Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T19:57:47.185Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

1 - Implantable Wireless Medical Devices for Gastroesophageal Applications

Smitha Rao
Affiliation:
University of Texas at Arlington
J.-C. Chiao
Affiliation:
University of Texas at Arlington
Isar Mostafanezhad
Affiliation:
University of Hawaii, Manoa
Olga Boric-Lubecke
Affiliation:
University of Hawaii, Manoa
Jenshan Lin
Affiliation:
University of Florida
Get access

Summary

Introduction

Advances in low-power-consumption radiofrequency integrated circuits (RFICs), multifunctional integrated circuits, high-sensitivity sensing electrodes, biocompatible materials, and packaging techniques have made implants with wireless communication functionality and/or wireless charging capability more feasible and practical. However, wireless communication or wireless powering has not been widely used in implants. There are several challenges. The implant applications are typically disease oriented and implementation focused. The designs of implants have to address specific needs in the disease diagnosis or treatment modalities, which are strongly related to both electronic and mechanical parameters. The sensing modalities or therapy methods determine the electrical specifications, while the biological environments often present serious design constrains. The implementation has to suit clinical settings for safe, cost-effective, and relatively easy implantation procedures and, most important, the needs and comfort of patients in daily life.

It is obvious that integration of wireless communication functionality in implants can provide critical and increased capabilities in applications. The outbound communication brings sensor signals and device conditions to the reader outside the body. The sensors can monitor physiologic signals, such as blood pressure, intracranial pressure, core temperature, electrical signals of tissue or motility of organs, and biochemical conditions such as pH and certain protein or factor concentrations, of patients in vivo and in real time. In addition, the wireless communication can periodically report device conditions such as battery level, electrical resistance of electrodes, and current/voltage delivered to tissues. The inbound communication can be used for device reconfiguration, dosage setting, and condition probing. Bidirectional communication will be ideal for remote access of the implants, adding capabilities for real-time feedback as an integrated system between body and computer. The wireless closed-loop system also can provide real-time patient condition alerts, patient self-diagnosis using smart phones, and autonomous treatment-efficacy studies over a population of patients.

From the perspectives of patients, wireless communication removes the discomfort and inconvenience of tethered wires coming out of the body. Currently, the wires either go through small surgical openings in the body, such as for the extension wire from the head in deep brain stimulation, or an orifice, such as the nostril for stomach stimulation and multichannel intraluminal impedance tests or the urethra for bladder monitoring. The tethered wires connecting to the external electronic device, either a reader or a pulse generator, obviously bring some inconvenience to patients and sometimes pain, and they often limit patient mobility, hindering quality of life.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Levy, R. M., “Progress in the technology of neuromodulation: the emperor's new clothes?,” Neuromodulation: Technology at the Neural Interface 16(4) (2013): 285–91.CrossRefGoogle ScholarPubMed
[2] Dodd, J., Kishiyama, C., Nagata, M., Nakahara, H., Yumoto, H., et al., “Implantable rechargeable lithium ion batteries for medical applications: neurostimulation and cardiovascular devices,” presented at Lithium and Lithium-Ion Batteries International Symposium, Orlando, FL, 2004.
[3] Humayun, M. S., Dorn, J. D., Cruz, L. da, Dagnelie, G., Sahel, J., et al., “Interim results from the international trial of second sight's visual prosthesis,” Ophthalmology 119(4) (2012): 779–88.CrossRefGoogle ScholarPubMed
[4] Autorino, R., Yakoubi, R., White, W. M., Gettman, M., Sio, M. De, et al., “Natural orifice transluminal endoscopic surgery (NOTES): where are we going? A bibliometric assessment,” BJU Int. 111(1) (2013): 11–16.CrossRefGoogle ScholarPubMed
[5] Auyang, E. D., Santos, B. F., Enter, D. H., Hungness, E. S., and Soper, N. J., “Natural orifice translumenal endoscopic surgery (NOTES): a technical review,” Surg. Endosc. 25(10) (2011): 3135–48.CrossRefGoogle ScholarPubMed
