Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-28T15:07:06.549Z Has data issue: false hasContentIssue false

23 - Exemplification of chaotic activity in non-linear neural networks obeying a deterministic dynamics in continuous time

from Cyclic phenomena and chaos in neural networks

Published online by Cambridge University Press:  05 February 2012

K. E. Kürten
Affiliation:
Universität zu Köln
J. W. Clark
Affiliation:
University of Cape Town
Get access

Summary

Introduction

During the last decade, a conspicuous theme of experimental and theoretical efforts toward understanding the behavior of complex systems has been the identification and analysis of chaotic phenomena in a wide range of physical contexts where the underlying dynamical laws are considered to be deterministic (Schuster, 1984). Such chaotic activity has been examined in great detail in hydrodynamics, chemical reactions, Josephson junctions, semiconductors, and lasers, to mention just a few examples. Chaotic solutions of deterministic evolution equations are characterized by (i) irregular motion of the state variables, and (ii) extreme sensitivity to initial conditions. The latter feature implies that the future time development of the system is effectively unpredictable. An essential prerequisite for deterministic chaos is non-linear response; and although there are famous examples of chaos in relatively simple systems (e.g. Lorenz, 1963; Feigenbaum, 1978), we expect this kind of behavior to arise most naturally in systems of high complexity. Since biological nerve nets are notoriously non-linear and are perhaps the most complex of all known physical systems, it would be most surprising if the phenomena associated with deterministic chaos were irrelevant to neurobiology. Indeed, there has been a growing interest in the detection and verification of deterministic chaos in biological preparations consisting of few or many neurons. At one extreme we may point to the pioneering work of Guevara et al. (1981) on irregular dynamics observed in periodically stimulated cardiac cells; and, at the other, to the recent analysis by Babloyantz et al. (1985) of EEG data from the brains of human subjects during the sleep cycle, aimed at establishing the existence of chaotic attractors for sleep stages two and four.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×