Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T20:38:39.785Z Has data issue: false hasContentIssue false

From the classical to the noncommutative Iwasawa theory (for totally real number fields)

Published online by Cambridge University Press:  05 January 2012

Mahesh Kakde
Affiliation:
University College London
John Coates
Affiliation:
University of Cambridge
Minhyong Kim
Affiliation:
University College London
Florian Pop
Affiliation:
University of Pennsylvania
Mohamed Saïdi
Affiliation:
University of Exeter
Peter Schneider
Affiliation:
Universität Münster
Get access

Summary

Introduction

The conjectures of Deligne [17], Beilinson [3] and Bloch–Kato [4] are a vast generalisation of the Dirichlet–Dedekind class number formula and Birch–Swinnerton-Dyer conjecture. They predict the order of arithmetic objects (such as class groups, Tate–Shafarevich groups, etc.) in terms of special values of L-functions. On the other hand, the aim of Iwasawa theory is to understand the Galois module structure of these arithmetic objects in terms of L-values. We roughly explain what may now be called classical Iwasawa theory. Let p be a prime. Let ℚcyc be the cyclotomic ℤp-extension of ℚ (see section 2). Let M be a motive over ℚ. We assume that M is critical in the sense of Deligne (this means that the Euler factor at infinity L(M, s) and L(M*(1), -s) are both holomorphic at s = 0, where M* is the dual motive. For details see [14]). Assume that p is a good ordinary prime for M (in the sense of Greenberg [25]. This just means that the p-adic realisation of M has a finite decreasing filtration such that the action of inertia on the ith graded piece is via the ith power of the p-adic cyclotomic character). Let Γ = Gal(ℚcyc/ℚ) ≅ ℤp and let ∧(Γ) be the Iwasawa algebra ℤp[[Γ]] (see end of Section 2). Fix a topological generator γ of Γ. Then the Iwasawa algebra and;(Γ) is isomorphic to the power series ring ℤp[[T]].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Barsky, D.Fonctions zeta p-adiques d'une classe de rayon des corps de nombres totalement reels. Groupe de travail d'analyse ultraletrique, 5(16):1–23, 19771978.Google Scholar
[2] Bass, Hyman. Algebraic K-theory. W. A. Benjamin, Inc., New York-Amsterdam, 1968.Google Scholar
[3] Beilinson, A.Higher regulators and values of L-functions. J. Soviet Math., 30:2036–2070, 1985.CrossRefGoogle Scholar
[4] Bloch, S. and Kato, K.L-functions and tamagawa numbers of motives. In P., Cartier, L., Illusie, N. M., Katz, G., Laumon, Yu., Manin, and Kenneth A., Ribet, editors, The Grothendieck Festschrift, volume 1, pages 333–400. Birkhauser Boston, Boston, 1990.Google Scholar
[5] Borel, Armand. Stable real cohomology of arithmetic groups. Ann. Sci. École Norm. Sup. (4), 7:235–272 (1975), 1974.CrossRefGoogle Scholar
[6] Bourbaki, Nicolas. Commutative Algebra. Chapters 1–7. Elements of Mathematics (Berlin). Springer-Verlag, 1989.Google Scholar
[7] Breuning, Manuel. Determinant functors on triangulated categories. Journal of K-Theory: K-Theory and its Applications to Algebra, Geometry and Topology, 2010.Google Scholar
[8] Brumer, Armand. On the units of algebraic number fields. Mathematika, 14:121–124, 1967.CrossRefGoogle Scholar
[9] Burns, D. On main conjectures in non-commutative Iwasawa theory and related conjectures. Preliminary version, 2010.
[10] Burns, D. and Flach, M.Tamagawa numbers for motives with (non-commutative) coefficients. Doc. Math., 6:501–570, 2001.Google Scholar
