Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-08T06:16:45.920Z Has data issue: false hasContentIssue false

25 - Bone regeneration

from Part V - Animal models and clinical applications

Published online by Cambridge University Press:  05 February 2015

Eric W. Hsu
Affiliation:
Carnegie Mellon University
Pedro Alvarez
Affiliation:
Carnegie Mellon University
Lyndsey Shutte
Affiliation:
Carnegie Mellon University
Amy Donovan
Affiliation:
Carnegie Mellon University
Shiguang Liu
Affiliation:
Carnegie Mellon University
Arun R. Shivats
Affiliation:
Carnegie Mellon University
Jeffrey O. Hollinger
Affiliation:
Carnegie Mellon University
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Bone biology

Bone is a complex tissue-organ system integrating multiple components in hierarchical layers of molecular cues, cellular communities, and networking highways. Bone moves through space and time in a dynamic manner modulated by homeostatic mechanisms nuanced through a coordinated intercalation of biological and biomechanical rhythms. The price we vertebrate species pay for maintaining this magnificently orchestrated tissue-organ is daunting.

Bone is the most metabolically expensive tissue in the human body. For every ounce of bone, a pound of soft tissue is required for maintenance [1]. Moreover, the human skeletal system must be rugged in order to handle years of cyclic loading at high forces on the order of kilonewtons, and highly sensitive to the calibrated kinetics of calcium and phosphate release in order to maintain meticulously modulated ion levels [2]. Consequently, the intrinsic design of bone and the dynamics that sustain it are an instructional core for regenerative bone therapeutics.

In this chapter we will introduce the profoundly compelling biodynamic structural marvel that gives shape to the amorphous mass in which it is wrapped and provides the fulcrums and pulleys that propel our anatomy along the avenues and boulevards of our towns. We will probe the blueprint of bone as a defining mold that guides and mentors attempts in the laboratory to design and develop compositions to repair and regenerate this structural tour de force.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Martin, R. B. 2007. The importance of mechanical loading in bone biology and medicine. J. Musculoskelet. Neuronal Interact., 7(1), 48–53.Google ScholarPubMed
Kaplan, F. S., Hayes, W. C., Keaveny, T. M. et al. 1994. Form and function of bone. In Simon, S. P., editor. Orthopaedic Basic Science. Columbus, OH: American Academy of Orthopaedic Surgeons, pp. 127–85.Google Scholar
Wergedal, J. E., Matsuyama, T. and Strong, D. D. 1992. Differentiation of normal human bone cells by transforming growth factor-beta and 1,25(OH)2 vitamin D3. Metabolism: Clin. Exp., 41(1), 42–8.CrossRefGoogle ScholarPubMed
Hollinger, J. O., Hart, C. E., Hirsch, S. N., Lynch, S. and Friedlaender, G. E. 2008. Recombinant human platelet-derived growth factor: biology and clinical applications. J. Bone Joint Surg. Am. Vol., 90(Suppl 1), 48–54.CrossRefGoogle ScholarPubMed
Pountos, I., Georgouli, T., Henshaw, K. et al. 2010. The effect of bone morphogenetic protein-2, bone morphogenetic protein-7, parathyroid hormone, and platelet-derived growth factor on the proliferation and osteogenic differentiation of mesenchymal stem cells derived from osteoporotic bone. J. Orthopaedic Trauma, 24(9), 552–6.CrossRefGoogle ScholarPubMed
Minamide, A., Yoshida, M., Kawakami, M. et al. 2007. The effects of bone morphogenetic protein and basic fibroblast growth factor on cultured mesenchymal stem cells for spine fusion. Spine, 32(10), 1067–71.CrossRefGoogle ScholarPubMed
Kubota, K., Iseki, S., Kuroda, S. et al. 2002. Synergistic effect of fibroblast growth factor-4 in ectopic bone formation induced by bone morphogenetic protein-2. Bone, 31(4), 465–71.CrossRefGoogle ScholarPubMed
Visser, R., Arrabal, P. M., Santos-Ruiz, L., Becerra, J. and Cifuentes, M. 2012. Basic fibroblast growth factor enhances the osteogenic differentiation induced by bone morphogenetic protein-6 in vitro and in vivo. Cytokine, 58(1), 27–33.CrossRefGoogle ScholarPubMed
Kim, J. and Hollinger, J. O. 2012. Recombinant human bone morphogenetic protein-2 released from polyurethane-based scaffolds promotes early osteogenic differentiation of human mesenchymal stem cells. Biomed. Mater., 7(4), 045008.CrossRefGoogle ScholarPubMed
Yang, X., Han, G., Pang, X. and Fan, M. 2012. Chitosan/collagen scaffold containing bone morphogenetic protein-7 DNA supports dental pulp stem cell differentiation in vitro and in vivo. J. Biomed. Mater. Res. Part A, .
