Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-17T22:47:27.834Z Has data issue: false hasContentIssue false

1 - Human Caspases – Apoptosis and Inflammation Signaling Proteases

from Part I - General Principles of Cell Death

Published online by Cambridge University Press:  07 September 2011

Douglas R. Green
Affiliation:
St. Jude Children's Research Hospital, Memphis, Tennessee
Guy S. Salvesen
Affiliation:
Sanford-Burnham Medical Research Institute
John C. Reed
Affiliation:
Sanford-Burnham Medical Research Institute, La Jolla, California
Get access

Summary

Protease Signaling in Apoptosis and Inflammation

In 1992 two groups independently reported the identity of a human protease responsible for activating the precursor of interleukin-1β, naming it interleukin-1β converting enzyme (ICE). Several months later, one of the key genes governing the commitment to apoptosis in Caenorhabditis elegansCED3 – was demonstrated to show homology with ICE. These publications initiated a successful search by many groups over the ensuing years for mammalian ICE homologs that should govern cell death. Today these proteases are known as caspases. Of the 11 caspases in humans, 7 are considered to be involved primarily in apoptosis, three are considered to be involved primarily in proinflammatory cytokine activation, and one is involved in keratinocyte differentiation (Figure 1-1). How cells learned to employ closely related proteases to execute two opposing phenotypes – apoptosis and inflammation – is strongly debated, and this chapter incorporates some discussion on this tricky issue.