[6] Bazzi, W. M., Raheem, O. A., Cohen, S. A., and Derweesh, I. H., “Natural orifice transluminal endoscopic surgery in urology: review of the world literature,” Urol. Ann. 4(1) (2012): 1.CrossRefGoogle ScholarPubMed
[7] Clark, M. P., Qayed, E. S., Kooby, D. A., Maithel, S. K., and Willingham, F. F., “Natural orifice translumenal endoscopic surgery in humans: a review,” Minimally Invasive Surgery 12(2012).Google Scholar
[8] Sodergren, M. H., Clark, J., Athanasiou, T., Teare, J., Yang, G., et al., “Natural orifice translumenal endoscopic surgery: critical appraisal of applications in clinical practice,” Surg. Endosc. 23(4) (2009): 680–7.CrossRefGoogle ScholarPubMed
[9] Teoh, A. Y. B., Chiu, P. W. Y., and Ng, E. K. W., “Current developments in natural orifices transluminal endoscopic surgery: an evidence-based review,” World J. Gastroenterol. 16(38) (2010): 4792.CrossRefGoogle Scholar
[10] Tolcher, M. C., Kalogera, E., Hopkins, M. R., Weaver, A. L., Bingener, J., et al., “Safety of culdotomy as a surgical approach: implications for natural orifice transluminal endoscopic surgery,” JSLS 16(3) (2012): 413.CrossRefGoogle ScholarPubMed
[11] Swanström, L. L., Khajanchee, Y., and Abbas, M. A., “Natural orifice transluminal endoscopic surgery: the future of gastrointestinal surgery,” Permanente J. 12(2) (2008): 42.CrossRefGoogle ScholarPubMed
[12] Rondonotti, E. and Villa, F., “Other capsule systems,” In Capsule Endoscopy Simplified (Thorofare, NJ: Slack, 2010), p. 13.Google Scholar
[13] Chamberlain, S. M., Patel, A., and Sridhar, M. Subbaramiah, Capsule Endoscopy (Thorofare, NJ: Slack, 2011).CrossRefGoogle Scholar
[14] Whitmer, B., Raphael, M., and Warren, B., “Video capsule endoscopy: the past, present, and future,” J. Gastrointest. Dig. Syst. 1 (2011): 2.Google Scholar
[15] Mackiewicz, M., “Capsule endoscopy: state of the technology and computer vision tools after the first decade,” in New Techniques in Gastrointestinal Endoscopy (New York: In Tech Publishing, 2011).Google Scholar
[16] Gutkin, E., Shalomov, A., Hussain, S. A., Kim, S. H., Cortes, R., et al., “PillCam ESO is more accurate than clinical scoring systems in risk stratifying emergency room patients with acute upper gastrointestinal bleeding,” Therapeut. Adv. Gastroenterol. 6(3) (2013): 193–8.Google ScholarPubMed
[17] Guturu, P., Sagi, S. V., Ahn, D., Jaganmohan, S., Kuo, Y. F., et al., “Capsule endoscopy with PillCam ESO for detecting esophageal varices: a meta-analysis,” Minerva Gastroenterol. Dietol. 57(1) (2011): 1–11.Google ScholarPubMed
[18] Sung, J., Ho, K., Chiu, H., Ching, J., Travis, S., et al., “The use of PillCam COLON in assessing mucosal inflammation in ulcerative colitis: a multicenter study,” Endoscopy 44(8) (2012): 754–8.Google Scholar
[19] Sieg, A., Friedrich, K., and Sieg, U., “Is PillCam COLON capsule endoscopy ready for colorectal cancer screening and quest: a prospective feasibility study in a community gastroenterology practice,” Am. J. Gastroenterol. 104(4) (2009): 848–54.CrossRefGoogle Scholar
[20] Urgesi, R., Riccioni, M. E., Bizzotto, A., Cianci, R., Spada, C., et al., “Increased diagnostic yield of small bowel tumors with PillCam: the role of capsule endoscopy in the diagnosis and treatment of gastrointestinal stromal tumors (GISTs). Italian single-center experience. Tumori 98(3) (2012): 357–63.Google ScholarPubMed
[21] Liao, Z., Gao, R., Xu, C., and Li, Z., “Indications and detection, completion, and retention rates of small-bowel capsule endoscopy: a systematic review,” Gastrointest. Endosc. 71(2) (2010): 280–6.CrossRefGoogle ScholarPubMed
[22] Hong, S. P., Cheon, J. H., Kim, T. I., Song, S. Y., and Kim, W. H., “Comparison of the diagnostic yield of MiroCam and PillCam SB capsule endoscopy,” Hepatogastroenterology 59(115) (2012): 778–81.Google ScholarPubMed
[23] Dolak, W., Kulnigg-Dabsch, S., Evstatiev, R., Gasche, C., Trauner, M., et al., “A randomized head-to-head study of small-bowel imaging comparing MiroCam and EndoCapsule,” Endoscopy 44(11) (2012): 1012.Google ScholarPubMed
[24] Mussetto, A., Fuccio, L., Dari, S., Gasperoni, S., Cantoni, F., et al., “MiroCam capsule for obscure gastrointestinal bleeding: a prospective, single centre experience,” in Digestive and Liver Disease (New York: Elsevier, 2012).Google Scholar
[25] Leighton, J. A., “The role of endoscopic imaging of the small bowel in clinical practice,” Am. J. Gastroenterol. 106(1) (2010): 27–36.Google ScholarPubMed
[26] Ciuti, G., Menciassi, A., and Dario, P., “Capsule endoscopy: from current achievements to open challenges,” IEEE Rev. Biomed.l Eng. 4 (2011): 59–72.Google ScholarPubMed
[27] PillCam, “PillCam capsule endoscopy: given imaging,” Tech. Rep. DOC-2044-02, 2013.