Sammons, J., Ahmed, N., El-Sheemy, M. and Hassan, H. T. 2004. The role of BMP-6, IL-6, and BMP-4 in mesenchymal stem cell-dependent bone development: effects on osteoblastic differentiation induced by parathyroid hormone and vitamin D(3). Stem Cells Development, 13(3), 273–80.CrossRefGoogle Scholar
Yuan, S., Pan, Q., Liu, W. et al. 2011. Recombinant, B.M.P 4/7 fusion protein induces differentiation of bone marrow stem cells. J. Cellular Biochem., 112(10), 3054–60.CrossRefGoogle Scholar
Frost, H. M. 1964. Dynamics of bone remodeling. In Frost, H. M., editor. Bone Biodynamics. Boston, MA: Little, Brown and Company, pp. 315–33.Google Scholar
Parfitt, A. M., Qiu, S. J. and Rao, D. S. 2004. The mineralization index – A new approach to the histomorphometric appraisal of osteomalacia. Bone, 35(1), 320–5.CrossRefGoogle ScholarPubMed
Schen, S., Villanue, A. R. and Frost, H. M. 1965. Number of osteoblasts per unit area of osteoid seam in human cortical bone. Can. J. Physiol. Pharm., 43(2), 319–25.CrossRefGoogle Scholar
Deldar, A., Lewis, H. and Weiss, L. 1985. Bone lining cells and hematopoiesis – An electron-microscopic study of canine bone-marrow. Anat. Rec., 213(2), 187–201.CrossRefGoogle ScholarPubMed
Frost, H. M. 1987. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner., 2(2), 73–85.Google ScholarPubMed
Piper, K., Boyde, A. and Jones, S. J. 1992. The relationship between the number of nuclei of an osteoclast and its resorptive capability in vitro. Anatomy Embryol., 186(4), 291–9.CrossRefGoogle ScholarPubMed
Jaworski, Z. F. G., Duck, B. and Sekaly, G. 1981. Kinetics of osteoclasts and their nuclei in evolving secondary Haversian systems. J. Anat., 133(Oct), 397–405.Google ScholarPubMed
Delaisse, J. M., Andersen, T. L., Engsig, M. T. et al. 2003. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc. Res. Technol., 61(6), 504–13.CrossRefGoogle ScholarPubMed
Golub, E. E. and Boesze-Battaglia, K. 2007. The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop., 18, 444–8.CrossRefGoogle Scholar
Roberts, W. E., Roberts, J. A., Epker, B. N., Burr, D. B. and Harsfield, J. K. 2006. Remodeling of mineralized tissues, part 1: the Frost legacy. Seminars Orthodontics, 12(4), 216–37.CrossRefGoogle Scholar
Robling, A. G., Castillo, A. B. and Turner, C. H. 2006. Biomechanical and molecular regulation of bone remodeling. Ann. Rev. Biomed. Eng., 8, 455–98.CrossRefGoogle ScholarPubMed
Swartz, S. M., Parker, A. and Huo, C. 1998. Theoretical and empirical scaling patterns and topological homology in bone trabeculae. J. Exp. Biol., 201(4), 573–90.Google ScholarPubMed
Frost, H. M. 1983. The regional acceleratory phenomenon: a review. Henry Ford Hosp. Med. J., 31(1), 3–9.Google ScholarPubMed
Soe, K. and Delaisse, J. M. 2010. Glucocorticoids maintain human osteoclasts in the active mode of their resorption cycle. J. Bone Miner. Res., 25(10), 2184–92.CrossRefGoogle ScholarPubMed
Hauge, E. M., Qvesel, D., Eriksen, E. F., Mosekilde, L. and Melsen, F. 2001. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J. Bone Miner. Res., 16(9), 1575–82.CrossRefGoogle ScholarPubMed
Hollinger, J. and Wong, M. E. 1996. The integrated processes of hard tissue regeneration with special emphasis on fracture healing. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 82(6), 594–606.CrossRefGoogle ScholarPubMed
