Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T18:14:09.852Z Has data issue: false hasContentIssue false

10 - Models for gamma-ray burst progenitors and central engines

Published online by Cambridge University Press:  05 December 2012

Stan Woosley
Affiliation:
Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95060, USA
Chryssa Kouveliotou
Affiliation:
NASA-Marshall Space Flight Center, Huntsville
Ralph A. M. J. Wijers
Affiliation:
Universiteit van Amsterdam
Stan Woosley
Affiliation:
University of California, Santa Cruz
Get access

Summary

Introduction

For 40 years theorists have struggled to understand gamma-ray bursts (GRBs), not only where they are and the systematics of their observed properties, but what they are and how they operate. These broad questions of origin are often referred to as the problem of the “central engine.” So far, this prime mover remains hidden from direct view, and will remain so until neutrino or gravitational-wave signatures are detected. As discussed elsewhere in this volume, there is compelling evidence that all GRBs require the processing of some small amount of matter into a very exotic state, probably not paralleled elsewhere in the modern Universe. This matter is characterized by an enormous ratio of thermal or magnetic energy to mass, and the large energy-loading drives anisotropic, relativistic outflows. The burst itself is made far away from this central source, outside the star that would otherwise obscure it, by processes that are still being debated (Chapters 7 and 8). The flow of energy is modulated by passing through the star, which also explodes as a supernova, and this modulation further obscures details of the central engine.

The study of GRBs experienced spectacular growth after 1997 when the first cosmological counterparts were localized (Chapter 4), and with that growth in data came increased diversity. Still, it is customary to segregate GRBs into “long-soft” (LSBs) and “short-hard” (SHBs) categories (Kouveliotou et al. 1993), though the distinction is not always clear (Chapters 3 and 5; Section 10.5.9).

Type
Chapter
Information
Gamma-ray Bursts , pp. 191 - 214
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. et al. (2008). ApJ 681, 1419.
Abdo, A. A. et al. (2009). Science 323, 1688.
Aloy, M. A., Müller, E., Ibáñez, J.M., Martí, J. M., & MacFadyen, A. (2000). ApJ 531, L119.
Baade, W. & Zwicky, F. (1934). PR 46, 76.
Barkov, M.V. & Komissarov, S. S. (2008). MNRAS 385, L28.
Bissaldi, E., Calura, F., Matteucci, F., Longo, F., & Barbiellini, G. (2007). A&A 471, 585.
Blandford, R. D. & Znajek, R. L. (1977). MNRAS 179, 433.
Blinnikov, S. et al. (2003). In From Twilight to Highlight: The Physics of Supernovae, eds: W. Hille, Grandt & B., LeiGundgut. Berlin: Springer, p. 23.
Blondin, J. M. & Mezzacappa, A. (2007). Nature 445, 58.
Braithwaite, J. (2006). A&A 453, 687.
Braithwaite, J. (2008). MNRAS 386, 1947.
Bucciantini, N., Quataert, E., Arons, J., Metzger, B. D., & Thompson, T. A. (2008). MNRAS 383, L25.
Bucciantini, N. et al. (2009). MNRAS 396, 2038.
Buras, R., Janka, H.-T., Rampp, M., & Kifonidis, K. (2006). A&A 457, 281.
Burrows, A., Livne, E., Dessart, L., Ott, C.D., & Murphy, J. (2007a). ApJ 655, 416.
Burrows, A., Dessart, L., Livne, E., Ott, C.D., & Murphy, J. (2007b). ApJ 664, 416.
Butler, N.R. (2007). ApJ 656, 1001.
Campana, S. et al. (2008). ApJ 683, L9.
Cantiello, M., Yoon, S.-C., Langer, N., & Livio, M. (2007). A&A 465, L29.
Cenko, S.B. et al. (2010a). ApJ 711, 641.
Cenko, S.B. et al. (2010b). arXiv:1004.2900.
Chandra, P. et al. (2008). ApJ 683, 924.
Charbonnel, C., & Talon, S. (2005). Science 309, 2189.
Chen, H.-W. et al. (2009). ApJ 691, 152.
