Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-10T23:24:47.856Z Has data issue: false hasContentIssue false

1 - Integrating ecology and systematics in climate change research

from Section 1 - Introduction

Published online by Cambridge University Press:  16 May 2011

T. R. Hodkinson
Affiliation:
Trinity College Dublin, Ireland
Trevor R. Hodkinson
Affiliation:
Trinity College, Dublin
Michael B. Jones
Affiliation:
Trinity College, Dublin
Stephen Waldren
Affiliation:
Trinity College, Dublin
John A. N. Parnell
Affiliation:
Trinity College, Dublin
Get access

Summary

Abstract

Interactions between climate and biodiversity are complex and present a serious challenge to scientists who aim to reconstruct the ways in which climate change has shaped life in the past and will contine to do so in the future. This chapter introduces the contributions made to climate change research by the fields of ecology and systematics and outlines how their approaches and methods have, often through necessity, become increasingly integrated. It explores: (1) how climate change has influenced evolutionary and ecological processes such as adaptation, migration, speciation and extinction; (2) how these processes determine the diversity and biogeographic distribution of species and their populations; and (3) how ecological and systematic studies can be applied to conservation and policy planning in our rapidly changing world.

Introduction to climate change, ecology and systematics

Not only does the marvellous structure of each organised being involve the whole past history of the earth, but such apparently unimportant facts as the presence of certain types of plants or animals in one island rather than in another, are now shown to be dependent on the long series of past geological changes, on those marvellous astronomical revolutions which cause a periodic variation of terrestrial climates, on the apparently fortuitous action of storms and currents in the conveyance of germs, and on the endlessly varied actions and reactions of organised beings on each other.

(Wallace, 1880)
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alroy, J. (2008). Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences of the USA, 105, 11536–11542.CrossRefGoogle ScholarPubMed
Alroy, J., Aberhan, M., Bottjer, D. J. et al. (2008). Phanerozoic trends in the global diversity of marine invertebrates. Science, 321, 97–100.CrossRefGoogle ScholarPubMed
Araújo, M. B. and Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33, 1677–1688.CrossRefGoogle Scholar
Araújo, M. B., Cabeza, M., Thuiller, W., Hannah, L. and Williams, P. H. (2004). Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology, 10, 1618–1626.CrossRefGoogle Scholar
Archer, D. (2007). Methane hydrate stability and anthropogenic climate change. Biogeosciences, 4, 521–544.CrossRefGoogle Scholar
Arrhenius, S. (1908). Worlds in the Making: the Evolution of the Universe. New York, NY: Harper.Google Scholar
Barnard, P. and Thuiller, W. (2008). Global change and biodiversity: future challenges. Biology Letters, 4, 553–555.CrossRefGoogle ScholarPubMed
Barnosky, A. D. (2001). Distinguishing the effects of the red queen and court jester on Miocene mammal evolution in the northern rocky mountains. Journal of Vertebrate Paleontology, 21, 172–185.CrossRefGoogle Scholar
Beaumont, L. J., Hughes, L. and Poulsen, M. (2005). Predicting species' distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species' current and future distributions. Ecological Modelling, 186, 250–269.CrossRefGoogle Scholar
Beerling, D. J. (2005). Leaf evolution: gases, genes and geochemistry. Annals of Botany, 96, 345–352.CrossRefGoogle ScholarPubMed
Beerling, D. J. (2009). The Emerald Planet: How Plants Changed Earth's History. Oxford: Oxford University Press.Google Scholar
Beerling, D. J. and Berner, R. A. (2005). Feedbacks and the coevolution of plants and atmospheric CO2. Proceedings of the National Academy of Sciences of the USA, 102, 1302–1305.CrossRefGoogle ScholarPubMed
Beerling, D. J. and Woodward, F. I. (2001). Vegetation and the Terrestrial Carbon Cycle: Modelling the First 400 Million Years. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Beerling, D. J., Osborne, C. P. and Chaloner, W. G. (2001). Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature, 410, 352–354.CrossRefGoogle ScholarPubMed
Benton, M. J. (2003). When Life Nearly Died: the Greatest Mass Extinction of All Time. London: Thames and Hudson.Google Scholar
Benton, M. J. (2009). The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science, 323, 728–732.CrossRefGoogle ScholarPubMed
Benton, M. J. and Twitchett, R. J. (2003). How to kill (almost) all life: the end-Permian extinction event. Trends in Ecology and Evolution, 18, 358–365.CrossRefGoogle Scholar