[28] Maqbool, S., Parkman, H. P., and Friedenberg, F. K.. ‘Wireless capsule motility: comparison of the SmartPill GI monitoring system with scintigraphy for measuring whole gut transit,” Dig. Dis. Sci. 54(10) (2009): 2167–74.CrossRefGoogle ScholarPubMed
[29] Saad, R. J. and Hasler, W. L., “A technical review and clinical assessment of the wireless motility capsule,” Gastroenterol. Hepatol. 7(12) (2011): 795.Google ScholarPubMed
[30] Thoné, J., Radiom, S., Turgis, D., Carta, R., Gielen, G., et al., “Design of a 2 Mbps FSK near-field transmitter for wireless capsule endoscopy,” Sensors & Actuators A: Physical 156(1) (2009): 43–8.CrossRefGoogle Scholar
[31] Woo, S. H., Yoon, K. W., Moon, Y. K., Lee, J., Park, H. J., et al., “High speed receiver for capsule endoscope,” J. Med. Syst. 34(5) (2010): 843–7.CrossRefGoogle ScholarPubMed
[32] Diao, S., Zheng, Y., Gao, Y., Heng, C., and Je, M., “A 7.2 mW 15 Mbps ASK CMOS transmitter for ingestible capsule endoscopy,” Presented at the 2010 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Kuala Lampur, Malasia, 2010.
[33] Kim, K., Yun, S., Lee, S., Nam, S., Yoon, Y. J., et al., “A design of a high-speed and high-efficiency capsule endoscopy system,” IEEE Trans. Biomed. Eng. 59(4) (2012): 1005–11.Google ScholarPubMed
[34] Lioe, D., Shafie, S., Ramiah, H., Sulaiman, N., and Halin, I., “Low power transmitter for wireless capsule endoscope,” in 2013 International Conference on Science and Engineering in Mathematics, Chemistry and Physics (Journal of Physics Conference Series 423). (Philadelphia: IOPscience, 2013).Google Scholar
[35] Gao, Y., Zheng, Y., Diao, S., Toh, W., Ang, C., et al., “Low-power ultrawideband wireless telemetry transceiver for medical sensor applications,” IEEE Trans. Biomed. Eng. 58(3) (2011): 768–72.CrossRefGoogle ScholarPubMed
[36] McCaffrey, C., Chevalerias, O., O'Mathuna, C., and Twomey, K., “Swallowable-capsule technology,” IEEE Pervasive Computing 7(1) (2008): 23–9.Google Scholar
[37] Twomey, K. and Marchesi, J., “Swallowable capsule technology: current perspectives and future directions,” Endoscopy 41(4) (2009): 357–62.CrossRefGoogle ScholarPubMed
[38] Twomey, K., “Swallowable capsule technology: current perspectives and future directions,” Endoscopy 41(8) (2009): 732.CrossRefGoogle ScholarPubMed
[39] Pan, G. and Wang, L., “Swallowable wireless capsule endoscopy: progress and technical challenges,” in Gastroenterology Research and Practice (Cairo, Egypt: Hindwa Publishing, 2012).Google Scholar
[40] Kahrilas, P. J. and Pandolfino, J. E.. The Epidemiology and Pathophysiology of Gastroesophageal Reflux Disease (New York: Springer, 2006).CrossRefGoogle Scholar
[41] DeVault, K. R. and Castell, D. O., “Updated guidelines for the diagnosis and treatment of gastroesophageal reflux disease,” Am. J. Gastroenterol. 100(1) (2005): 190–200.CrossRefGoogle ScholarPubMed
[42] Sifrim, D., Holloway, R., Silny, J., Xin, Z., Tack, J., et al., “Acid, nonacid, and gas reflux in patients with gastroesophageal reflux disease during ambulatory 24-hour pH-impedance recordings,” Gastroenterology 120(7) (2001): 1588–98.CrossRefGoogle ScholarPubMed
[43] Mainie, I., Tutuian, R., Shay, S., Vela, M., Zhang, X., et al., “Acid and non-acid reflux in patients with persistent symptoms despite acid suppressive therapy: a multicentre study using combined ambulatory impedance-pH monitoring,” Gut 55(10) (2006): 1398–1402.CrossRefGoogle ScholarPubMed
[44] Martinez, S., Malagon, I., Garewal, H., Cui, H., and Fass, R., “Non-erosive reflux disease (NERD): acid reflux and symptom patterns,” Aliment. Pharmacol. Ther. 17(4) (2003): 537–45.CrossRefGoogle ScholarPubMed
[45] Gutschow, C. A., Bludau, M., Vallböhmer, D., Schröder, W., Bollschweiler, E., et al., “NERD, GERD, and barrett's esophagus: role of acid and non-acid reflux revisited with combined pH-impedance monitoring,” Dig. Dis. Sci. 53(12) (2008): 3076–81.CrossRefGoogle ScholarPubMed
[46] Fass, R., Fennerty, M. B., and Vakil, N., “Nonerosive reflux disease: current concepts and dilemmas,” Am. J. Gastroenterol. 96(2) (2001): 303–14.Google ScholarPubMed
[47] Venables, T., Newland, R., Patel, A., Hole, J., Wilcock, C., et al., “Omeprazole 10 milligrams once daily, omeprazole 20 milligrams once daily, or ranitidine 150 milligrams twice daily, evaluated as initial therapy for the relief of symptoms of gastro-oesophageal reflux disease in general practice,” Scand. J. Gastroenterol. 32(10) (1997): 965–73.Google ScholarPubMed
[48] Spechler, S. J., “Barrett's esophagus,” N. Engl. J. Med. 346(11) (2002): 836–42.CrossRefGoogle ScholarPubMed