Chevalier, R.A., & Fransson, C. (2008). ApJ 683, L135.
Chincarini, G. et al. (2007). ApJ 671, 1903.
Christensen, L., Hjorth, J., & Gorosabel, J. (2004). A&A 425, 913.
Colgate, S.A., & White, R.H. (1966). ApJ 143, 626.
Colgate, S.A. (1968). Canadian J. Phys. 46, 476.
Covino, S. et al. (2006). A&A 447, L5.
Cusumano, G. et al. (2006). Nature 440, 164.
Cusumano, G. et al. (2007). A&A 462, 73.
Dai, Z.G., Wang, X.Y., Wu, X.F., & Zhang, B. (2006). Science 311, 1127.
Davies, B. et al. (2009). ApJ 707, 844.
Denissenkov, P.A. & Pinsoneault, M. (2007). ApJ 655, 1157.
Dessart, L., Burrows, A., Livne, E., & Ott, C.D. (2008). ApJ 673, L43.
Duncan, R.C. & Thompson, C. (1992). ApJ 392, L9.
Duncan, R.C. & Thompson, C. (1996). In High Velocity Neutron Stars and Gamma-Ray Bursts, AIP Conf. Proc. 366, 111.
Ekström, S., Meynet, G., Maeder, A., & Barblan, F. (2008). A&A 478, 467.
Etienne, Z.B., Liu, Y.T., & Shapiro, S.L. (2006). Phys. Rev.D 74, 044030.
Falcone, A.D. et al. (2007). ApJ 671, 1921.
Fiore, F., Guetta, D., Piranomonte, S., D'Elia, V., & Antonelli, L.A. (2007). A&A 470, 515.
Firmani, C., Avila-Reese, V., Ghisellini, G., & Tutukov, A.V. (2004). ApJ 611, 1033.
Frail, D.A. et al. (2001). ApJ 562, L55.
Frail, D.A. et al. (2006). ApJ 646, L99.
Fruchter, A.S. et al. (1999). ApJ 519, L13.
Fruchter, A.S. et al. (2006). Nature 441, 463.
Fryer, C.L. (1999). ApJ 522, 413.
Fryer, C.L., Woosley, S.E., Herant, M., & Davies, M.B. (1999). ApJ 520, 650.
Fryer, C.L., Woosley, S.E., & Heger, A. (2001). ApJ 550, 372.
Fryer, C.L., Hungerford, A.L., & Young, P.A. (2007). ApJ 662, L55.
Fynbo, J.P.U. et al. (2003). A&A 406, L63.
Gal-Yam, A. et al. (2009). Nature 462, 624.
Georgy, C., Meynet, G., & Maeder, A. (2008). In Proc. of IAU Symposium 255, astro-ph/0807.5061.
Ghisellini, G., Ghirlanda, G., & Tavecchio, F. (2007). MNRAS 375, L36.
Giannios, D. (2006). A&A 455, L5.
Gill, R. & Heyl, L. (2007). MNRAS 381, 52.
Gorosabel, J. et al. (2005). A&A 444, 711.
Granot, J., Panaitescu, A., Kumar, P., & Woosley, S.E. (2002). ApJ 570, L61.
Granot, J., Ramirez-Ruiz, E., & Perna, R. (2005). ApJ 630, 1003.
Greiner, J. et al. (2009). ApJ 693, 1610.
Harrison, F.A. et al. (1999). ApJ 523, L121.
Hawley, J.F., & Krolik, J.H. (2006). ApJ 641, 103.
Heger, A., Langer, N., & Woosley, S.E. (2000). ApJ 528, 368.
Heger, A. & Woosley, S.E. (2002). ApJ 567, 532.
Heger, A., Fryer, C.L., Woosley, S.E., Langer, N., & Hartmann, D.H. (2003). ApJ 591, 288.
Heger, A., Woosley, S.E., & Spruit, H.C. (2005). ApJ 626, 350.
Hirschi, R., Meynet, G., & Maeder, A. (2005). A&A 443, 581.
Hjorth, J. et al. (2003). Nature 423, 847.