Berner, R. A. (1997). The rise of plants and their effect on weathering and atmospheric CO2. Science, 276, 544–546.CrossRefGoogle Scholar
Berner, R. A. (2004). The Phanerozoic Carbon Cycle: CO2 and O2. Oxford: Oxford University Press.Google Scholar
Berteaux, D., Reale, D., McAdam, A. G. and Boutin, S. (2004). Keeping pace with fast climate change: can Arctic life count on evolution?Integrative and Comparative Biology, 44, 140–151.CrossRefGoogle ScholarPubMed
Besnard, G., Muasya, A. M., Russier, F. et al. (2009). Phylogenomics of C4 photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. Molecular Biology and Evolution, 26, 1909–1919.CrossRefGoogle Scholar
Both, C., Bouwhuis, S., Lessells, C. M. and Visser, M. E. (2006). Climate change and population declines in a long-distance migratory bird. Nature, 441, 81–83.CrossRefGoogle Scholar
Bouchenak-Khelladi, Y., Salamin, N., Savolainen, V. et al. (2008). Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Molecular Phylogenetics and Evolution, 47, 488–505.CrossRefGoogle ScholarPubMed
Bouchenak-Khelladi, Y., Verboom, G. A., Hodkinson, T. R. et al. (2009). The origins and diversification of C4 grasses and savanna-adapted ungulates. Global Change Biology, 15, 2397–2417.CrossRefGoogle Scholar
Bouchenak-Khelladi, , Verboom, G. A., Savolainen, V. and Hodkinson, T. R. (2010). Biogeography of the grasses (Poaceae): a phylogenetic approach to reveal evolutionary history in geographical space and geological time. Botanical Journal of the Linnean Society, 162, 543–557.CrossRef
Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115–155.Google Scholar
Bradshaw, W. E. and Holzapfel, C. M. (2006). Evolutionary response to rapid climate change. Science, 312, 1477–1478.CrossRefGoogle ScholarPubMed
Breckle, S. W. (2002). Walter's Vegetation of the Earth: the Ecological Systems of the GeoBiosphere, 4th edn. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Broecker, W. S. (1994). Massive iceberg discharges as triggers for global climate change. Nature, 372, 421–424.CrossRefGoogle Scholar
Broennimann, O. and Guisan, A. (2008). Predicting current and future biological invasions: both native and invaded ranges matter. Biological Letters, 4, 585–589.CrossRefGoogle ScholarPubMed
Broennimann, O., Treier, U. A., Müller-Schärer, H. et al. (2007). Evidence of climatic niche shift during biological invasion. Ecology Letters, 10, 701–709.CrossRefGoogle ScholarPubMed
Caldeira, K. and Kasting, J. F. (1992). Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds. Nature, 359, 226–228.CrossRefGoogle ScholarPubMed
Campbell, N. A., Reece, J. B., Urry, L. A. et al. (2008). Biology, 8th edn. London: Pearson Benjamin Cummings.Google ScholarPubMed
Carnaval, A. C. and Moritz, C. (2008). Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. Journal of Biogeography, 25, 1187–1201.CrossRefGoogle Scholar
Christin, P. A., Besnard, G., Samaritani, E. et al. (2008). Oligocene CO2 decline promoted C4 photosynthesis in grasses. Current Biology, 18, 37–43.CrossRefGoogle ScholarPubMed
Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. and Schwartz, M. D. (2007). Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 22, 357–365.CrossRefGoogle ScholarPubMed
Copley, J. (2001). The story of O. Nature, 410, 862–864.CrossRefGoogle ScholarPubMed
Cornette, J. L., Lieberman, B. S. and Goldstein, R. H. (2002). Documenting a significant relationship between macroevolutionary origination rates and Phanerozoic pCO2 levels. Proceedings of the National Academy of Sciences of the USA, 99, 7832–7835.CrossRefGoogle ScholarPubMed
Cotton, P. A. (2003). Avian migration phenology and global climate change. Proceedings of the National Academy of Sciences of the USA, 100, 12219–12222.CrossRefGoogle ScholarPubMed
Cox, M., Cox, C. B. and Moore, P. D. (2010). Biogeography: an Ecological and Evolutionary Approach, 8th edn. Oxford: Wiley.Google Scholar
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.CrossRefGoogle Scholar
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. and Miller, K. G. (2009). Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography, 24, PA4216, 1–14.CrossRefGoogle Scholar
Cramer, W., Bondeau, A., Woodward, F. I. et al. (2001). Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357–373.CrossRefGoogle Scholar
Crawford, R. M. M. (2008). Plants at the Margin: Ecological Limits and Climate Change. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.Google Scholar
Darwin, C. R. and Wallace, A. R. (1858). On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Journal of the Proceedings of the Linnean Society of London, Zoology, 3, 46–50.CrossRefGoogle Scholar
Davis, M. B. (2005). Comparison of climate space and phylogeny of Marmota (Mammalia: Rodentia) indicates a connection between evolutionary history and climate preference. Proceedings of the Royal Society of London B, 272, 519–526.CrossRefGoogle ScholarPubMed