[49] Spechler, S. J., “Barrett's esophagus: the American perspective,” Dig. Dis. 31(1) (2013): 10–16.CrossRefGoogle ScholarPubMed
[50] Phillips, W. A., Lord, R. V., Nancarrow, D. J., Watson, D. I., and Whiteman, D. C., “Barrett's esophagus,” J. Gastroenterol. Hepatol. 26(4) (2011): 639–48.CrossRefGoogle ScholarPubMed
[51] Ofman, J. J., “The relation between gastroesophageal reflux disease and esophageal and head and neck cancers: a critical appraisal of epidemiologic literature,” Am. J. Med. 111(8) (2001): 124–9.CrossRefGoogle ScholarPubMed
[52] Chai, J. and Jamal, M. M., “Esophageal malignancy: a growing concern,” World J. Gastroenterol. 18(45) (2012): 6521.CrossRefGoogle ScholarPubMed
[53] Edwards, B. K., Ward, E., Kohler, B. A., Eheman, C., Zauber, A. G., et al., “Annual report to the nation on the status of cancer, 1975–2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates,” Cancer 116(3) (2010): 544–73.CrossRefGoogle ScholarPubMed
[54] Kohler, B. A., Ward, E., McCarthy, B. J., Schymura, M. J., Ries, L. A., et al., “Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system,” J. Natl. Cancer Inst. 103(9) (2011): 714–36.CrossRefGoogle ScholarPubMed
[55] Hölscher, A. H., Bollschweiler, E., Bumm, R., Bartels, H., Höfler, H., et al., “Prognostic factors of resected adenocarcinoma of the esophagus,” Surgery 118(5) (1995): 845–55.CrossRefGoogle ScholarPubMed
[56] Dunbar, K. B. and Spechler, S. J., “The risk of lymph-node metastases in patients with high-grade dysplasia or intramucosal carcinoma in Barrett's esophagus: a systematic review,” Am. J. Gastroenterol. 107(6) (2012): 850–62.CrossRefGoogle ScholarPubMed
[57] Everhart, J. E., Donowitz, M., Adams, E., Cronin, K., Goodman, C., et al., “The burden of selected digestive diseases in the United States,” Gastroenterology 122(5) (2002): 1500–11.Google Scholar
[58] Zentilin, P., Dulbecco, P., Savarino, E., Giannini, E., and Savarino, V., “Combined multichannel intraluminal impedance and pH-metry: a novel technique to improve detection of gastro-oesophageal reflux. Literature review,” Dig. Liver Dis. 36(9) (2004): 565–9.CrossRefGoogle ScholarPubMed
[59] Tutuian, R. and Castell, D. O., “Reflux monitoring: role of combined multichannel intraluminal impedance and pH,” Gastrointest. Endosc. Clin. North Am. 15(2) (2005): 361–71.Google Scholar
[60] Tutuian, R., Vela, M. F., Shay, S. S., and Castell, D. O., “Multichannel intraluminal impedance in esophageal function testing and gastroesophageal reflux monitoring,” J. Clin. Gastroenterol. 37(3) (2003): 206–15.CrossRefGoogle ScholarPubMed
[61] Wise, J. and Murray, J., “Utilising multichannel intraluminal impedance for diagnosing GERD: a review,” Dis. Esophagus 20(2) (2007): 83–8.CrossRefGoogle ScholarPubMed
[62] Mainie, I., Tutuian, R., Agrawal, A., Adams, D., and Castell, D., “Combined multichannel intraluminal impedance–pH monitoring to select patients with persistent gastro-oesophageal reflux for laparoscopic nissen fundoplication,” Br. J. Surg. 93(12) (2006): 1483–7.CrossRefGoogle ScholarPubMed
[63] Vela, M. F., “Non-acid reflux: detection by multichannel intraluminal impedance and pH, clinical significance and management,” Am. J. Gastroenterol. 104(2) (2009): 277–80.CrossRefGoogle ScholarPubMed
[64] Pandolfino, J. E., “Prolonged reflux monitoring: capabilities of Bravo pH and impedance-pH systems. Curr. GERD Rep. 1(3) (2007): 165–70.Google Scholar
[65] Vandenplas, Y., Salvatore, S., Vieira, M. C., and Hauser, B., “Will esophageal impedance replace pH monitoring?,Pediatrics 119(1) (2007): 118–22.CrossRefGoogle Scholar
[66] Shay, S., “A balancing view: impedance–pH testing in GERD-limited role for now, perhaps more helpful in the future,” Am. J. Gastroenterol. 104(11) (2009): 2669–70.CrossRefGoogle ScholarPubMed
[67] Pandolfino, J. E., Richter, J. E., Ours, T., Guardino, J. M., Chapman, J., et al., “Ambulatory esophageal pH monitoring using a wireless system,” Am. J. Gastroenterol. 98(4) (2003): 740–9.CrossRefGoogle ScholarPubMed
[68] Ward, E., Devault, K., Bouras, E., Stark, M., Wolfsen, H., et al., “Successful oesophageal pH monitoring with a catheter-free system,” Aliment. Pharmacol. Ther. 19(4) (2004): 449–54.CrossRefGoogle ScholarPubMed
[69] Wenner, J., Johnsson, F., Johansson, J., and Öberg, S.. ‘Wireless oesophageal pH monitoring: feasibility, safety and normal values in healthy subjects,” Scand. J. Gastroenterol. 40(7) (2005): 768–74.CrossRefGoogle ScholarPubMed
[70] Tutuian, R. and Castell, D. O., “Gastroesophageal reflux monitoring: pH and impedance,” GI Motility Online (2006), available at www.nature.com/gimo/contents/pt1/full/gimo31.html#relatedcontent.