Höflich, P., Wheeler, J.C., & Wang, L. (1999). ApJ 521, 179.
Ivanova, N., Podsiadlowski, P., & Spruit, H. (2002). MNRAS 334, 819.
Jakobsson, P. et al. (2006). A&A 447, 897 (also http://raunvis.hi.is/pja/GRBsample.html).
Janiuk, A. & Proga, D. (2008). ApJ 675, 519.
Janka, H.-T., Langanke, K., Marek, A., Martínez-Pinedo, G., & Müller, B. (2007). Phys. Rep. 442, 38.
Joss, P.C. & Becker, J.A. (2007). In Massive Stars in Interactive Binaries, ASP Conf.Ser. 367, 517.
Kalogera, V. et al. (2004). ApJ 601, L179 and 614, L137.
Kamble, A. et al. (2009). ASP Conf.Ser. 407, 295.Google Scholar
Kaneko, Y. et al. (2007). ApJ 654, 385.
Kasen, D. & Bildsten, L. (2010). ApJ 717, 245.
Katz, B., Budnik, R., & Waxman, E. (2009). arXiv:0902.4708.
Kelly, P.L., Kirshner, R.P., & Pahre, M. (2008). ApJ 687, 1201.
King, A. et al. (2005). ApJ 630, L113.
Kluźniak, W. & Ruderman, M. (1998). ApJ 505, L113.
Kocevski, D. & Butler, N. (2008). ApJ 680, 531.
Kohri, K., Narayan, R., & Piran, T. (2005). ApJ 629, 341.
Komissarov, S.S. (2001). MNRAS 326, L41.
Komissarov, S.S. & Barkov, M.V. (2008). MNRAS 382, 1029.
Komissarov, S.S. & Barkov, M.V. (2010). MNRAS 402, L25.
Kouveliotou, C. et al. (1993). ApJ 413, L101.
Kouveliotou, C. et al. (1998). Nature 393, 235.
Kulkarni, S.R. et al. (1999). Nature 398, 389.
Krimm, H.A. et al. (2007). ApJ 665, 554.
Kumar, P., Narayan, R., & Johnson, J.L. (2008) Science 321, 376.
Langer, N. (1992). A&A 265, L17.
Langer, N. & Norman, C.A. (2006). ApJ 638, L63.
Larsson, J., Levan, A.J., Davies, M.B., & Fruchter, A.S. (2007). MNRAS 376, 1285.
Lattimer, J.M. & Prakash, M. (2007). Phys. Rep. 442, 109.
Lazzati, D., Perna, R., & Begelman, M.C. (2008). MNRAS 388, L15.
Li, X.-D. (2003). ApJ 596, L199.
Li, Z.-Y. & Chevalier, R.A. (1999). ApJ 526, 716.
Liu, J., McClintock, J.E., Narayan, R., Davis, S.W., & Orosz, J.A. (2008). ApJ 679, L37.
Lopez-Camara, D., Lee, W.H., & Ramirez-Ruiz, E. (2009). ApJ 692, 804.
MacFadyen, A.I., & Woosley, S.E. (1999). ApJ 524, 262.
MacFadyen, A.I., Woosley, S.E., & Heger, A. (2001). ApJ 550, 410.
Maeda, K. & Nomoto, K. (2003). ApJ 598, 1163.
Maeder, A. (1987). A&A 178, 159.
Maeder, A. & Meynet, G. (2001). A&A 373, 555.
Margutti, R. et al. (2010). arXiv:1004.1568.
Martayan, C. et al. (2007). A&A 462, 683.
Mazets, E.P. et al. (2008). ApJ 680, 545.
Mazzali, P.A. et al. (2008). Science 321, 1185.
McClintock, J.E. et al. (2006). ApJ 652, 518.
McClintock, J.E., Narayan, R., & Shafee, R. (2007). arXiv:0707.4492, to appear in Black Holes, eds: M., Livio & A., Koekemoer. Cambridge: Cambridge University Press.
McKinney, J.C. & Gammie, C.F. (2004). ApJ 611, 977.
McKinney, J.C. (2005a). astro-ph/0506368.