Davis, M. B. and Shaw, R. G. (2001). Range shifts and adaptive responses to quaternary climate change. Science, 292, 673–679.CrossRefGoogle ScholarPubMed
DeConto, R. M., Pollard, D., Wilson, P. et al. (2008). Thresholds for Cenozoic bipolar glaciation. Nature, 455, 652–656.CrossRefGoogle ScholarPubMed
Derory, J., Scotti-Saintagne, C. Bertocchi, E. et al. (2010). Contrasting relations between diversity of candidate genes and variation of bud burst in natural and segregating populations of European oaks. Heredity, 104, 438–448.CrossRef
Dixon, H. and Joly, J. (1895). On the ascent of sap. Philosophical Transactions of the Royal Society of London B, 186, 563–576.CrossRefGoogle Scholar
Donnadieu, Y., Goddéris, Y., Ramstein, G., Nédélec, A. and Meert, J. (2004). A snowball Earth climate triggered by continental break-up through changes in runoff. Nature, 428, 303–306.CrossRefGoogle ScholarPubMed
Donoghue, M. J. (2005). Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology, 31, 77–93CrossRefGoogle Scholar
Donoghue, M. J. (2008). A phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences of the USA, 105, 11549–11555.CrossRefGoogle ScholarPubMed
Edwards, E. J. and Still, C. J. (2008). Climate, phylogeny and the ecological distribution of C4 grasses. Ecology Letters, 11, 266–276.CrossRefGoogle ScholarPubMed
Edwards, E. J., Still, C. J. and Donoghue, M. J. (2007). The relevance of phylogeny to studies of global climate change. Trends in Ecology and Evolution, 22, 243–249.CrossRefGoogle Scholar
Edwards, M. and Richardson, A. J. (2004). Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 430, 881–884.CrossRefGoogle ScholarPubMed
Eldrett, J. S., Harding, I. C., Wilson, P. A., Butler, E. and Roberts, A. P. (2007). Continental ice in Greenland during the Eocene and Oligocene. Nature, 446, 176–179.CrossRefGoogle ScholarPubMed
Elith, J. and Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697.CrossRefGoogle Scholar
Elith, J., Graham, C. H., Anderson, R. P. et al. (2006). Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129–151.CrossRefGoogle Scholar
Engelbrecht, B. M. J., Comita, L. S., Condit, R. et al. (2007). Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 447, 80.CrossRefGoogle ScholarPubMed
,EPICA (2004). Eight glacial cycles from an Antarctic ice core. Nature, 429, 623–628.CrossRefGoogle Scholar
Eriksson, G., Andersson, S., Eiche, V., Ifver, J. and Persson, A. (1980). Severity index and transfer effects on survival and volume production of Pinus sylvestris in Northern Sweden. Studia Forestalia Suecica, 156, 1–31.Google Scholar
Eveno, E., Collada, C., Guevara, M. A. et al. (2008). Contrasting patterns of selection at Pinus pinaster Ait. Drought stress candidate genes as revealed by genetic differentiation analysis. Molecular Biology and Evolution, 25, 417–437.CrossRefGoogle Scholar
Excoffier, L., Foll, M. and Petit, R. J. (2009). Genetic consequences of range expansions. Annual Review in Ecology, Evolution, and Systematics, 40, 481–501.CrossRefGoogle Scholar
Fitter, A. H. and Fitter, R. S. R. (2002). Rapid changes in flowering time in British plants. Science, 296, 1689–1691.CrossRefGoogle ScholarPubMed
Graham, C. H., Ferrier, S., Huettman, F., Moritz, C. and Peterson, A. T. (2004a). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology and Evolution, 19, 497–503.CrossRefGoogle ScholarPubMed
Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J. and Moritz, C. (2004b). Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution, 58, 1781–1793.CrossRefGoogle ScholarPubMed
Green, R. E., Collingham, Y. C., Wills, S. G. et al. (2008). Performance of climate envelope models in retrodicting recent changes in bird population size from observed climatic change. Biological Letters, 4, 599–602.CrossRefGoogle ScholarPubMed
Grinnell, J. (1917). The niche-relationships of the California Thrasher. Auk, 34, 427–433.CrossRefGoogle Scholar
Guisan, A. and Thuiller, W. (2005). Predicting species' distributions: offering more than simple habitat models. Ecology Letters, 8, 993–1009.CrossRefGoogle Scholar
Hadly, E. A., Ramakrishnan, U., Chan, Y. L. et al. (2004). Genetic response to climate change: insights from ancient DNA and phylochronology. PLOS Biology, 2, 1–10.CrossRefGoogle ScholarPubMed
Haeger, J. F. (1999). Danaus chrysippus (Linnaeus 1758) en la Península Ibérica: migraciones o Dinámica de metapoblaciones?Shilap, 27, 423–430.Google Scholar
Hall, D., Luquez, V., Garcia, V. M. et al. (2007). Adaptive population differentiation in phenology across a latitudinal gradient in European aspen (Populus tremula, L.): a comparison of neutral markers, candidate genes and phenotypic traits. Evolution, 61, 2849–2860.CrossRefGoogle ScholarPubMed