[71] Kwiatek, M. and Pandolfino, J., “The Bravo pH capsule system,” Dig. Liver Dis. 40(3) (2008): 156–60.CrossRefGoogle ScholarPubMed
[72] Pandolfino, J. E. and Vela, M. F., “Esophageal-reflux monitoring,” Gastrointest. Endosc. 69(4) (2009): 917–30.CrossRefGoogle ScholarPubMed
[73] Prakash, C. and Clouse, R. E., “Value of extended recording time with wireless pH monitoring in evaluating gastroesophageal reflux disease,” Clin. Gastroenterol. Hepatol. 3(4) (2005): 329–34.CrossRefGoogle ScholarPubMed
[74] Hirano, I., Zhang, Q., Pandolfino, J. E., and Kahrilas, P. J., “Four-day Bravo pH capsule monitoring with and without proton pump inhibitor therapy,” Clin. Gastroenterol. Hepatol. 3(11) (2005): 1083–8.CrossRefGoogle ScholarPubMed
[75] Vaezi, M. F., “Bravo pH testing on and off treatment with immediate-release omeprazole: a review of findings presented at the 71st Annual Scientific Meeting of the American College of Gastroenterology, October 20–25, 2006, Las Vegas, NV,” Gastroenterol. Hepatol. 3(1 Suppl. 1) (2007): 1.Google Scholar
[76] Hirano, I., “Review article: Modern technology in the diagnosis of gastro-oesophageal reflux disease: Bilitec, intraluminal impedance and Bravo capsule pH monitoring,” Aliment. Pharmacol. Ther. 23(Suppl. 1) (2006): 12–24.CrossRefGoogle Scholar
[77] Scarpulla, G., Camilleri, S., Galante, P., Manganaro, M., and Fox, M., “The impact of prolonged pH measurements on the diagnosis of gastroesophageal reflux disease: 4-day wireless pH studies,” Am. J. Gastroenterol. 102(12) (2007): 2642–7.CrossRefGoogle Scholar
[78] Varannes, S. B. des, Mion, F., Ducrotté, P., Zerbib, F., Denis, P., et al., “Simultaneous recordings of oesophageal acid exposure with conventional pH monitoring and a wireless system (Bravo),” Gut 54(12) (2005): 1682–6.Google Scholar
[79] Pandolfino, J. E., Zhang, Q., Schreiner, M. A., Ghosh, S., Roth, M. P., et al., “Acid reflux event detection using the bravo wireless versus the slimline catheter pH systems: why are the numbers so different?Gut 54(12) (2005): 1687–92.CrossRefGoogle ScholarPubMed
[80] Pandolfino, J. E., Schreiner, M. A., Lee, T. J., Zhang, Q., Boniquit, C., et al., “Comparison of the Bravo wireless and Digitrapper catheter-based pH monitoring systems for measuring esophageal acid exposure,” Am. J. Gastroenterol. 100(7), pp. 1466–1476. 2005.CrossRefGoogle ScholarPubMed
[81] Orr, W., Heading, R., Johnson, L., and Kryger, M., “Review article: Sleep and its relationship to gastro-oesophageal reflux,” Aliment. Pharmacol. Ther. 20(Suppl. 9) (2004): 39–46.CrossRefGoogle ScholarPubMed
[82] Sifrim, D., Castell, D., Dent, J., and Kahrilas, P., “Gastro-oesophageal reflux monitoring: review and consensus report on detection and definitions of acid, non-acid, and gas reflux,” Gut 53(7) (2004): 1024–31.CrossRefGoogle ScholarPubMed
[83] Kawamura, O., Aslam, M., Rittmann, T., Hofmann, C., and Shaker, R., “Physical and pH properties of gastroesophagopharyngeal refluxate: a 24-hour simultaneous ambulatory impedance and pH monitoring study,” Am. J. Gastroenterol. 99(6) (2004): 1000–10.CrossRefGoogle ScholarPubMed
[84] Shay, S., “Esophageal impedance monitoring: the ups and downs of a new test,” Am. J. Gastroenterol. 99(6) (2004): 1020–22.CrossRefGoogle ScholarPubMed
[85] Castell, D. O. and Vela, M., “Combined multichannel intraluminal impedance and pH-metry: an evolving technique to measure type and proximal extent of gastroesophageal reflux,” Am. J. Med. 111(8) (2001): 157–9.CrossRefGoogle ScholarPubMed
[86] Ativanichayaphong, T., Huang, W., Wang, J., Rao, S. M., Tibbals, H., et al., “A wireless sensor for detecting gastroesophageal reflux,” in Smart Materials, Nano-and Micro-Smart Systems (SPIE 6416) (2006), available at http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1295572.
