D.), pp. 263–289. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Petchey, O. L., O’Gorman, E. J. & Flynn, D. F. B. (2009) A functional guide to functional diversity measures. In Biodiversity, Ecosystem Functioning, and Human Wellbeing (eds. Naeem, S., Bunker, D. E., Hector, A., Loreau, M. & Perrings, C.), pp. 49–59. Oxford: Oxford University Press.CrossRefGoogle Scholar
Piotto, D. (2008) A meta-analysis comparing tree growth in monocultures and mixed plantations. Forest Ecology and Management, 255, 781–786.CrossRefGoogle Scholar
Potvin, C. & Dutilleul, P. (2009) Neighborhood effects and size-asymmetric competition in a tree plantation varying in diversity. Ecology, 90, 321–327.CrossRefGoogle Scholar
Potvin, C. & Gotelli, N. J. (2008) Biodiversity enhances individual performance but does not affect survivorship in tropical trees. Ecology Letters, 11, 217–223.CrossRefGoogle Scholar
Potvin, C., Mancilla, L., Buchmann, N. et al. (2011) An ecosystem approach to biodiversity effects: Carbon pools in a tropical tree plantation. Forest Ecology and Management, 261, 1614–1624.CrossRefGoogle Scholar
Pretzsch, H. (2005) Diversity and productivity in forests: evidence from long-term experimental plots. In Forest Diversity and Function. Temperate and Boreal Systems (eds. Scherer-Lorenzen, M., Körner, C. & Schulze, E.-D.), pp. 41–64. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Pretzsch, H., Block, J., Dieler, J. et al. (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Annals of Forest Science, 67, 712.CrossRefGoogle Scholar
Pretzsch, H. & Schütze, G. (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. European Journal of Forest Research, 128, 183–204.CrossRefGoogle Scholar
Richards, A. E., Forrester, D. I., Bauhus, J. & Scherer-Lorenzen, M. (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiology, 30, 1192–1208.CrossRefGoogle ScholarPubMed
Rothe, A. & Binkley, D. (2001) Nutritional interactions in mixed species forests: a synthesis. Canadian Journal of Forest Research, 31, 1855–1870.CrossRefGoogle Scholar
Ruiz-Jaen, M. C. & Potvin, C. (2010) Tree diversity explains variation in ecosystem function in a neotropical forest in Panama. Biotropica, 42, 638–646.CrossRefGoogle Scholar
Ruiz-Jaen, M. C. & Potvin, C. (2011) Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytologist, 189, 978–987.CrossRefGoogle Scholar
Sala, O. E., Chapin, F. S., Armesto, J. J. et al. (2000) Biodiversity – Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.CrossRefGoogle ScholarPubMed
Scherer-Lorenzen, M. (2005) Biodiversity and ecosystem functioning: basic principles. Biodiversity: Structure and Function. In Encyclopedia of Life Support Systems (EOLSS) (eds. Barthlott, W., Linsenmair, K. E. & Porembski, S.). Oxford: EOLSS Publisher.Google Scholar
Scherer-Lorenzen, M., Bonilla, J.-L. & Potvin, C. (2007a) Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment. Oikos, 116, 2108–2124.CrossRefGoogle Scholar
Scherer-Lorenzen, M., Körner, C. & Schulze, E.-D. (2005a) Forest Diversity and Function: Temperate and Boreal Systems. Ecological Studies. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Scherer-Lorenzen, M., Körner, C. & Schulze, E.-D. (2005b) The functional significance of forest diversity: a synthesis. In Forest Diversity and Function: Temperate and Boreal Systems (eds. Scherer-Lorenzen, M., Körner, C. & Schulze, E.-D.), pp. 377–389. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Scherer-Lorenzen, M., Potvin, C., Koricheva, J. et al. (2005c) The design of experimental tree plantations for functional biodiversity research. In Forest Diversity and Function. Temperate and Boreal Systems (eds. Scherer-Lorenzen, M., Körner, C. & Schulze, E.-D.), pp. 347–376. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Scherer-Lorenzen, M., Schulze, E.-D., Don, A., Schumacher, J. & Weller, E. (2007b) Exploring the functional significance of forest diversity: A new long-term experiment with temperate tree species (BIOTREE). Perspectives in Plant Ecology, Evolution and Systematics, 9, 53–70.CrossRefGoogle Scholar