Hannah, L. (2008). Protected areas and climate change. In Year in Ecology and Conservation Biology 2008, ed. Ostfeld, R. S. and Schlesinger, W. H.. Oxford: Blackwell, pp. 201–212.Google Scholar
Hannah, L., Midgley, G., Andelman, S. et al. (2007). Protected area needs in a changing climate. Frontiers in Ecology and the Environment, 5, 131–138.CrossRefGoogle Scholar
Hannah, L., Dave, R., Lowry, P. P. et al. (2008). Climate change adaptation for conservation in Madagascar. Biology Letters, 4, 590–594.CrossRefGoogle ScholarPubMed
Hardy, C. R. (2006). Reconstructing ancestral ecologies: challenges and possible solutions. Diversity and Distributions, 12, 7–19.CrossRefGoogle Scholar
Hedges, S. B. and Kumar, S. (2009). Discovering the timetree of life. In The Timetree of Life, ed. Hedges, S. B. and Kumar, S.. Oxford: Oxford University Press, pp. 3–18.Google Scholar
Heikkinen, R. K., Luoto, M., Araújo, M. B. et al. (2006). Methods and uncertainties in bioclimatic envelope modeling under climate change. Progress in Physical Geography, 30, 751–777.CrossRefGoogle Scholar
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29, 142–152.CrossRefGoogle Scholar
Hersteinsson, P. and MacDonald, D. W. (1992). Interspecific competition and the geographical distribution of red and arctic foxes Vulpes vulpes and Alopex lagopus. Oikos, 64, 505–515.CrossRefGoogle Scholar
Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405, 907–913.CrossRefGoogle ScholarPubMed
Hijmans, R. J. and Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species' distributions. Global Change Biology, 12, 2272–2281.CrossRefGoogle Scholar
Hodkinson, T. R. and Parnell, J. A. N. (2007). Introduction to the systematics of species rich groups. In Towards the Tree of Life: Systematics of Species Rich Groups, ed. Hodkinson, T. R. and Parnell, J. A. N.. Boca Raton, FL: CRC Press, pp. 3–20.Google Scholar
Hodkinson, T. R., Savolainen, V., Jacobs, S. W. et al. (2007). Supersizing: progress in documenting and understanding grass richness. In Towards the Tree of Life: Systematics of Species Rich Groups, ed. Hodkinson, T. R. and Parnell, J. A. N.. Boca Raton, FL: CRC Press, pp. 279–298.Google Scholar
Hoffman, P. F., Kaufman, A. J., Halverson, G. P. and Schrag, D. P. (1998). A Neoproterozoic snowball earth. Science, 281, 1342–1346.CrossRefGoogle ScholarPubMed
Hole, D. G., Willis, S. G., Pain, D. J. et al. (2009). Projected impacts of climate change on a continent-wide protected area network. Ecology Letters, 12, 420–431.CrossRefGoogle ScholarPubMed
Hole, D. G., Huntley, B., Arinaitwe, J. et al. (in press). Towards a management framework for key biodiversity networks in the face of climatic change. Conservation Biology.
Huber, B. T., MacLeod, K. G. and Wing, S. L., eds. (2000). Warm Climates in Earth History. Cambridge: Cambridge University Press.
Huber, M. and Caballero, R. (2003). Eocene El Niño: evidence for robust tropical dynamics in the ‘hothouse’. Science, 299, 877–881.CrossRefGoogle Scholar
Huber, M. and Sloan, L. C. (2001). Heat transport, deep waters and thermal gradients: coupled climate simulation of an Eocene greenhouse climate. Geophysical Research Letters, 28, 3841–3884.CrossRefGoogle Scholar
Huntley, B. (2007a). Climatic Change and the Conservation of European Biodiversity: Towards the Development of Adaptation Strategies. Strasbourg: Council of Europe, Convention of the Conservation of European Wildlife and Natural Habitats.Google Scholar
Huntley, B. (2007b). Evolutionary response to climate change?Heredity, 98, 247–248.CrossRefGoogle Scholar
Huntley, B., Barnard, P., Altwegg, R. et al. (2010). Beyond bioclimatic envelopes: dynamic species' range and abundance modelling in the context of climatic change. Ecography, 33, 11–16.Google Scholar
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427.CrossRefGoogle Scholar
Hutchinson, G. E. (1978). An Introduction to Population Ecology. New Haven, CT: Yale University Press.Google Scholar
Ingvarsson, P. K., Garcia, M. V., Hall, D., Luquez, V. and Jansson, S. (2006). Clinal variation in phyB2, a candidate gene for day-length-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula). Genetics, 172, 1845–1853.CrossRefGoogle Scholar
,Intergovernmental Panel on Climate Change (IPCC) (2007a). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Pachauri, R. K. and Reisinger, A., Geneva: IPCC.Google Scholar
,Intergovernmental Panel on Climate Change (IPCC) (2007b). Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning et al. Cambridge: Cambridge University Press.Google Scholar
,International Union for Conservation of Nature and Natural Resources (IUCN) (2001). IUCN Red List Categories and Criteria: Version 3.1. Gland and Cambridge: IUCN.Google Scholar
Jablonski, D., Roy, K. and Valentine, J. W. (2006). Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science, 314, 102–106.CrossRefGoogle ScholarPubMed