Rubin, C. T. and Lanyon, L. E. 1984. Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J. Theor. Biol., 107(2), 321–7.CrossRefGoogle ScholarPubMed
Villanueva, A. R., Mathews, C. H. and Parfitt, A. M. 1997. Relationship between the size and shape of osteoblasts and the width of osteoid seams in bone. In Takahashi, H., editor. Handbook of Bone Morphometry. Niigata: Nishimura, pp. 45–55.Google Scholar
Yamazaki, K. and Eyden, B. P. 1995. A study of intercellular relationships between trabecular bone and marrow stromal cells in the murine femoral metaphysis. Anat. Embryol. (Berlin), 192(1), 9–20.CrossRefGoogle ScholarPubMed
Muschler, G. F., Raut, V. P., Patterson, T. E., Wenke, J. C. and Hollinger, J. O. 2010. The design and use of animal models for translational research in bone tissue engineering and regenerative medicine. Tissue Eng. Part B, 16(1), 123–45.CrossRefGoogle ScholarPubMed
Muschler, G. E., Nakamoto, C. and Griffith, L. G. 2004. Engineering principles of clinical cell-based tissue engineering. J. Bone Joint Surgery Am. Vol., 86A(7), 1541–58.CrossRefGoogle Scholar
Salgado, A. J., Coutinho, O. P. and Reis, R. L. 2004. Bone tissue engineering: state of the art and future trends. Macromolec. Biosci., 4(8), 743–65.CrossRefGoogle ScholarPubMed
Hutmacher, D. W., Reichert, J. C., Saifzadeh, S. et al. 2009. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials, 30(12), 2149–63.Google Scholar
O’Loughlin, P. F., Morr, S., Bogunovic, L. et al. 2008. Selection and development of preclinical models in fracture-healing research. J. Bone Joint Surg. Am., 90(Suppl. 1), 79–84.CrossRefGoogle ScholarPubMed
Kumagai, K., Vasanji, A., Drazba, J. A., Butler, R. S. and Muschler, G. F. 2008. Circulating cells with osteogenic potential are physiologically mobilized into the fracture healing site in the parabiotic mice model. J. Orthop. Res., 26(2), 165–75.CrossRefGoogle ScholarPubMed
Stevenson, S. 1999. Biology of bone grafts. Orthop. Clin. N. Am., 30(4), 543–52.CrossRefGoogle ScholarPubMed
Malaval, L., Modrowski, D., Gupta, A. K. and Aubin, J. E. 1994. Cellular expression of bone-related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures. J. Cell. Physiol., 158(3), 555–72.CrossRefGoogle ScholarPubMed
Majors, A. K., Boehm, C. A., Nitto, H., Midura, R. J. and Muschler, G. F. 1997. Characterization of human bone marrow stromal cells with respect to osteoblastic differentiation. J. Orthop. Res., 15(4), 546–57.CrossRefGoogle ScholarPubMed
Pearce, A. I., Richards, R. G., Milz, S., Schneider, E. and Pearce, S. G. 2007. Animal models for implant biomaterial research in bone: a review. Eur. Cell Mater., 13, 1–10.CrossRefGoogle ScholarPubMed
Bode, G., Clausing, P., Gervais, F. et al. 2010. The utility of the minipig as an animal model in regulatory toxicology. J. Pharmacol. Toxicol. Methods, 62(3), 196–220.CrossRefGoogle ScholarPubMed
Bancroft, J. D. and Stevens, A. 1990. Theory and Practice of Histological Techniques, 3rd edn. Edinburgh: Churchill Livingstone.Google Scholar
Dahl, L. K. 1952. A simple and sensitive histochemical method for calcium. Proc. Soc. Exp. Biol. Med., 80(3), 474–9.CrossRefGoogle ScholarPubMed
Harris, H. F. 1900. On the rapid conversion of hematoxylin into haematein in staining reactions. J. Appl. Microsc. Lab. Methods, 3, 777.Google Scholar