[87] Ativanichayaphong, T., Wang, J., Huang, W., Rao, S., and Chiao, J., “A simple wireless batteryless sensing platform for resistive and capacitive sensors,” in 2007 IEEE Conference on Sensors, Atlanta, GA (2007), pp. 139–42.Google Scholar
[88] Ativanichayaphong, T., Tang, S.-J., Hsu, L.-C., Huang, W.-D., Seo, Y.-S., et al., “An implantable batteryless wireless impedance sensor for gastroesophageal reflux diagnosis,” in 2010 IEEE MTT-S International Microwave Symposium Digest (2010).
[89] Hsu, L., Tang, S., Huang, W., Hogg, D., Tibbals, H. F., et al., “An implantable, batteryless and wireless capsule with integrated impedance and pH sensors for detecting the reflux of acidic and non-acidic materials.Gastroenterology 136(5) (2009): A–649.CrossRefGoogle Scholar
[90] Gonzalez-Guillaumin, J. L., Sadowski, D. C., Kaler, K. V., and Mintchev, M. P., “Ingestible capsule for impedance and pH monitoring in the esophagus,” IEEE Trans. Biomed. Eng. 54(12) (2007): 2231–6.CrossRefGoogle ScholarPubMed
[91] Cao, H., Landge, V., Tata, U., Seo, Y., Rao, S., et al., “An implantable, batteryless and wireless capsule with integrated impedance and pH sensors for gastroesophageal reflux monitoring,” IEEE Trans. Biomed. Eng. 59(11) (2012): 3131–9.Google ScholarPubMed
[92] Preradovic, S., Karmakar, N., and Balbin, I., “RFID transponders,” IEEE Microwave Mag. 9(5) (2008): 90–103.CrossRefGoogle Scholar
[93] Finkenzeller, K.. RFID Handbook: Radio-Frequency Identification Fundamentals and Applications (New York: Wiley, 1999).Google Scholar
[94] DeHennis, A. D. and Wise, K. D., “A wireless microsystem for the remote sensing of pressure, temperature, and relative humidity,” J. Microelectromech. Syst. 14(1) (2005): 12–22.CrossRefGoogle Scholar
[95] Ativanichayaphong, T., Wang, J., Huang, W., Rao, S., Tibbals, H., et al., “Development of an implanted RFID impedance sensor for detecting gastroesophageal reflux,” in 2007 IEEE International Conference on RFID, Grapevine, TX (2007), pp. 127–33.Google Scholar
[96] Huang, W., Hsu, L., Wang, J., Ativanichayaphong, T., Deb, S., et al, “Investigation of repeatability of sol-gel iridium oxide pH sensor on flexible substrate,” in Proc. SPIE 7269: Micro- and Nanotechnology: Materials, Processes, Packaging, and Systems IV (2008), available at http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=817028.
[97] Huang, W., Cao, H., Deb, S., Chiao, M., and Chiao, J., “A flexible pH sensor based on the iridium oxide sensing film,” Sensors Actuators A: Physical 169(1) (2011): 1–11.CrossRefGoogle Scholar
[98] Institute of Electrical and Electronics Engineers, “IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” IEEE Standard C95.1-2005 (revision of IEEE Standard C95.1-1991). IEEE, Piskataway, NJ, 2006.
[99] Cao, H., Thakar, S. K., Fu, T., Sheth, M., Oseng, M. L., et al., “A wireless strain sensor system for bladder volume monitoring,” in 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD (2011), pp. 1–4.Google Scholar
[100] Sobral, E. M. B., Lins, R. D., and Lins, Z. D., “Analyzing the propagation features of the Texas eZ430-RF2500 device,” in 7th International Telecommunications Symposium (2010).