Type
Chapter
Information
Apoptosis
Physiology and Pathology
, pp. 1 - 10
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Thornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D., Kostura, M. J., Miller, D. K., Molineaux, S. M., Weidner, J. R., Aunins, J., Elliston, K. O., Ayala, J. M., Casano, F. J., Chin, J., Ding, G. J. F., Egger, L. A., Gaffney, E. P., Limjuco, G., Palyha, O. C., Raju, S. M., Rolando, A. M., Salley, J. P., Yamin, T. T. and Tocci, M. J. (1992) A novel heterodimeric cysteine protease is required for interleu-kin-1beta processing in monocytes. Nature 356, 768–74
Cerretti, D. P., Kozlosky, C. J., Mosley, B., Nelson, N., Van Ness, K., Greenstreet, T. A., March, C. J., Kronheim, S. R., Druck, T., Cannizzaro, L. A., Huebner, K. and Black, R. A. (1992) Molecular cloning of the interleukin-1b converting enzyme. Science 256, 97–100
Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. and Horvitz, H. M. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1b-converting enzyme. Cell 75, 641–52
Alnemri, E. S., Livingston, D. J., Nicholson, D. W., Salvesen, G., Thornberry, N. A., Wong, W. W. and Yuan, J. (1996) Human ICE/CED-3 protease nomenclature. Cell 87, 171
Kuida, K., Lippke, J. A., Ku, G., Harding, M. W., Livingston, D. J., Su, M. S. S. and Flavell, R. A. (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1-beta converting enzyme. Science 267, 2000–3
Wang, S., Miura, M., Jung, Y.-K., Zhu, H. and Yuan, J. (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–9
Kuida, K., Haydar, T. F., Kuan, C. Y., Gu, Y., Taya, C., Karasuyama, H., Su, M. S., Rakic, P. and Flavell, R. A. (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325–37
Kuida, K., Zheng, T. S., Na, S., Kuan, C.-y., Yang, D., Karasuyama, H., Rakic, P. and Flavell, R. A. (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–72
Varfolomeev, E. E., Schuchmann, M., Luria, V., Chiannilkulchai, N., Beckmann, J. S., Mett, I. L., Rebrikov, D., Brodianski, V. M., Kemper, O. C., Kollet, O., Lapidot, T., Soffer, D., Sobe, T., Avraham, K. B., Goncharov, T., Holtmann, H., Lonai, P. and Wallach, D. (1998) Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–76
Morita, Y., Maravei, D. V., Bergeron, L., Wang, S., Perez, G. I., Tsutsumi, O., Taketani, Y., Asano, M., Horai, R., Korsmeyer, S. J., Iwakura, Y., Yuan, J. and Tilly, J. L. (2001) Caspase-2 deficiency prevents programmed germ cell death resulting from cytokine insufficiency but not meiotic defects caused by loss of ataxia telangiectasia-mutated (Atm) gene function. Cell Death Differ 8, 614–20
Kang, T. B., Ben-Moshe, T., Varfolomeev, E. E., Pewzner-Jung, Y., Yogev, N., Jurewicz, A., Waisman, A., Brenner, O., Haffner, R., Gustafsson, E., Ramakrishnan, P., Lapidot, T. and Wallach, D. (2004) Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 173, 2976–84
Salmena, L., Lemmers, B., Hakem, A., Matysiak-Zablocki, E., Murakami, K., Au, P. Y., Berry, D. M., Tamblyn, L., Shehabeldin, A., Migon, E., Wakeham, A., Bouchard, D., Yeh, W. C., McGlade, J. C., Ohashi, P. S. and Hakem, R. (2003) Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev 17, 883–95
Fuentes-Prior, P. and Salvesen, G. S. (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384, 201–32
Ribe, E. M., Serrano-Saiz, E., Akpan, N. and Troy, C. M. (2008) Mechanisms of neuronal death in disease: defining the models and the players. Biochem J 415, 165–82
Denecker, G., Ovaere, P., Vandenabeele, P. and Declercq, W. (2008) Caspase-14 reveals its secrets. J Cell Biol 180, 451–8
Martinon, F. and Tschopp, J. (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 14, 10–22
Lamkanfi, M., Festjens, N., Declercq, W., Vanden Berghe, T. and Vandenabeele, P. (2007) Caspases in cell survival, proliferation and differentiation. Cell Death Differ 14, 44–55
Odake, S., Kam, C. M., Narasimhan, L., Poe, M., Blake, J. T., Krahenbuhl, O., Tschopp, J. and Powers, J. C. (1991) Human and murine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry U S A 30, 2217–27
Harris, J. L., Backes, B. J., Leonetti, F., Mahrus, S., Ellman, J. A. and Craik, C. S. (2000) Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci U S A 97, 7754–9
Nicholson, D. W. (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6, 1028–42
Timmer, J. C. and Salvesen, G. S. (2007) Caspase substrates. Cell Death Differ 14, 66–72
Demartino, G. N. and Gillette, T. G. (2007) Proteasomes: machines for all reasons. Cell 129, 659–62
Kumar, S. and Doumanis, J. (2000) The fly caspases. Cell Death Differ 7, 1039–44
Zmasek, C. M., Zhang, Q., Ye, Y. and Godzik, A. (2007) Surprising complexity of the ancestral apoptosis network. Genome Biol 8, R226
Thornberry, N. A., Rano, T. A., Peterson, E. P., Rasper, D. M., Timkey, T., Garcia-Calvo, M., Houtzager, V. M., Nordstrom, P. A., Roy, S., Vaillancourt, J. P., Chapman, K. T. and Nicholson, D. W. (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272, 17907–11
Hardwick, J. M. and Cheng, W. C. (2004) Mitochondrial programmed cell death pathways in yeast. Dev Cell 7, 630–2
Mur, L. A., Kenton, P., Lloyd, A. J., Ougham, H. and Prats, E. (2008) The hypersensitive response: the centenary is upon us but how much do we know? J Exp Bot 59, 501–20