Goldner, J. 1937. A modification of the Masson trichrome technique for routine laboratory purposes. Am. J. Clin. Pathol., 20, 237–43.Google Scholar
Wojtowicz, A. M., Shekaran, A., Oest, M. E. et al. 2010. Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials, 31(9), 2574–82.CrossRefGoogle ScholarPubMed
Van Gieson, I. 1889. Laboratory notes of technical methods for the nervous system. NY Med. J., 50, 57–60.Google Scholar
von Kossa, J. 1901. Nachweis von Kalk. Beiträge pathol. Anatomie allgem. Pathol., 29, 163.Google Scholar
Rabkin, E. and Schoen, F. J. 2002. Cardiovascular tissue engineering. Cardiovasc. Pathol., 11(6), 305–17.CrossRefGoogle ScholarPubMed
Hollinger, J. O. and Battistone, G. C. 1986. Biodegradable bone repair materials. Synthetic polymers and ceramics. Clin. Orthop. Rel. Res., 207, 290–305.Google Scholar
Burg, K. J., Porter, S. and Kellam, J. F. 2000. Biomaterial developments for bone tissue engineering. Biomaterials, 21(23), 2347–59.CrossRefGoogle ScholarPubMed
Laurencin, C. T. 2003. Bone Graft Substitutes. W. Conshohocken, PA: ASTM International.CrossRefGoogle Scholar
Goshima, J., Goldberg, V. M. and Caplan, A. I. 1991. Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic. Biomaterials, 12(2), 253–8.CrossRefGoogle ScholarPubMed
Ohgushi, H., Goldberg, V. M. and Caplan, A. I. 1989. Repair of bone defects with marrow cells and porous ceramic. Experiments in rats. Acta Orthop. Scand., 60(3), 334–9.CrossRefGoogle ScholarPubMed
Zreiqat, H., Evans, P. and Howlett, C. R. 1999. Effect of surface chemical modification of bioceramic on phenotype of human bone-derived cells. J. Biomed. Mater. Res., 44(4), 389–96.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Dennis, J. E. and Caplan, A. I. 1993. Porous ceramic vehicles for rat-marrow-derived (Rattus norvegicus) osteogenic cell delivery: effects of pre-treatment with fibronectin or laminin. J. Oral Implantol, 19(2), 106–15; discussion 36–7.Google ScholarPubMed
Miller-Chou, B. A. and Koenig, J. L. 2003. A review of polymer dissolution. Prog. Polymer Sci., 28(8), 1223–70.CrossRefGoogle Scholar
Athanasiou, K. A., Singhal, A. R., Agrawal, C. M. and Boyan, B. D. 1995. In vitro degradation and release characteristics of biodegradable implants containing trypsin inhibitor. Clin. Orthop. Relat. Res., 315, 272–81.Google Scholar
Lu, L., Stamatas, G. N. and Mikos, A. G. 2000. Controlled release of transforming growth factor beta1 from biodegradable polymer microparticles. J. Biomed. Mater. Res., 50(3), 440–51.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Oldham, J. B., Lu, L., Zhu, X. et al. 2000. Biological activity of rhBMP-2 released from PLGA microspheres. J. Biomech. Eng., 122(3), 289–92.CrossRefGoogle ScholarPubMed
Heckman, J. D., Ehler, W., Brooks, B. P. et al. 1999. Bone morphogenetic protein but not transforming growth factor-beta enhances bone formation in canine diaphyseal nonunions implanted with a biodegradable composite polymer. J. Bone Joint Surgery Am. Vol., 81(12), 1717–29.CrossRefGoogle Scholar
Agrawal, C. M., Best, J., Heckman, J. D. and Boyan, B. D. 1995. Protein release kinetics of a biodegradable implant for fracture non-unions. Biomaterials, 16(16), 1255–60.CrossRefGoogle ScholarPubMed