McKinney, J.C. (2005b). ApJ 630, L5.
McKinney, J.C. & Narayan, R. (2007). MNRAS 375, 531.
Messer, O.E.B., Bruenn, S.W., Blondin, J.M., Hix, W.R., & Mezzacappa, A. (2008). J. Phys. Conf. Ser. 125, 012010.
Meynet, G. & Maeder, A. (2007). A&A 464, L11.
Mizuta, A. & Aloy, M.A. (2009). ApJ 699, 1261.
Modjaz, M. et al. (2008). AJ 135, 1136.
Muno, M. (2008). In Proc. 37th COSPAR Scientific Assembly, Montréal, Canada, 37, 2136.
Muno, M.P. et al. (2006). ApJ 636, L41.
Muno, M.P., Gaensler, B.M., Nechita, A., Miller, J.M., & Slane, P.O. (2008). ApJ 680, 639.
Nagataki, S., Takahashi, R., Mizuta, A., & Takiwaki, T. (2007). ApJ 659, 512.
Nakar, E. (2007). Phys. Rep. 442, 166.
Nissen, P.E., Primas, F., Asplund, M., & Lambert, D.L. (2002). A&A 390, 235.
Nomoto, K. et al. (2005). Ap&SS 298, 81.
Nomoto, K., Tanaka, M., Tominaga, N., Maeda, K., & Mazzali, P.A. (2007). In A Life with Stars, Conf. Proc., to appear in New Astron. Rev., astroph-0707.2219.
Oppenheimer, J.R. & Volkoff, G.M. (1939). Phys. Rev. 55, 374.
Orosz, J.A. et al. (2007). Nature 449, 872.
Östlin, G., Zackrisson, E., Sollerman, J., Mattila, S., & Hayes, M. (2008). MNRAS 387, 1227.
Ostriker, J.P., & Gunn, J.E. (1971). ApJ 164, L95.
Ott, C.D., Burrows, A., Thompson, T.A., Livne, E., & Walder, R. (2006). ApJS 164, 130.
Palmer, D.M. et al. (2005). Nature 434, 1107.
Paragi, Z. et al. (2010). Nature 463, 516.
Pe'er, A., Mészáros, P., & Rees, M.J. (2006). ApJ 652, 482.
Peng, F., Königl, A., & Granot, J. (2005). ApJ 626, 966.
Penny, L.R., Sprague, A.J., Seago, G., & Gies, D.R. (2004). ApJ 617, 1316.
Perley, D.A. et al. (2009). ApJ 696, 1871.
Petrovic, J., Langer, N., Yoon, S.-C., & Heger, A. (2005). A&A 435, 247.
Petrovic, J. (2006). Publ. l'Obs. Astron. Beograd, 80, 57.
Popham, R., Woosley, S. E., & Fryer, C. (1999). ApJ 518, 356.
Prochaska, J. X. et al. (2006). ApJ 642, 989.
Prochaska, J. X., Chen, H.-W., Dessauges-Zavadsky, M., & Bloom, J. S. (2008). AIP Conf. Proc. 1000, 479.
Ramirez-Ruiz, E., Celotti, A., & Rees, M. J. (2002). MNRAS 337, 1349.
Ramirez-Ruiz, E. et al. (2005). ApJ 625, L91.
Raskin, C., Scannapieco, E., Rhoads, J., & Della Valle, M. (2008). ApJ 689, 358.
Rees, M. J. & Mészáros, P. (1994). ApJ 430, L93.
Rhoads, J. E. (1999). ApJ 525, 737.
Salvaterra, R. et al. (2009). Nature 461, 1258.
Savaglio, S., Glazebrook, K., & Le Borgne, D. (2009). ApJ 691, 182.
Scheck, L., Kifonidis, K., Janka, H.-T., & Müller, E. (2006). A&A 457, 963.
Smith, N. et al. (2007). ApJ 666, 1116.
Soderberg, A. M. et al. (2008). Nature 453, 469.
Sollerman, J. et al. (2005). New Astron. 11, 103.
Spruit, H. C. (2002). A&A 381, 923.