Riedl, S. J. and Salvesen, G. S. (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 5, 405–13
Carrington, P. E., Sandu, C., Wei, Y., Hill, J. M., Morisawa, G., Huang, T., Gavathiotis, E., Wei, Y. and Werner, M. H. (2006) The structure of FADD and its mode of interaction with procaspase-8. Mol Cell 22, 599–610
Scott, F. L., Stec, B., Pop, C., Dobaczewska, M. K., Lee, J. J., Monosov, E., Robinson, H., Salvesen, G. S., Schwarzenbacher, R. and Riedl, S. J. (2009) The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 457, 1019–22
Zou, H., Henzel, W. J., Liu, X., Lutschg, A. and Wang, X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–13
Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X. and Akey, C. W. (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding and activation. Mol Cell 9, 423–32
Pop, C., Timmer, J., Sperandio, S. and Salvesen, G. S. (2006) The apoptosome activates caspase-9 by dimerization. Mol Cell 22, 269–75
Tinel, A., Janssens, S., Lippens, S., Cuenin, S., Logette, E., Jaccard, B., Quadroni, M. and Tschopp, J. (2007) Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-kappaB pathway. EMBO J 26, 197–208
Wang, L., Du, F. and Wang, X. (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133, 693–703
Boatright, K. M., Deis, C., Denault, J. B., Sutherlin, D. P. and Salvesen, G. S. (2004) Activation of caspases 8 and 10 by FLIP L. Biochem J 382, 651–7
Martinon, F., Burns, K. and Tschopp, J. (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10, 417–26
Martinon, F. and Tschopp, J. (2005) NLRs join TLRs as innate sensors of pathogens. Trends Immunol 26, 447–54
Inohara, Chamaillard, McDonald, C. and Nunez, G. (2005) NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74, 355–83
Ogura, Y., Sutterwala, F. S. and Flavell, R. A. (2006) The inflammasome: first line of the immune response to cell stress. Cell 126, 659–62
Reed, J. C., Doctor, K., Rojas, A., Zapata, J. M., Stehlik, C., Fiorentino, L., Damiano, J., Roth, W., Matsuzawa, S., Newman, R., Takayama, S., Marusawa, H., Xu, F., Salvesen, G. and Godzik, A. (2003) Comparative analysis of apoptosis and inflammation genes of mice and humans. Genome Res 13, 1376–88
Ting, J. P., Kastner, D. L. and Hoffman, H. M. (2006) CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol 6, 183–95
Meylan, E., Tschopp, J. and Karin, M. (2006) Intracellular pattern recognition receptors in the host response. Nature 442, 39–44
Tschopp, J., Martinon, F. and Burns, K. (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4, 95–104
Faustin, B., Lartigue, L., Bruey, J. M., Luciano, F., Sergienko, E., Bailly-Maitre, B., Volkmann, N., Hanein, D., Rouiller, I. and Reed, J. C. (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25, 713–24
Chai, J., Wu, Q., Shiozaki, E., Srinivasula, S. M., Alnemri, E. S. and Shi, Y. (2001) Crystal structure of a procaspase-7 zymogen. Mechanisms of activation and substrate binding. Cell 107, 399–407
Riedl, S. J., Fuentes-Prior, P., Renatus, M., Kairies, N., Krapp, R., Huber, R., Salvesen, G. S. and Bode, W. (2001) Structural basis for the activation of human procaspase-7. Proc Natl Acad Sci U S A 98, 14790–5
Wei, Y., Fox, T., Chambers, S. P., Sintchak, J., Coll, J. T., Golec, J. M., Swenson, L., Wilson, K. P. and Charifson, P. S. (2000) The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity. Chem Biol 7, 423–32
Mikolajczyk, J., Scott, F. L., Krajewski, S., Sutherlin, D. P. and Salvesen, G. S. (2004) Activation and substrate specificity of caspase-14. Biochemistry 43, 10560–9
Lupardus, P. J., Shen, A., Bogyo, M. and Garcia, K. C. (2008) Small molecule-induced allosteric activation of the Vibrio cholerae RTX cysteine protease domain. Science 322, 265–8
Datta, D., Scheer, J. M., Romanowski, M. J. and Wells, J. A. (2008) An allosteric circuit in caspase-1. J Mol Biol 381, 1157–67
Kang, T. B., Oh, G. S., Scandella, E., Bolinger, B., Ludewig, B., Kovalenko, A. and Wallach, D. (2008) Mutation of a self-processing site in caspase-8 compromises its apoptotic but not its nonapoptotic functions in bacterial artificial chromosome-transgenic mice. J Immunol 181, 2522–32
Pop, C., Fitzgerald, P., Green, D. R. and Salvesen, G. S. (2007) Role of proteolysis in caspase-8 activation and stabilization. Biochemistry 46, 4398–407
Srinivasula, S. M., Hegde, R., Saleh, A., Datta, P., Shiozaki, E., Chai, J., Lee, R. A., Robbins, P. D., Fernandes-Alnemri, T., Shi, Y. and Alnemri, E. S. (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112–16.
Snipas, S. J., Drag, M., Stennicke, H. R. and Salvesen, G. S. (2008) Activation mechanism and substrate specificity of the Drosophila initiator caspase DRONC. Cell Death Differ 15, 938–45
Stennicke, H. R., Renatus, M., Meldal, M. and Salvesen, G. S. (2000) Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem J 350, 563–8
Martin, S. J. and Green, D. R. (1995) Protease activation during apoptosis: death by a thousand cuts? Cell 82, 349–52
Salvesen, G. S. and Dixit, V. M. (1997) Caspases: intracellular signaling by proteolysis. Cell 91, 443–6