Whang, K., Tsai, D. C., Nam, E. K. et al. 1998. Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J. Biomed. Mater. Res., 42(4), 491–9.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Boyan, B. D., Lohmann, C. H., Somers, A. et al. 1999. Potential of porous poly-d,l-lactide-co-glycolide particles as a carrier for recombinant human bone morphogenetic protein-2 during osteoinduction in vivo. J. Biomed. Mater. Res., 46(1), 51–9.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Asikainen, A. J., Noponen, J., Lindqvist, C. et al. 2006. Tyrosine-derived polycarbonate membrane in treating mandibular bone defects. An experimental study. J. R. Soc. Interface, 3(10), 629–35.CrossRefGoogle ScholarPubMed
Park, Y. J., Lee, Y. M., Park, S. N. et al. 2000. Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials, 21(2), 153–9.CrossRefGoogle ScholarPubMed
Acarturk, T. O. and Hollinger, J. O. 2006. Commercially available demineralized bone matrix compositions to regenerate calvarial critical-sized bone defects. Plast. Reconstr. Surg., 118(4), 862–73.CrossRefGoogle ScholarPubMed
Oonishi, H., Kushitani, S., Yasukawa, E. et al. 1997. Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin. Orthop. Relat. Res., 334, 316–25.CrossRefGoogle Scholar
Vigier, S., Helary, C., Fromigue, O., Marie, P. and Giraud-Guille, M. M. 2010. Collagen supramolecular and suprafibrillar organizations on osteoblasts long-term behavior: benefits for bone healing materials. J. Biomed. Mater. Res. A, 94(2), 556–67.Google ScholarPubMed
Kraiwattanapong, C., Boden, S. D., Louis-Ugbo, J. et al. 2005. Comparison of Healos/bone marrow to INFUSE(rhBMP-2/ACS) with a collagen–ceramic sponge bulking agent as graft substitutes for lumbar spine fusion. Spine, 30(9), 1001–7; discussion 7.CrossRefGoogle ScholarPubMed
Lyons, F. G., Al-Munajjed, A. A., Kieran, S. M. et al. 2010. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. Biomaterials, 31(35), 9232–43.CrossRefGoogle ScholarPubMed
Karp, J. M., Shoichet, M. S. and Davies, J. E. 2003. Bone formation on two-dimensional poly(dl-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. J. Biomed. Mater. Res. A, 64(2), 388–96.CrossRefGoogle ScholarPubMed
Gunatillake, P. A. and Adhikari, R. 2003. Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater., 5, 1–16.CrossRefGoogle ScholarPubMed
Aslan, M., Simsek, G. and Dayi, E. 2006. The effect of hyaluronic acid-supplemented bone graft in bone healing: experimental study in rabbits. J. Biomater. Appl., 20(3), 209–20.CrossRefGoogle ScholarPubMed
Suzuki, Y., Tanihara, M., Suzuki, K. et al. 2000. Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J. Biomed. Mater. Res., 50(3), 405–9.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Chueh, B. H., Zheng, Y., Torisawa, Y. S. et al. 2010. Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device. Biomed. Microdevices, 12(1), 145–51.CrossRefGoogle Scholar
Yeo, A., Wong, W. J., Khoo, H. H. and Teoh, S. H. 2010. Surface modification of PCL–TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation: an in vitro and in vivo characterization. J. Biomed. Mater. Res. A, 92(1), 311–21.CrossRefGoogle Scholar
Duling, R. R., Dupaix, R. B., Katsube, N. and Lannutti, J. 2008. Mechanical characterization of electrospun polycaprolactone (PCL): a potential scaffold for tissue engineering. J. Biomech. Eng., 130(1), 011006.CrossRefGoogle ScholarPubMed