[11] Burns, D. and Flach, M.Tamagawa numbers for motives with (non-commutative) coefficients. II. Amer. J. Math., 125(3):475–512, 2003.CrossRefGoogle Scholar
[12] Cassou-Nogués, P.Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques. Invent. Math., 51(1):29–59, 1979.CrossRefGoogle Scholar
[13] Coates, J.p-adic L-functions and Iwasawa's theory. In A., Frohlich, editor, Algebraic Number Fields: L-functions and Galois properties. Academic Press, London, 1977.Google Scholar
[14] Coates, J.Motivic p-adic L-functions. In J., Coates and M. J., Taylor, eds., Lfunctions and arithmetic (Durham, 1989), volume 153, pages 141–172. Cambridge University Press, 1991.Google Scholar
[15] Coates, J., Fukaya, T., Kato, K., Sujatha, R. and Venjakob, O.The GL2 main conjecture for elliptic curves without complex multiplication. Publ. Math. IHES, 2005.CrossRefGoogle Scholar
[16] Coates, J. and Lichtenbaum, S.On l-adic zeta functions. Ann. of Math., 98:498–550, 1973.CrossRefGoogle Scholar
[17] Deligne, P.. Valeurs de fonctions L et periodes d'integrales. In Borel, Armand and Casselman, W., editors, Automorphic forms, representations and L-functions, number 2 in Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore. 1977, pages 313–346, 1979.Google Scholar
[18] Deligne, P.. Le déterminant de la cohomologie. In Kenneth A., Ribet, editor, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), volume 67 of Contemp. Math., pages 93–177. Amer. Math. Soc., 1987.CrossRefGoogle Scholar
[19] Deligne, P. and Ribet, Kenneth A.Values of abelian L-functions at negative integers over totally real fields. Inventiones Math., 59:227–286, 1980.CrossRefGoogle Scholar
[20] Ferrero, B. and Washington, L. C.The Iwasawa invariant µp vanishes for abelian number fields. Ann. of Math., 109:377–395, 1979.CrossRefGoogle Scholar
[21] Flach, M.The equivariant Tamagawa number conjecture: a survey. In D., Burns, J., Sands, and D., Solomon, eds., Stark's conjecture: recent work and new directions, volume 358 of Contemp. Math., pages 79–125. Amer. Math. Soc., 2004.CrossRefGoogle Scholar
[22] Fontaine, J.-M. and Perrin-Riou, B.Autour des conjectures de Bloch et Kato. III. le case général. C. R. Acad. Sci Paris Sér. I Math., 313(7):421–428, 1991.Google Scholar
[23] Fukaya, T. and Kato, K.A formulation of conjectures on p-adic zeta functions in non-commutative Iwasawa theory. In N. N., Uraltseva, editor, Proceedings of the St. Petersburg Mathematical Society, volume 12, pages 1–85, March 2006.Google Scholar
[24] Greenberg, R.On p-adic L-functions and cyclotomic fields – II. Nagoya Math. J., 67:139–158, 1977.CrossRefGoogle Scholar
[25] Greenberg, R.Iwasawa theory for motives. In J., Coates and M. J., Taylor, editors, L-functions and arithmetic (Durham, 1989), volume 153, pages 211–233. Cambridge University Press, 1991.CrossRefGoogle Scholar
[26] Hara, T. Inductive construction of the p-adic zeta functions for non-commutative p-extensions of totally real fields with exponent p. http://arxiv.org/abs/0908.2178v2, 2010.
[27] Huber, A. and Kings, G.Equivariant Bloch-Kato conjecture and non-abelian Iwasawa main conjecture. In Proceedings of the International Congress of Mathematicians, volume 2. Higher Ed. Press, Beijing, 2002.Google Scholar
[28] Iwasawa, K.On Zl-extensions of algebraic number fields. Ann. of Math., 98(2):246–326, 1973.CrossRefGoogle Scholar