Jakob, S. S., Martinez-Meyer, E. and Blattner, F. R. (2009). Phylogeographic analyses and paleodistribution modeling indicate pleistocene in situ survival of Hordeum species (Poaceae) in southern Patagonia without genetic or spatial restriction. Molecular Biology and Evolution, 26, 907–923.CrossRefGoogle ScholarPubMed
Juckes, M. N., Allen, M. R., Briffa, K. R. et al. (2007). Millennial temperature reconstruction intercomparison and evaluation. Climate of the Past, 3, 591–609.CrossRefGoogle Scholar
Jump, A. S. and Peñuelas, J. (2005). Running to stand still: adaptation and the response of plants to rapid climate change. Ecology Letters, 8, 1010–1020.CrossRefGoogle Scholar
Jump, A. S., Hunt, J. M., Martinez-Izquierdo, J. A. and Peñ uelas, J. (2006). Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Molecular Ecology, 15, 3469–3480.CrossRefGoogle ScholarPubMed
Jump, A. S., Peñuelas, J., Rico, L. et al. (2008). Simulated climate change provokes rapid genetic change in the Mediterranean shrubFumana thymifolia. Global Change Biology, 14, 637–643.Google Scholar
Jump, A. S., Matyas, C. and Peñuelas, J. (2009). The altitude-for-latitude disparity in the range retractions of woody species. Trends in Ecology and Evolution, 24, 694–701.CrossRefGoogle ScholarPubMed
Keith, D. A., Akçakaya, H. R., Thuiller, W. et al. (2008). Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biology Letters, 4, 560–563.CrossRefGoogle ScholarPubMed
Kelleher, C. T., Hodkinson, T. R., Kelly, D. L. and Douglas, G. C. (2004). Characterisation of chloroplast DNA haplotypes to reveal the provenance and genetic structure of oaks in Ireland. Forest Ecology and Management, 189, 123–131.CrossRefGoogle Scholar
Kenrick, P. and Crane, P. R. (1997). The origin and early evolution of plants on land. Nature, 389, 33–39.CrossRefGoogle Scholar
Kirchner, J. W. and Weil, A. (1990). Delayed biological recovery from extinctions throughout the fossil record. Nature, 404, 177–180.CrossRefGoogle Scholar
Knoll, A. H. and Lipps, J. H. (1993). Evolutionary history of prokaryotes and protists. In Fossil Prokaryotes and Protists, ed. Lipps, J. H.. Boston, MA: Blackwell Scientific Publications, pp. 19–93.Google Scholar
Korner, C. (2006). Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist, 172, 393–411.CrossRefGoogle ScholarPubMed
Kozak, K. H., Graham, C. H. and Wiens, J. J. (2008). Integrating GIS-based environmental data into evolutionary biology. Trends in Ecology and Evolution, 23, 141–148.CrossRefGoogle ScholarPubMed
Krutovsky, K. V. and Neale, D. B. (2005). Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas fir. Genetics, 171, 2029–2041.CrossRefGoogle ScholarPubMed
Kump, L. R. and Pollard, D. (2008). Amplification of Cretaceous warmth by biological cloud feedbacks. Science, 320, 195.CrossRefGoogle ScholarPubMed
Lenton, T. M. (2004). The coupled evolution of life and atmospheric oxygen. In Evolution on Planet Earth, ed. Rothschild, L. J. and Lister, A.. Boston, MA: Academic Press.Google Scholar
Lenton, T. M., Held, H., Kriegler, E. et al. (2008). Tipping elements in the earth's climate system. Proceedings of the National Academy of Sciences of the USA, 105, 1786–1793.CrossRefGoogle ScholarPubMed
Lovejoy, T. E. and Hannah, L., eds. (2005). Climate Change and Biodiversity. New Haven, CT: Yale University Press.
Lowe, A., Harris, S. and Ashton, P. (2004). Ecological Genetics: Design, Analysis, and Application. Oxford: Blackwell.Google Scholar
Lowe, J. J. and Walker, M. J. C. (1997). Reconstructing Quaternary Environments. Harlow: Longman.Google Scholar
MacArthur, R. H. and Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Masson-Delmotte, V., Jouzel, J., Landais, A. et al. (2005). GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science, 309, 118–121.CrossRefGoogle ScholarPubMed
Mayhew, P. J., Jenkins, G. B. and Benton, T. G. (2008). A long-term association between global temperature and biodiversity, origination and extinction in the fossil record. Proceedings of the Royal Society of London B, 275, 47–53.CrossRefGoogle ScholarPubMed
McElwain, J. C. (2002). Is the greenhouse theory a fallacy? A paleontological paradox. Palaios, 17, 417–418.2.0.CO;2>CrossRefGoogle Scholar
McElwain, J. C. and Chaloner, W. G. (1995). Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Paleozoic. Annals of Botany, 76, 389–395.CrossRefGoogle Scholar
McElwain, J. C. and Punyasena, S. (2007). Mass extinction events and the plant fossil record. Trends in Ecology and Evolution, 22, 548–557.CrossRefGoogle ScholarPubMed
McElwain, J. C., Beerling, D. J. and Woodward, F. I. (1999). Fossil plants and global warming at the Triassic–Jurassic boundary. Science, 285, 1386–1390.CrossRefGoogle ScholarPubMed
McManus, J. F. (2004). A great grand-daddy of ice cores. Nature, 429, 611–612.CrossRefGoogle ScholarPubMed