Kim, J., Magno, M. H., Alvarez, P. et al. 2011. Osteogenic differentiation of pre-osteoblasts on biomimetic tyrosine-derived polycarbonate scaffolds. Biomacromolecules, 12(10), 3520–7.CrossRefGoogle ScholarPubMed
Buring, K. 1975. On the origin of cells in heterotopic bone formation. Clin. Orthop. Relat. Res., 110, 293–301.CrossRefGoogle Scholar
Okie, S. 2005. Traumatic brain injury in the war zone. N. Engl. J. Med., 352(20), 2043–7.CrossRefGoogle ScholarPubMed
Garland, D. E., Blum, C. E. and Waters, R. L. 1980. Periarticular heterotopic ossification in head-injured adults. Incidence and location. J. Bone Joint Surg. Am., 62(7), 1143–6.CrossRefGoogle ScholarPubMed
Nair, L. S. and Laurencin, C. T. 2007. Biodegradable polymers as biomaterials. Prog. Polymer Sci., 32(8–9), 762–98.CrossRefGoogle Scholar
Drury, J. L. and Mooney, D. J. 2003. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 24(24), 4337–51.CrossRefGoogle ScholarPubMed
Sangaj, N. and Varghese, S. 2010. Controlling stem cells with biomaterials. In Burdick, J. A. and Mauck, R. L., editors. Biomaterials for Tissue Engineering Applications: A Review of the Past and Future Trends. Berlin: Springer, p. 564.Google Scholar
Anselme, K., Flautre, B., Hardouin, P. et al. 1993. Fate of bioresorbable poly(lactic acid) microbeads implanted in artificial bone defects for cortical bone augmentation in dog mandible. Biomaterials, 14(1), 44–50.CrossRefGoogle ScholarPubMed
Tschon, M., Fini, M., Giavaresi, G. et al. 2007. In vitro and in vivo behaviour of biodegradable and injectable PLA/PGA copolymers related to different matrices. Int. J. Artif. Organs, 30(4), 352–62.CrossRefGoogle ScholarPubMed
De Jong, W. H., Eelco Bergsma, J., Robinson, J. E. and Bos, R. R. 2005. Tissue response to partially in vitro predegraded poly-l-lactide implants. Biomaterials, 26(14), 1781–91.CrossRefGoogle ScholarPubMed
Liu, H., Slamovich, E. B. and Webster, T. J. 2006. Less harmful acidic degradation of poly(lactic-co-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int. J. Nanomedicine, 1(4), 541–5.CrossRefGoogle ScholarPubMed
Félix Lanao, R. P., Leeuwenburgh, S. C., Wolke, J. G. and Jansen, J. A. 2011. Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles. Biomaterials, 32(34), 8839–47.CrossRefGoogle ScholarPubMed
Zhu, S., Zhang, B., Man, C., Ma, Y. and Hu, J. 2011. NEL-like molecule-1-modified bone marrow mesenchymal stem cells/poly lactic-co-glycolic acid composite improves repair of large osteochondral defects in mandibular condyle. Osteoarthritis Cartilage, 19(6), 743–50.CrossRefGoogle ScholarPubMed
Cai, Z., Zhang, T., Di, L. et al. 2011. Morphological and histological analysis on the in vivo degradation of poly(propylene fumarate)/(calcium sulfate/β-tricalcium phosphate). Biomed. Microdevices, 13(4), 623–31.CrossRefGoogle Scholar
Trantolo, D. J., Sonis, S. T., Thompson, B. M. et al. 2003. Evaluation of a porous, biodegradable biopolymer scaffold for mandibular reconstruction. Int. J. Oral Maxillofac. Implants, 18(2), 182–8.Google ScholarPubMed
Burkus, J. K., Gornet, M. F., Glassman, S. D. et al. 2011. Blood serum antibody analysis and long-term follow-up of patients treated with recombinant human bone morphogenetic protein-2 in the lumbar spine. Spine, 36(25), 2158–67.CrossRefGoogle ScholarPubMed