[29] Kakde, M.Proof of the Main Conjecture of Noncommutative Iwasawa Theory for Totally Real Number Fields in Certain Cases. PhD thesis, Cambridge University, 2008. Accepted in Journal of Algebraic Geometry.
[30] Kakde, Mahesh. The main conjecture of Iwasawa theory for totally real fields. http://arxiv.org/abs/1008.0142, 2010.
[31] Kato, K.Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via BdR. I. In Arithmetic algebraic geometry, LNM, 1553, pages 50–163. Springer-Verlag, Berlin, 1993.CrossRefGoogle Scholar
[32] Kato, K. Iwasawa theory of totally real fields for Galois extensions of Heisenberg type. Very preliminary version, 2006.
[33] Kato, Kazuya. p-adic Hodge theory and values of zeta functions of modular forms. Asterisque, (295):117–290, 2004.Google Scholar
[34] Klingen, H.Über die werte der Dedekindschen Zetafunktionen. Math. Ann., pages 265–272, 1962.CrossRefGoogle Scholar
[35] Knudsen, Finn F.Determinant functors on exact categories and their extensions to categories of bounded complexes. Michigan Math. J., 50(2):407–444, 2002.CrossRefGoogle Scholar
[36] Knudsen, Finn F. and Mumford, David. The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”. Math. Scand., (1):19–55, 1976.CrossRefGoogle Scholar
[37] Kurihara, Masato. On the structure of ideal class groups of CM-fields. Doc. Math., (Extra Vol.):539–563, 2003.Google Scholar
[38] Lang, Serge. Cyclotomic Fields I and II (with an appendix by Karl Rubin). GTM, 121. Springer-Verlag, New York, 1990.Google Scholar
[39] Mazur, B., and Wiles, A.Class fields of abelian extensions of ℚ. Invent. Math., 76(2):179–330, 1984.CrossRefGoogle Scholar
[40] Ochi, Yoshihiro and Venjakob, Otmar. On the ranks of Iwasawa modules over p-adic Lie extensions. Mathematical Proceedings of the Cambridge Philosophical Society, 135:25–43, 2003.CrossRefGoogle Scholar
[41] Oliver, R.Whitehead Groups of Finite Groups. Number 132 in London Mathematical Society Lecture Note Series. Cambridge University Press, 1988.CrossRefGoogle Scholar
[42] Ritter, J. and Weiss, A. On the ‘main conjecture’ of equivariant Iwasawa theory. http://arxiv.org/abs/1004.2578, April 2010.
[43] Schneider, Peter. Über gewisse Galoiscohomologiegruppen. Math. Z., 168(2), 1979.CrossRefGoogle Scholar
[44] Seigel, C.Über die Fourierschen Koeffizienten von Modulformen. Göttingen Nachr., 3:15–56, 1970.Google Scholar
[45] Sinnott, W.On the µ-invariant of the G-tranform of a rational function. Invent. Math., 75(2):273–282, 1984.CrossRefGoogle Scholar
[46] Soulé, C.K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale. Invent. Math., 55(3):251–295, 1979.CrossRefGoogle Scholar
[47] Vaserstein, L. N.On stabilization for general linear groups over a ring. Math. USSR Sbornik, 8:383–400, 1969.CrossRefGoogle Scholar
[48] Vaserstein, L. N.On the Whitehead determinant for semi-local rings. J. Algebra, 283:690–699, 2005.CrossRefGoogle Scholar
[49] Venjakob, O.From the Birch and Swinnerton-Dyer conjecture to noncommutative Iwasawa theory via equivariant Tamagawa number conjecture – a survey. In D., Burns, K., Buzzard and J., Nekovávr, eds., L-functions and Galois representations, volume 320 of London Mathematical Society Lecture Note Series, pages 333–380. Cambridge University Press, 2007.CrossRefGoogle Scholar
[50] Wiles, A.The Iwasawa conjecture for totally real fields. Ann. of Math., 131(3):493–540, 1990.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×