McMenamin, S. K., Hadly, E. A. and Wright, C. K. (2008). Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proceedings of the National Academy of Sciences of the USA, 105, 16988–16993.CrossRefGoogle ScholarPubMed
Meehl, G. A., Stocker, T. F., Collins, W. D. et al. (2007). Global climate projections. In Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M. et al. Cambridge: Cambridge University Press, pp. 747–845.Google Scholar
Menzel, A., Sparks, T. H., Estrella, N. et al. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969–1976.CrossRefGoogle Scholar
Meyer, K. M. and Kump, L. R. (2008). Oceanic euxinia in Earth history: causes and consequences. Annual Review of Earth and Planetary Sciences, 36, 251–288.CrossRefGoogle Scholar
Møller, A. P., Rubolini, D. and Lehikoinen, E. (2008). Populations of migratory bird species that did not show a phenological response to climate change are declining. Proceedings of the National Academy of Sciences of the USA, 105, 16195–16200.CrossRefGoogle Scholar
Moritz, C., Patton, J. L., Conroy, C. J. et al. (2008). Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science, 322, 261–264.CrossRefGoogle ScholarPubMed
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.CrossRefGoogle ScholarPubMed
Neale, D. B. and Ingvarsson, P. K. (2008). Population, quantitative and comparative genomics of adaptation in forest trees. Current Opinion in Plant Biology, 11, 149–155.CrossRefGoogle ScholarPubMed
Neale, D. B. and Savolainen, O. (2004). Association genetics of complex traits in conifers. Trends in Plant Science, 9, 325–330.CrossRefGoogle ScholarPubMed
,North Greenland Ice Core Project (NGRIP) (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147–151.CrossRefGoogle Scholar
Ogg, J. G., Ogg, G. and Gradstein, F. (2008). Geologic Time Scale. Cambridge: Cambridge University Press.Google Scholar
Osborne, C. P. and Freckleton, R. P. (2009). Ecological selection pressures for C4 photosynthesis. Proceedings of the Royal Society of London B, 276, 1753–1760.CrossRefGoogle ScholarPubMed
Pagani, M., Arthur, M. A. and Freeman, K. H. (1999). Miocene evolution of atmospheric carbon dioxide. Paleoceanography, 14, 273–292.CrossRefGoogle Scholar
Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. and Bohaty, S. (2005). Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 309, 600–603.CrossRefGoogle ScholarPubMed
Pakenham, T. (2003). Remarkable Trees of the World. London: Weidenfeld and Nicolson.Google Scholar
Palmer, J. D., Soltis, D. E. and Chase, M. W. (2004). The plant tree of life: an overview and some points of view. American Journal of Botany, 91, 1437–1445.CrossRefGoogle ScholarPubMed
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.CrossRefGoogle Scholar
Parmesan, C. and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.CrossRefGoogle ScholarPubMed
Parmesan, C., Ryrholm, N., Stefanescu, C. et al. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579–583.CrossRefGoogle Scholar
Pauli, H., Gottfried, M., Reiter, K., Klettner, C. and Grabherr, G. (2006). Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biology, 13, 147–156.CrossRefGoogle Scholar
Pearman, P. B., Guisan, A., Broennimann, O. and Randin, C. F. (2007). Niche dynamics in space and time. Trends in Ecology and Evolution, 23, 149–158.CrossRefGoogle Scholar
Pearman, P. B., Randin, C. F., Broennimann, O. et al. (2008). Prediction of plant species' distributions across six millennia. Ecology Letters, 11, 357–369.CrossRefGoogle Scholar
Pearson, P. N. and Palmer, M. R. (2000). Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406, 695–699.CrossRefGoogle ScholarPubMed
Pearson, R. G. (2006). Climate change and the migration capacity of species. Trends in Ecology and Evolution, 21, 111–113.CrossRefGoogle ScholarPubMed
Pearson, R. G. and Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?Global Ecology and Biogeography, 12, 361–371.CrossRefGoogle Scholar
Pearson, R. G., Thuiller, W., Araújo, M. B. et al. (2006). Model-based uncertainty in species range prediction. Journal of Biogeography, 33, 1704–1711.CrossRefGoogle Scholar
Peters, S. E. (2008). Environmental determinants of extinction selectivity in the fossil record. Nature, 454, 626–629.CrossRefGoogle ScholarPubMed
Peters, S. E. and Foote, M. (2002). Determinants of extinction in the fossil record. Nature, 416, 420–424.CrossRefGoogle ScholarPubMed
Peterson, A. T. (2006). Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics, 3, 59–72.CrossRefGoogle Scholar
Peterson, A. T., Soberón, J. and Sánchez-Cordero, V. (1999). Conservation of ecological niches in evolutionary time. Science, 285, 1265–1267.CrossRefGoogle Scholar
Petit, J. R., Basile, I., Leruyuet, A. et al. (1999). Four climate cycles in Vostok ice core. Nature, 387, 359–360.CrossRefGoogle Scholar