Schmid, B. & Hector, A. (2004) The value of biodiversity experiments. Basic and Applied Ecology, 5, 535–542.CrossRefGoogle Scholar
Schmid, B., Hector, A., Huston, M. A. et al. (2002) The design and analysis of biodiversity experiments. In Biodiversity and Ecosystem Functioning: Synthesis and Perspectives (eds. Loreau, M., Naeem, S. & Inchausti, P.), pp. 61–75., Oxford, New York: Oxford University PressGoogle Scholar
Schuldt, A., Baruffol, M., Böhnke, M. et al. (2010) Tree diversity promotes insect herbivory in subtropical forests of south-east China. Journal of Ecology, 98, 917–926.CrossRefGoogle ScholarPubMed
Schuldt, A., Both, S., Bruelheide, H. et al. (2011) Predator diversity and abundance provide little support for the Enemies Hypothesis in forests of high tree diversity. PLoS ONE, 6, e22905.CrossRefGoogle ScholarPubMed
Schuldt, A., Bruelheide, H., Härdtle, W. & Assmann, T. (2012) Predator assemblage structure and temporal variability of species richness and abundance in forests of high tree diversity. Biotropica, 44, 793–800.CrossRefGoogle Scholar
Schuldt, A., Fahrenholz, N., Brauns, M. et al. (2008) Communities of ground-living spiders in deciduous forests: Does tree species diversity matter?Biodiversity and Conservation, 17, 1267–1284.CrossRefGoogle Scholar
Schulze, E.-D. (1989) Air pollution and forest decline in a spruce (Picea abies) forest. Science, 244, 776–783.CrossRefGoogle Scholar
Schulze, E.-D., Bazzaz, F. A., Nadelhoffer, K. J., Koike, T. & Takatsuki, S. (1996) Biodiversity and ecosystem function of temperate deciduous broad-leaved forests. In Functional Roles of Biodiversity: A Global Perspective (eds. Mooney, H. A., Cushman, J. H., Medina, E., Sala, O. E. & Schulze, E.-D.), pp. 71–98. Chichester, New York, Brisbane: John Wiley & Sons.Google Scholar
Schulze, E.-D. & Mooney, H. A. (1993) Biodiversity and ecosystem function. In Ecological Studies. Berlin, Heidelberg, New York: SpringerGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1980) Statistical Methods. Ames, Iowa: Iowa State University Press.Google Scholar
Sobek, S., Scherber, C., Steffan-Dewenter, I. & Tscharntke, T. (2009a) Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany’s largest connected deciduous forest. Oecologia, 160, 279–288.CrossRefGoogle ScholarPubMed
Sobek, S., Steffan-Dewenter, I., Scherber, C. & Tscharntke, T. (2009b) Spatiotemporal changes of beetle communities across a tree diversity gradient. Diversity and Distributions, 15, 660–670.CrossRefGoogle Scholar
Sobek, S., Tscharntke, T., Scherber, C., Schiele, S. & Steffan-Dewenter, I. (2009c) Canopy vs. understory: Does tree diversity affect bee and wasp communities and their natural enemies across forest strata?Forest Ecology and Management, 258, 609–615.CrossRefGoogle Scholar
Solan, M., Godbold, J. A., Symstad, A., Flynn, D. F. B. & Bunker, D. E. (2009) Biodiversity-ecosystem function research and biodiversity future: early bird catches the worm or a day late and a dollar short? In Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (eds. Naeem, S., Bunker, D. E., Hector, A., Loreau, M. & Perrings, C.), pp. 30–45. Oxford: Oxford University Press.CrossRefGoogle Scholar
Srivastava, D. S. & Vellend, M. (2005) Biodiversity-ecosystem function research: Is it relevant to conservation?Annual Review of Ecology, Evolution, and Systematics, 36, 267–294.CrossRefGoogle Scholar
Talkner, U., Jansen, M. & Beese, F. O. (2009) Soil phosphorus status and turnover in central-European beech forest ecosystems with differing tree species diversity. European Journal of Soil Science, 60, 338–346.CrossRefGoogle Scholar
TEEB (2009) The Economics of Ecosystems and Biodiversity for National and International Policy Makers. Summary: Responding to the Value of Nature 2009. Wesseling: European Communities.Google Scholar
Thompson, I., Mackey, B., McNulty, S. & Mosseler, A. (2009) Forest Resilience, Biodiversity, and Climate Change. A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems. Montreal: Secretariat of the Convention on Biological Diversity.Google Scholar