Spruit, H. C. (2006). astro-ph/0607164.
Stanek, K. Z., Garnavich, P. M., Kaluzny, J., Pych, W., & Thompson, I. (1999). ApJ 522, L39.
Stanek, K. Z. et al. (2006). Acta Astron. 56, 333.
Suijs, M.P.L. et al. (2008). A&A 481, L87.
Tan, J. C., Matzner, C. D., & McKee, C. F. (2001). ApJ 551, 946.
Tanvir, N. R., Chapman, R., Levan, A. J., & Priddey, R. S. (2005). Nature 438, 991.
Tanvir, N. R. et al. (2009). Nature 461, 1254.
Tayler, R. J. (1973). MNRAS 161, 365.
Tchekhovskoy, A., McKinney, J. C., & Narayan, R. (2008). MNRAS 388, 551.
Thompson, C. & Duncan, R. C., (2006). ApJ 473, 322.
Thompson, T. A., Chang, P., & Quataert, E., (2004). ApJ 611, 380.
Thöne, C. C. et al. (2008). ApJ 676, 1151.
Tutukov, A. V. & Cherepashchuk, A. M. (2003). Astron. Rep. 47, 386.
Usov, V. V. (1992). Nature 357, 472.
van den Heuvel, E. P. J. & Yoon, S.-C. (2007). Ap&SS 311, 177.
Vietri, M. & Stella, L. (1998). ApJ 507, L45.
Vink, J. S. & de Koter, A. (2005). A&A 442, 587.
Wachter, S. et al. (2008). Nature 453, 626.
Wang, L. & Wheeler, J. C. (2008). ARA&A 46, 433.
Wang, Z., Chakrabarty, D., & Kaplan, D. (2006). Nature 440, 772.
Wang, X.-Y., Li, Z., Waxman, E., & Mészáros, P. (2007). ApJ 664, 1026.
Waxman, E. & Loeb, A. (1999). ApJ 515, 721.
Waxman, E. & Mészáros, P. (2003). ApJ 584, 390.
Wei, D. M. & Gao, W. H. (2003). MNRAS 345, 743.
Woosley, S. E. (1993). ApJ 405, 273.
Woosley, S. E. & Weaver, T. A. (1995). ApJS 101, 181.
Woosley, S. E., Heger, A., & Weaver, T. A. (2002). Rev. Mod. Phys. 74, 1015.
Woosley, S. E., Zhang, W., & Heger, A. (2004). In Gamma-Ray Bursts: 30 Years of Discovery, AIP Conf. Proc. 727, 343.
Woosley, S. E. & Bloom, J. S. (2006). ARA&A 44, 507.
Woosley, S. E. & Heger, A. (2006). ApJ 637, 914.
Woosley, S. E. & Zhang, W. (2007). Phil. Trans. R. Soc. Lon. Ser.A 365, 1129.
Woosley, S. E., Blinnikov, S., & Heger, A. (2007). Nature 450, 390.
Woosley, S. E. (2010). ApJL 719, L204.
Yoon, S.-C. & Langer, N. (2005). A&A 443, 643.
Yoon, S.-C., Langer, N., & Norman, C. A. (2006). A&A 460, 199.
Yoon, S.-C., Langer, N., Cantiello, M., Woosley, S. E., & Glatzmaier, G. A. (2008). In Massive Stars as Cosmic Engines, IAU Symposium Proc. 250, 231.
Yoon, S.-C., Woosley, S. E., & Langer, N. (2010). ApJ 725, 940.
Yoshida, N., Omukai, K., Hernquist, L., & Abel, T. (2006). ApJ 652, 6.
Zahn, J.-P., Brun, A. S., & Mathis, S. (2007). A&A 474, 145.
Zhang, W., Woosley, S. E., & MacFadyen, A. I. (2003). ApJ 586, 356.
Zhang, W., Woosley, S. E., & Heger, A. (2004). ApJ 608, 365.
Zhang, W., Woosley, S. E., & Heger, A. (2008). ApJ 679, 639.
Zhang, B. et al. (2009). ApJ 703, 1696.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×