Petit, R. J., Csaikl, U. M., Bordács, S. et al. (2002). Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecology and Management, 156, 5–26.CrossRefGoogle Scholar
Phillips, N. (1956). The general circulation of the atmosphere: a numerical experiment. Quarterly Journal of the Royal Meteorological Society, 82, 123–164.CrossRefGoogle Scholar
Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.CrossRefGoogle Scholar
Pierrehumbert, R. T. (2004). High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature, 429, 646–649.CrossRefGoogle ScholarPubMed
Poorter, H. and Navas, M. L. (2003). Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist, 157, 175–198.CrossRefGoogle Scholar
Pounds, J. A., Fogden, M. P. L. and Campbell, J. H. (1999). Biological responses to climate change on a tropical mountain. Nature, 398, 611–615.CrossRefGoogle Scholar
Pounds, J. A., Bustamente, M. R., Coloma, L. A. et al. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature, 439, 161–167.CrossRefGoogle ScholarPubMed
Purvis, A. (1996). Using interspecies phylogenies to test macroevolutionary hypotheses. In New Uses for New Phylogenies, ed. Harvey, P. H., Brown, A. J. Leigh, Smith, J. Maynard and Nee, S.. Oxford: Oxford University Press, pp. 153–168.Google Scholar
Ramakrishnan, U. and Hadly, E. A. (2009). Using phylochronology to reveal cryptic population histories: review and synthesis of 29 ancient DNA studies. Molecular Ecology, 18, 1310–1330.CrossRefGoogle ScholarPubMed
Raup, D. M. and Sepkoski, J. J. (1982). Mass extinctions in the marine fossil record. Science, 215, 1501–1503.CrossRefGoogle ScholarPubMed
Rieseberg, L. H. and Carney, S. E. (1998). Plant hybridization. New Phytologist, 140, 599–624.CrossRefGoogle Scholar
Rieseberg, L. H., Raymond, O., Rosenthal, D. M. et al. (2003). Major ecological transitions in wild sunflowers facilitated by hybridization. Science, 301, 1211–1216.CrossRefGoogle Scholar
Roalson, E. H. (2008). C4 photosynthesis: differentiating causation and coincidence. Current Biology, 18, 167–168.CrossRefGoogle Scholar
Rödder, D. and Lötters, S. (2009). Niche shift or niche conservatism? Climatic properties of the native and invasive range of the Mediterranean Housegecko Hemidactylus turcicus. Global Ecology and Biogeography, 18, 674–687.CrossRefGoogle Scholar
Rohde, R. A. and Muller, R. A. (2005). Cycles in fossil diversity. Nature, 434, 208–210.CrossRefGoogle ScholarPubMed
Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H. and Rosenzweig, C. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57–60.CrossRefGoogle ScholarPubMed
Rosenzweig, C., Casassa, G., Karoly, D. J. et al. (2007). Assessment of observed changes and responses in natural and managed systems. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Parry, M., Canziani, O., Palutikof, J., Linden, P. and Hanson, C.. Cambridge: Cambridge University Press, pp. 79–131.Google Scholar
Rosenzweig, M. L. (1995). Species Diversity in Space and Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Roy, D. B. and Sparks, T. H. (2000). Phenology of British butterflies and climate change. Global Change Biology, 6, 407–416.CrossRefGoogle Scholar
Royer, D. L. (2001). Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Review of Palaeobotany and Palynology, 114, 1–28.CrossRefGoogle Scholar
Royer, D. L., Berner, R. A., Montañez, I. P., Tibor, N. J. and Beerling, D. J. (2004). CO2 as a primary driver of Phanerozoic climate. Geological Society of America Today, 14, 4–10.Google Scholar
Ruddiman, W. F. (2003). The anthropogenic greenhouse era began thousands of years ago. Climatic Change, 61, 261–293.CrossRefGoogle Scholar
Ruegg, K., Slabbekoorn, H., Clegg, S. and Smith, T. B. (2006). Divergence in mating signals correlates with ecological variation in the migratory songbird, Swainson's thrush (Catharus ustulatus). Molecular Ecology, 15, 3147–3156.CrossRefGoogle Scholar
Sage, R. F. (2004). The evolution of C-4 photosynthesis. New Phytologist, 161, 341–370.CrossRefGoogle Scholar
Schmidt, K. P. (1954). Faunal realms, regions, and provinces. Quarterly Review of Biology, 29, 322–331.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. (2002). A compendium of fossil marine animal genera. Bulletin of American Paleontology, 363, 1–560.Google Scholar
Sexton, J. P., McIntyre, P. J., Angert, A. L. and Rice, K. J. (2009). Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40, 415–436.CrossRefGoogle Scholar
Shaviv, N. J. and Veizer, J. (2003). Celestial driver of Phanerozoic climate?Geological Society of America Today, 13, 4–10.Google Scholar
Sheehan, P. M. (2001). The Late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences, 29, 331–364.CrossRefGoogle Scholar
Soberón, J. and Peterson, A. T. (2004). Biodiversity informatics: managing and applying primary biodiversity data.Philosophical Transactions of the Royal Society of London B, 359, 689–698.CrossRefGoogle ScholarPubMed