[101] Mamishev, A. V., Sundara-Rajan, K., Yang, F., Du, Y., and Zahn, M., “Interdigital sensors and transducers,” Proc. IEEE 92(5) (2004): 808–45.CrossRefGoogle Scholar
[102] Alley, G. D., “Interdigital capacitors and their application to lumped-element microwave integrated circuits,” IEEE Trans. Microwave Theory & Techniques 18(12) (1970): 1028–33.CrossRefGoogle Scholar
[103] Hobdell, J. L., “Optimization of interdigital capacitors,” IEEE Trans. Microwave Theory & Techniques 27 (1979): 788–91.CrossRefGoogle Scholar
[104] Gevorgian, S. S., Martinsson, T., Linner, P. L., and Kollberg, E. L., “CAD models for multilayered substrate interdigital capacitors,” IEEE Trans. Microwave Theory & Techniques 44(6) (1996): 896–904.CrossRefGoogle Scholar
[105] Zhu, L. and Wu, K., “Accurate circuit model of interdigital capacitor and its application to design of new quasi-lumped miniaturized filters with suppression of harmonic resonance,” IEEE Trans. Microwave Theory & Techniques 48(3) (2000): 347–56.Google Scholar
[106] Wilson, J. A. and Vela, M. F., “New esophageal function testing (impedance, Bravo pH monitoring, and high-resolution manometry): clinical relevance,” Curr. Gastroenterol. Rep. 10(3) (2008): 222–30.CrossRefGoogle ScholarPubMed
[107] Caflisch, C., Pucacco, L., and Carter, N., “Manufacture and utilization of antimony pH electrodes,” Kidney Int. 14(2) (1978): 126–41.CrossRefGoogle ScholarPubMed
[108] Pandolfino, J., Ghosh, S., Zhang, Q., Heath, M., Bombeck, T., et al., “Slimline vs. glass pH electrodes: what degree of accuracy should we expect?,Aliment. Pharmacol. Ther. 23(2) (2006): 331–40.CrossRefGoogle Scholar
[109] Allen, M. L., Orr, W. C., Woodruff, D. M., and Robinson, M. G., “Validation of an ambulatory esophageal pH monitoring system,” Am. J. Gastroenterol. 83(3) (1988): 287–90.Google ScholarPubMed
[110] Pritchett, J. M., Aslam, M., Slaughter, J. C., Ness, R. M., Garrett, C. G., et al., “Efficacy of esophageal impedance/pH monitoring in patients with refractory gastroesophageal reflux disease, on and off therapy,” Clin. Gastroenterol. Hepatol. 7(7) (2009): 743–8.CrossRefGoogle ScholarPubMed
[111] Hila, A., Agrawal, A., and Castell, D. O., “Combined multichannel intraluminal impedance and pH esophageal testing compared to pH alone for diagnosing both acid and weakly acidic gastroesophageal reflux,” Clin. Gastroenterol. Hepatol. 5(2) (2007): 172–7.CrossRefGoogle ScholarPubMed
[112] Bravo, “Bravo pH monitoring system,” DOC-1384-01. GIVEN Imaging, Yokne'am Illit, Israel, 2009.
[113] Nishio, K. and Tsuchiya, T., “Electrochromic thin films prepared by sol-gel process,” Solar Energy Mater. Solar Cells 68(3) (2001): 279–93.CrossRefGoogle Scholar
[114] Osaka, A., Takatsuna, T., and Miura, Y., “Iridium oxide films via sol-gel processing,” J. Non-Cryst. Solids 178 (1994): 313–19.CrossRefGoogle Scholar
[115] Cantrell, W. H., “Tuning analysis for the high-Q class-E power amplifier,” IEEE Trans. Microwave Theory & Techniques 48(12) (2000): 2397–402.CrossRefGoogle Scholar
[116] Raab, F. H., Asbeck, P., Cripps, S., Kenington, P. B., Popovic, Z. B., et al., “Power amplifiers and transmitters for RF and microwave,” IEEE Trans. Microwave Theory & Techniques 50(3) (2002): 814–26.CrossRefGoogle Scholar
[117] Kazimierczuk, M. K.. RF Power Amplifiers (Hoboken, NJ: Wiley, 2008).Google Scholar
[118] Kendir, G. A., Liu, W., Wang, G., Sivaprakasam, M., Bashirullah, R., et al, “An optimal design methodology for inductive power link with class-E amplifier,” IEEE Transactions on Circuits and Systems I: Regular Papers 53(5) (2005): 857–66.Google Scholar
[119] Kazimierczuk, M. and Puczko, K., “Exact analysis of class E tuned power amplifier at any Q and switch duty cycle,” IEEE Trans. Circuits & Syst. 34(2) (1987): 149–59.Google Scholar
[120] Johannessen, E. A., Wang, L., Wyse, C., Cumming, D. R., and Cooper, J. M., “Biocompatibility of a lab-on-a-pill sensor in artificial gastrointestinal environments,” IEEE Trans. Biomed. Eng. 53(11) (2006): 2333–40.CrossRefGoogle ScholarPubMed
[121] Oelβner, W., Zosel, J., Berthold, F., and Kaden, H., “Investigation of the dynamic response behaviour of ISFET pH sensors by means of laser Doppler velocimetry (LDV),” Sensors Actuators B: Chem. 27(1) (1995): 345–8.CrossRefGoogle Scholar
[122] Jamasb, S., Collins, S., and Smith, R. L., “A physical model for drift in pH ISFETs,” Sensors Actuators B: Chem. 49(1) (1998): 146–55.CrossRefGoogle Scholar
[123] Cao, H., Rao, S., Tang, S., Tibbals, H. F., Spechler, S., et al., “Batteryless implantable dual-sensor capsule for esophageal reflux monitoring,” Gastrointest. Endosc. 77(4) (2013): 649–53 CrossRefGoogle ScholarPubMed
[124] Qin, Y., Wang, X., and Wang, Z. L., “Microfibre–nanowire hybrid structure for energy scavenging,” Nature 451(7180) (2008): 809–13.CrossRefGoogle ScholarPubMed
