Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-14T11:31:35.634Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

27 - The Origins of Integrating Factors

Dick Jardine
Affiliation:
Keene State College
Dick Jardine
Affiliation:
Keene State College
Amy Shell-Gellasch
Affiliation:
Beloit College
Get access

Summary

Introduction

In a differential equations course, students learn to use integrating factors to solve first order linear differential equations, and in the process reinforce learning of key concepts from their calculus courses. This capsule offers some differential equations solved by the originators of the technique of using an integrating factor, though they did not use that expression. Solving differential equations via integrating factors is difficult for some students, particularly those who try to memorize a formula. We advocate that students learn to derive the method and solve differential equations using the product rule and the fundamental theorem of calculus, as advocated in a number of modern texts [2, 3]. Memorizing the formula would not be in the spirit of the originators of the method, Johann Bernoulli (1667–1748) and Leonhard Euler (1707–1783), nor does formula memorization lead to deep learning of fundamental mathematical processes. Understanding why integrating factors work, as offered in this historical perspective, can deepen student understanding of calculus topics such as the product rule, the fundamental theorem of calculus, and basic integration techniques. This capsule provides some historical information about the work of Bernoulli and Euler, and we offer student activities that will connect that history to enable more thorough learning of the method of integrating factors.

Historical preliminaries

Johann Bernoulli was a colleague of Gottfried Leibniz (1646–1716) and is acknowledged as one of the foundational figures in the development of the calculus. In the early 1690's he prepared lectures in the nascent calculus for Guillaume de l'Hôpital (1661–1704), who is credited with writing the first text on the calculus.

Type
Chapter
Information
Mathematical Time Capsules
Historical Modules for the Mathematics Classroom
, pp. 209 - 214
Publisher: Mathematical Association of America
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×