Thoms, C., Gattinger, A., Jacob, M., Thomas, F. M. & Gleixner, G. (2010) Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biology & Biochemistry, 42, 1558–1565.CrossRefGoogle Scholar
Tilman, D., Lehman, C. & Thomson, K. (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proceedings of the National Academy of Sciences USA, 94, 1857–1861.CrossRefGoogle ScholarPubMed
Vehviläinen, H. & Koricheva, J. (2006) Moose and vole browsing patterns in experimentally assembled pure and mixed forest stands. Ecography, 29, 497–506.CrossRefGoogle Scholar
Vehviläinen, H., Koricheva, J. & Ruohomäki, K. (2007) Tree species diversity influences herbivore abundance and damage: meta-analysis of long-term forest experiments. Oecologia, 152, 287–298.CrossRefGoogle ScholarPubMed
Vehviläinen, H., Koricheva, J. & Ruohomaki, K. (2008) Effects of stand tree species composition and diversity on abundance of predatory arthropods. Oikos, 117, 935–943.CrossRefGoogle Scholar
Vilà, M. (2004) Biodiversity correlates with regional patterns of forest litter pools. Oecologia, 139, 641–646.Google ScholarPubMed
Vilà, M., Inchausti, P., Vayreda, J. et al. (2005) Confounding factors in the observational productivity-diversity relationship in forests. In Forest Diversity and Function. Temperate and Boreal Systems (eds. Scherer-Lorenzen, M., Körner, C. & Schulze, E.-D.), pp. 65–86. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Vilà, M., Vayreda, J., Comas, L. et al. (2007) Species richness and wood production: a positive association in Mediterranean forests. Ecology Letters, 10, 241–250.CrossRefGoogle ScholarPubMed
Vilà, M., Vayreda, J., Gracia, C. & Ibáñez, J. J. (2003) Does tree diversity increase wood production in pine forests?Oecologia, 135, 299–303.CrossRefGoogle ScholarPubMed
Vockenhuber, E. A., Scherber, C., Langenbruch, C. et al. (2011) Tree diversity and environmental context predict herb species richness and cover in Germany’s largest connected deciduous forest. Perspectives in Plant Ecology Evolution and Systematics, 13, 111–119.CrossRefGoogle Scholar
von Carlowitz, H. C. (1713) Sylvicultura oeconomica, oder haußwirthliche Nachricht und Naturmäßige Anweisung zur wilden Baum-ZuchtLeipzig: Braun.Google Scholar
Wiedemann, E. (1951) Ertragskundliche und waldbauliche Grundlagen der Forstwirtschaft, Frankfurt/Main: Sauerländer.Google Scholar
Woodall, C. W., D’Amato, A. W., Bradford, J. B. & Finley, A. O. (2011) Effects of stand and inter-specific stocking on maximizing standing tree carbon stocks in the eastern United States. Forest Science, 57, 365–378.Google Scholar
Wright, S. J. (1996) Plant species diversity and ecosystem functioning in tropical forests. In Biodiversity and Ecosystem Processes in Tropical Forests (eds. Orians, G. H., Dirzo, R. & Cushman, J. H.), pp. 11–31. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Yachi, S. & Loreau, M. (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the Insurance Hypothesis. Proceedings of the National Academy of Sciences USA, 96, 57–64.CrossRefGoogle Scholar
Zavaleta, E., Pasari, J. R., Hulvey, K. B. & Tilman, D. (2010) Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proceedings of the National Academy of Sciences USA 107, 1443–1446.CrossRefGoogle ScholarPubMed
Zeng, X., Michalski, S. G., Fischer, M. & Durka, W. (2011) Species diversity and population density affect genetic structure and gene dispersal in a subtropical understory shrub. Journal of Plant Ecology, 5, 270–278.CrossRefGoogle Scholar
Zeugin, F., Potvin, C., Jansa, J. & Scherer-Lorenzen, M. (2010) Is tree diversity an important driver for phosphorus and nitrogen acquisition of a young tropical plantation?Forest Ecology and Management, 260, 1424–1433.CrossRefGoogle Scholar
Zhang, Y., Chen, H. Y. H. & Reich, P. B. (2012) Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. Journal of Ecology, 100, 742–749.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×