[125] Yang, R., Qin, Y., Dai, L., and Wang, Z. L., “Power generation with laterally packaged piezoelectric fine wires,” Nature Nanotechnol. 4(1) (2008): 34–9.Google ScholarPubMed
[126] Chen, X., Xu, S., Yao, N., and Shi, Y., “1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers,” Nano Lett. 10(6) (2010): 2133–37. 2010.CrossRefGoogle ScholarPubMed
[127] Mitcheson, P. D., Yeatman, E. M., Rao, G. K., Holmes, A. S., and Green, T. C., “Energy harvesting from human and machine motion for wireless electronic devices,” Proc. IEEE 96(9) (2008): 1457–86.CrossRefGoogle Scholar
[128] Miao, P., Mitcheson, P., Holmes, A., Yeatman, E., Green, T., et al., “MEMS inertial power generators for biomedical applications,” Microsyst. Technol. 12(10–11) (2006): 1079–83.CrossRefGoogle Scholar
[129] Karami, M. A. and Inman, D. J., “Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters,” Appl. Phys. Lett. 100 (2012): 042901.CrossRefGoogle Scholar
[130] Leonov, V., Torfs, T., Fiorini, P., and Hoof, C. Van, “Thermoelectric converters of human warmth for self-powered wireless sensor nodes,” IEEE J. Sensors 7(5) (2007): 650–7.CrossRefGoogle Scholar
[131] Venkatasubramanian, R., Watkins, C., Stokes, D., Posthill, J., and Caylor, C., “Energy harvesting for electronics with thermoelectric devices using nanoscale materials,” in 2007 IEEE International Electron Devices Meeting (IEDM 2007). IEEE International, Piskatawey, NJ, 2007.Google Scholar
[132] Snyder, G. J., “Thermoelectric energy harvesting.” in Priya, Shashank and Inman, Daniel J. (eds.), Energy Harvesting Technologies (New York: Springer, 2009).Google Scholar
[133] Kerzenmacher, S., Ducrée, J., Zengerle, R., and Stetten, F. Von. ‘Energy harvesting by implantable abiotically catalyzed glucose fuel cells,” J. Power Sources 182(1) (2008): 1–17.CrossRefGoogle Scholar
[134] Kerzenmacher, S., Schroeder, M., Brämer, R., Zengerle, R., and Stetten, F. Von, “Raney-platinum film electrodes for potentially implantable glucose fuel cells: 1. Nickel-free glucose oxidation anodes,” J. Power Sources 195(19) (2010): 6516–23.Google Scholar
[135] Cinquin, P., Gondran, C., Giroud, F., Mazabrard, S., Pellissier, A.,et al., “A glucose biofuel cell implanted in rats,” PLoS One 5(5) (2010): e10476.CrossRefGoogle ScholarPubMed
[136] Ozeri, S. and Shmilovitz, D., “Ultrasonic transcutaneous energy transfer for powering implanted devices,” Ultrasonics 50(6) (2010): 556–66.CrossRefGoogle ScholarPubMed
[137] Larson, P. J. and Towe, B. C., “Miniature ultrasonically powered wireless nerve cuff stimulator,” Presented at the 2011 5th International IEEE/EMBS Conference on Neural Engineering (NER), Cancun, Mexico, 2011.
[138] Maleki, T., Cao, N., Song, S. H., Kao, C., Ko, S., et al., “An ultrasonically powered implantable micro-oxygen generator (IMOG),IEEE Trans. Biomed. Eng. 58(11) (2011): 3104–11.CrossRefGoogle ScholarPubMed
[139] Mazzilli, F., Peisino, M., Mitouassiwou, R., Cotté, B., Thoppay, P., et al., “In-vitro platform to study ultrasound as source for wireless energy transfer and communication for implanted medical devices,” Presented at the Engineering in Medicine and Biology Society Conference (EMBC), 2010 Annual International Conference of the IEEE, Buenos Aires, 2010.
[140] Kawanabe, H., Katane, T., Saotome, H., Saito, O., and Kobayashi, K., “Power and information transmission to implanted medical device using ultrasound,” Jpn. J. Appl. Phys. 40: 3865, 2001.CrossRefGoogle Scholar
[141] Olivo, J., Carrara, S., and Micheli, G. De, “Energy harvesting and remote powering for implantable biosensors,” IEEE Sensors J. 11(7) (2011): 1573–86.CrossRefGoogle Scholar
[142] Mitcheson, P. D., “Energy harvesting for human wearable and implantable bio-sensors,” Presented at the 2010 Annual International Conference of Engineering in Medicine and Biology Society (EMBC) (2010).
[143] Ghovanloo, M. and Atluri, S., “A wide-band power-efficient inductive wireless link for implantable microelectronic devices using multiple carriers,” IEEE Trans. Circuits & Syst. I: Regular Papers 54(20) (2007): 2211–21.CrossRefGoogle Scholar
[144] Guo, Y., Zhu, D., and Jegadeesan, R., “Inductive wireless power transmission for implantable devices,” in 2011 International Workshop on Antenna Technology (iWAT) Hong Kong, 2011.Google Scholar
[145] Baker, M. W. and Sarpeshkar, R., “Feedback analysis and design of RF power links for low-power bionic systems,” IEEE Trans. Biomed Circuits & Syst. 1(1) (2007): 28–38.CrossRefGoogle ScholarPubMed
[146] Poon, A. S., O'Driscoll, S., and Meng, T. H., “Optimal frequency for wireless power transmission into dispersive tissue,” IEEE Trans. Antennas & Propagation 58(5) (2010): 1739–50.CrossRefGoogle Scholar
[147] Puers, R., Carta, R., and Thoné, J., “Wireless power and data transmission strategies for next-generation capsule endoscopes,” J. Micromech. Microeng. 21(5) (2011): 054008.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×