Kawaguchi, Y., Kondo, E., Kitamura, N. et al. 2011. In vivo effects of isolated implantation of salmon-derived crosslinked atelocollagen sponge into an osteochondral defect. J. Mater. Sci. Mater. Med., 22(2), 397–404.CrossRefGoogle ScholarPubMed
Kinsella, C. R., Bykowski, M. R., Lin, A. Y. et al. 2011. BMP-2-mediated regeneration of large-scale cranial defects in the canine: an examination of different carriers. Plast. Reconstr. Surg., 127(5), 1865–73.CrossRefGoogle ScholarPubMed
Kim, S. G., Hahn, B. D., Park, D. S. et al. 2011. Aerosol deposition of hydroxyapatite and 4-hexylresorcinol coatings on titanium alloys for dental implants. J. Oral Maxillofac. Surg., 69(11), e354–63.CrossRefGoogle ScholarPubMed
Sun, F., Zhou, H. and Lee, J. 2011. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater., 7(11), 3813–28.CrossRefGoogle ScholarPubMed
McNeil, J. D. 2011. Intra-articular hyaluronic acid preparations for use in the treatment of osteoarthritis. Int. J. Evid. Based Healthcare, 9(3), 261–4.Google ScholarPubMed
Kim, K. and Fisher, J. P. 2007. Nanoparticle technology in bone tissue engineering. J. Drug Target. 15(4), 241–52.CrossRefGoogle ScholarPubMed
Hu, Q., Ji, H., Liu, Y. et al. 2010. Preparing nano-calcium phosphate particles via a biologically friendly pathway. Biomed. Mater., 5(4), 041001.CrossRefGoogle Scholar
Endo, M., Kuroda, S., Kondo, H. et al. 2006. Bone regeneration by modified gene-activated matrix: effectiveness in segmental tibial defects in rats. Tissue Eng., 12(3), 489–97.CrossRefGoogle ScholarPubMed
Park, J., Ries, J., Gelse, K. et al. 2003. Bone regeneration in critical size defects by cell-mediated BMP-2 gene transfer: a comparison of adenoviral vectors and liposomes. Gene Ther., 10(13), 1089–98.CrossRefGoogle ScholarPubMed
Itaka, K., Ohba, S., Miyata, K. et al. 2007. Bone regeneration by regulated in vivo gene transfer using biocompatible polyplex nanomicelles. Molec. Ther., 15(9), 1655–62.CrossRefGoogle ScholarPubMed
Luo, J., Sun, M. H., Kang, Q. et al. 2005. Gene therapy for bone regeneration. Curr. Gene Ther., 5(2), 167–79.CrossRefGoogle ScholarPubMed
Marra, K. G. 2004. Biodegradable poylmers and microspheres in tissue engineering. In Hollinger, J. O., Einhorn, T. A., Doll, B. A. and Sfeir, C, editors. Bone Tissue Engineering. Boca Raton, FL: CRC Press.Google Scholar
Winn, S. R., Hu, Y., Sfeir, C. and Hollinger, J. O. 2000. Gene therapy approaches for modulating bone regeneration. Adv. Drug. Deliv. Rev., 42(1–2), 121–38.CrossRefGoogle ScholarPubMed
Santos, J. L., Pandita, D., Rodrigues, J. et al. 2011. Non-viral gene delivery to mesenchymal stem cells: methods, strategies and application in bone tissue engineering and regeneration. Curr. Gene Ther., 11(1), 46–57.CrossRefGoogle ScholarPubMed
Betz, V. M., Betz, O. B., Harris, M. B., Vrahas, M. S. and Evans, C. H. 2008. Bone tissue engineering and repair by gene therapy. Front. Biosci., 13, 833–41.CrossRefGoogle ScholarPubMed
Griffin, M., Iqbal, S. A. and Bayat, A. 2011. Exploring the application of mesenchymal stem cells in bone repair and regeneration. J. Bone Joint Surg. Br., 93(4), 427–34.CrossRefGoogle ScholarPubMed
Lynch, S. E. 2005. Bone regeneration techniques in the orofacial region. In Lieberman, J. R. and Friedlaender, G. E., editors. Bone Regeneration and Repair: Biology and Clinical Applications. Totowa: Humana Press.Google Scholar
Craniofacial Reconstruction. 2007–2011, available from .
