Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-24T05:06:06.632Z Has data issue: false hasContentIssue false

6 - Separation algebras

from I - Generic separation logic

Published online by Cambridge University Press:  05 August 2014

Andrew W. Appel
Affiliation:
Princeton University, New Jersey
Robert Dockins
Affiliation:
Portland State University
Aquinas Hobor
Affiliation:
National University of Singapore
Lennart Beringer
Affiliation:
Princeton University, New Jersey
Josiah Dodds
Affiliation:
Princeton University, New Jersey
Gordon Stewart
Affiliation:
Princeton University, New Jersey
Sandrine Blazy
Affiliation:
Université de Rennes I, France
Xavier Leroy
Affiliation:
Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt
Get access

Summary

Separation logics have assertions—for example P * (xy) * Q—that describe objects in some underlying model—for example “heaplets”—that separate in some way—such as “the heaplet satisfying P can join with (is disjoint from) the heaplet satisfying xy.” In this chapter we investigate the objects in the underlying models: what kinds of objects will we have, and what does it mean for them to join?

This study of join relations is the study of separation algebras. Once we know how the underlying objects join, this will explain the meaning of the * operator (and other operators), and will justify the reasoning rules for these operators.

In a typical separation logic, the state has a stack ρ for local variables and a heap m for pointers and arrays. Typically, m is a partial function from addresses to values. The key idea in separation logic is that that each assertion characterizes the domain of this function as well as the value of the function. The separating conjunction P * Q requires that P and Q operate on subheaps with disjoint domains.

In contrast, for the stack we do not often worry about separation: we may assume that both P and Q operate on the entirety of the stack ρ.

For now, let us ignore stacks ρ, and let us assume that assertions P are just predicates on heaps, so mP is simply P(m).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Separation algebras
  • Andrew W. Appel, Princeton University, New Jersey
  • Book: Program Logics for Certified Compilers
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107256552.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Separation algebras
  • Andrew W. Appel, Princeton University, New Jersey
  • Book: Program Logics for Certified Compilers
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107256552.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Separation algebras
  • Andrew W. Appel, Princeton University, New Jersey
  • Book: Program Logics for Certified Compilers
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107256552.008
Available formats
×