Taylor, R. C., Brumatti, G., Ito, S., Hengartner, M. O., Derry, W. B. and Martin, S. J. (2007) Establishing a blueprint for CED-3-dependent killing through identification of multiple substrates for this protease. J Biol Chem 282, 15011–21
Van Damme, P., Martens, L., Van Damme, J., Hugelier, K., Staes, A., Vandekerckhove, J. and Gevaert, K. (2005) Caspase-specific and nonspecific in vivo protein processing during Fas-induced apoptosis. Nat Methods 2, 771–7
Mahrus, S., Trinidad, J. C., Barkan, D. T., Sali, A., Burlingame, A. L. and Wells, J. A. (2008) Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134, 866–76
Dix, M. M., Simon, G. M. and Cravatt, B. F. (2008) Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134, 679–91
McStay, G. P., Salvesen, G. S. and Green, D. R. (2008) Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 15, 322–31
Berger, A. B., Sexton, K. B. and Bogyo, M. (2006) Commonly used caspase inhibitors designed based on substrate specificity profiles lack selectivity. Cell Res 16, 961–3
Albeck, J. G., Burke, J. M., Aldridge, B. B., Zhang, M., Lauffenburger, D. A. and Sorger, P. K. (2008) Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell 30, 11–25
Ryan, C. A., Stennicke, H. R., Nava, V. E., Lewis, J., Hardwick, J. M. and Salvesen, G. S. (2002) Inhibitor specificity of recombinant and endogenous caspase 9. Biochem J 366, 595–601
Stennicke, H. R., Ryan, C. A. and Salvesen, G. S. (2002) Reprieval from execution: the molecular basis of caspase inhibition. Trends Biochem Sci 27, 94–101
Riedl, S. J. and Shi, Y. (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5, 897–907
Callus, B. A. and Vaux, D. L. (2007) Caspase inhibitors: viral, cellular and chemical. Cell Death Differ 14, 73–8
Salvesen, G. S. and Duckett, C. S. (2002) IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3, 401–10.
Eckelman, B. P., Salvesen, G. S. and Scott, F. L. (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7, 988–94
Uren, A. G., Coulson, E. J. and Vaux, D. L. (1998) Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends Biochem Sci 23, 159–62
O’Riordan, M. X., Bauler, L. D., Scott, F. L. and Duckett, C. S. (2008) Inhibitor of apoptosis proteins in eukaryotic evolution and development: a model of thematic conservation. Dev Cell 15, 497–508
Samuel, T., Welsh, K., Lober, T., Togo, S. H., Zapata, J. M. and Reed, J. C. (2006) Distinct BIR domains of cIAP1 mediate binding to and ubiquitination of TRAF2 and SMAC. J Biol Chem 281, 1080–90
Varfolomeev, E., Wayson, S. M., Dixit, V. M., Fairbrother, W. J. and Vucic, D. (2006) The inhibitor of apoptosis protein fusion c-IAP2.MALT1 stimulates NF-kappaB activation independently of TRAF1 AND TRAF2. J Biol Chem 281, 29022–29
Chai, J., Shiozaki, E., Srinivasula, S. M., Wu, Q., Dataa, P., Alnemri, E. S. and Yigong Shi, Y. (2001) Structural basis of caspase-7 inhibition by XIAP. Cell 104, 769–80
Huang, Y., Park, Y. C., Rich, R. L., Segal, D., Myszka, D. G. and Wu, H. (2001) Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104, 781–90
Riedl, S. J., Renatus, M., Schwarzenbacher, R., Zhou, Q., Sun, S., Fesik, S. W., Liddington, R. C. and Salvesen, G. S. (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell 104, 791–800
Shiozaki, E. N., Chai, J., Rigotti, D. J., Riedl, S. J., Li, P., Srinivasula, S. M., Alnemri, E. S., Fairman, R. and Shi, Y. (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11, 519–27
Rotonda, J., Nicholson, D. W., Fazil, K. M., Gallant, M., Gareau, Y., Labelle, M., Peterson, E. P., Rasper, D. M., Tuel, R., Vaillancourt, J. P., Thornberry, N. A. and Becher, J. W. (1996) The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nature Struct Biol 3, 619–25
Kersse, K., Vanden Berghe, T., Lamkanfi, M. and Vandenabeele, P. (2007) A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. Biochem Soc Trans 35, 1508–11
Tawa, P., Hell, K., Giroux, A., Grimm, E., Han, Y., Nicholson, D. W. and Xanthoudakis, S. (2004) Catalytic activity of caspase-3 is required for its degradation: stabilization of the active complex by synthetic inhibitors. Cell Death Differ 11, 439–47
Blankenship, J. W., Varfolomeev, E., Goncharov, T., Fedorova, A. V., Kirkpatrick, D. S., Izrael-Tomasevic, A., Phu, L., Arnott, D., Aghajan, M., Zobel, K., Bazan, J. F., Fairbrother, W. J., Deshayes, K. and Vucic, D. (2009) Ubiquitin binding modulates IAP antagonist stimulated proteasomal degradation of c IAP1 and c IAP2. Biochem J 417, 149–60
Gyrd-Hansen, M., Darding, M., Miasari, M., Santoro, M. M., Zender, L., Xue, W., Tenev, T., da Fonseca, P. C., Zvelebil, M., Bujnicki, J. M., Lowe, S., Silke, J. and Meier, P. (2008) IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis. Nat Cell Biol 10, 1309–17
Schile, A. J., Garcia-Fernandez, M. and Steller, H. (2008) Regulation of apoptosis by XIAP ubiquitin-ligase activity. Genes Dev 22, 2256–66
Lamkanfi, M., Kanneganti, T. D., Van Damme, P., Vanden Berghe, T., Vanoverberghe, I., Vandekerckhove, J., Vandenabeele, P., Gevaert, K. and Nunez, G. (2008) Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics 7, 2350–63

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×