Moioli, E. K., Clark, P. A., Sumner, D. R. and Mao, J. J. 2008. Autologous stem cell regeneration in craniosynostosis. Bone, 42(2), 332–40.CrossRefGoogle ScholarPubMed
Doll, B. A., Sfeir, C., Azari, K., Holland, S. and Hollinger, J. O. 2005. Craniofacial repair. In Lieberman, J. R. and Friedlaender, G. E., editors. Bone Regeneration and Repair: Biology and Clinical Applications. Totowa: Humana Press, p. 337.CrossRefGoogle Scholar
Boyd, H. B., Lipinski, S. W., Wiley, J. H. 1961. Observations on non-union of the shaft of the long bones, with a statistical analysis of 842 patients. J. Bone Joint Surg. Am., 43(2), 159–68.CrossRefGoogle Scholar
Giannoudis, P. V. and Einhorn, T. A. 2009. Bone morphogenetic proteins in musculoskeletal medicine. Injury, 40 (Suppl. 3), S1–3.Google ScholarPubMed
Dimitriou, R., Tsiridis, E. and Giannoudis, P. V. 2005. Current concepts of molecular aspects of bone healing. Injury, 36(12), 1392–404.CrossRefGoogle ScholarPubMed
Dimitriou, R., Jones, E., McGonagle, D. and Giannoudis, P. V. 2011. Bone regeneration: current concepts and future directions. BMC Medicine, 9, 66.CrossRefGoogle ScholarPubMed
Pneumaticos, S. G., Triantafyllopoulos, G. K., Chatziioannou, S., Basdra, E. K. and Papavassiliou, A. G. 2011. Biomolecular strategies of bone augmentation in spinal surgery. Trends Molec. Med., 17(4), 215–22.CrossRefGoogle ScholarPubMed
Judet, H. and Gilbert, A. 2001. Long-term results of free vascularized fibular grafting for femoral head necrosis. Clin. Orthop. Relat. Res., 386, 114–9.CrossRefGoogle Scholar
Seth, R., Futran, N. D., Alam, D. S. and Knott, P. D. 2010. Outcomes of vascularized bone graft reconstruction of the mandible in bisphosphonate-related osteonecrosis of the jaws. Laryngoscope, 120(11), 2165–71.CrossRefGoogle ScholarPubMed
Clines, G. A. 2010. Prospects for osteoprogenitor stem cells in fracture repair and osteoporosis. Curr. Opin. Organ Transplant., 15(1), 73–8.CrossRefGoogle ScholarPubMed
Ikehara, S. 2005. Intra-bone marrow-bone marrow transplantation: a new strategy for treatment of stem cell disorders. Ann. NY Acad. Sci., 1051, 626–34.CrossRefGoogle ScholarPubMed
Verhaar, H. J. and Lems, W. F. 2010. PTH analogues and osteoporotic fractures. Expert Opin. Biol. Ther., 10(9), 1387–94.CrossRefGoogle ScholarPubMed
Carragee, E. J., Hurwitz, E. L. and Weiner, B. K. 2011. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J., 11(6), 471–91.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×