Soltis, P. S. and Soltis, D. E. (2009). The role of hybridization in plant speciation. Annual Review of Plant Biology, 60, 561–588.CrossRefGoogle ScholarPubMed
Steffensen, J. P., Andersen, K. K., Bigler, M. et al. (2008). High-resolution Greenland ice core data show abrupt climate change happens in few years. Science, 321, 680–684.CrossRefGoogle ScholarPubMed
Stokstad, E. (2001). Myriad ways to reconstruct past climate. Science, 292, 658–659.CrossRefGoogle ScholarPubMed
Sutherland, W. J. (2006). Predicting the ecological consequences of environmental change: a review of the methods. Journal of Applied Ecology, 43, 599–616.CrossRefGoogle Scholar
Svensmark, H. and Calder, N. (2007). The Chilling Stars: a New Theory of Climate Change. Cambridge: Icon Books.Google Scholar
Swenson, N. G. (2006). GIS-based niche models reveal unifying climatic mechanisms that maintain the location of avian hybrid zones in a North American suture zone. Journal of Evolutionary Biology, 19, 717–725.CrossRefGoogle Scholar
Thomas, C. D. and Lennon, J. J. (1999). Birds extend their ranges northwards. Nature, 399, 213.CrossRefGoogle Scholar
Thomas, C. D., Cameron, A., Green, R. E. et al. (2004). Extinction risk from climate change. Nature, 427, 145–148.CrossRefGoogle ScholarPubMed
Thomas, C. D., Franco, A. M. A. and Hill, J. K. (2006). Range retractions andextinction in the face of climate warming. Trends in Ecology and Evolution, 21, 415–416.Google Scholar
Thuiller, W. (2004). Patterns and uncertainties of species' range shifts under climate change. Global Change Biology, 10, 2020–2027.CrossRefGoogle Scholar
Thuiller, W., Albert, C., Araú jo, M. B. et al. (2008). Predicting global change impacts on plant species' distributions: future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9, 137–152.CrossRefGoogle Scholar
Trenberth, K. E., Jones, P. D., Ambenje, P. et al. (2007). Observations: surface and atmospheric climate change. In Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M. et al. Cambridge: Cambridge University Press, pp. 235–336.Google Scholar
Tyndall, J. (1865). Heat Considered as a Mode of Motion, 2nd edn. London: Longman Green.Google Scholar
Schootbrugge, B., Quan, T. M., Lindström, S. et al. (2009). Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience, 2, 589–594.CrossRefGoogle Scholar
Herk, C. M., Aptroot, A. and Dobben, H. F. (2002). Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist, 34, 141–154.CrossRefGoogle Scholar
Valen, L. (1973). A new evolutionary law. Evolutionary Theory, 1, 1–30.Google Scholar
Veizer, J., Godderis, Y. and François, L. M. (2000). Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature, 408, 698–701.CrossRefGoogle ScholarPubMed
Vila, M., Weber, E. and Antonio, C. M. D. (2000). Conservation implications of invasion by plant hybridization. Biological Invasions, 2, 207–217.CrossRefGoogle Scholar
Wake, D. B., Hadley, E. A., and Ackerly, D. D. (2009). Biogeography, changing climates, and niche evolution. Proceedings of the National Academy of Sciences of the USA, 106, 19631–19636.CrossRefGoogle ScholarPubMed
Wallace, A. R. (1869). The Malay Archipelago; The Land of the Orang-utan and the Bird of Paradise; A Narrative of Travel With Studies of Man and Nature. London: Macmillan.Google Scholar
Wallace, A. R. (1876). The Geographical Distribution of Animals; With A Study of the Relations of Living and Extinct Faunas as Elucidating the Past Changes of the Earth's Surface. London: Macmillan.Google Scholar
Wallace, A. R. (1880). Island Life: Or, The Phenomena and Causes of Insular Faunas and Floras, Including a Revision and Attempted Solution of the Problem of Geological Climates. London: Macmillan.Google Scholar
Walther, G. R., Post, E., Convey, P. et al. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.CrossRefGoogle ScholarPubMed
Wiens, J. J. and Graham, C. H. (2005). Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology and Systematics, 36, 519–539.CrossRefGoogle Scholar
Wignall, P. B. (2005). The link between large igneous province eruptions and mass extinctions. Elements, 1, 293–297.CrossRefGoogle Scholar
Williams, J. W. and Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment, 5, 475–482.CrossRefGoogle Scholar
Williams, J. W., Jackson, S. T. and Kutzbach, J. E. (2007). Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the USA, 104, 5738–5742.CrossRefGoogle ScholarPubMed
Willig, M. R., Kaufmann, D. M. and Stevens, R. D. (2003). Latitudinal gradients of biodiversity: pattern, process, scale and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34, 273–309.CrossRefGoogle Scholar
Willis, K. J. and McElwain, J. C. (2002). The Evolution of Plants. Oxford: Oxford University Press.Google Scholar
Wilson, E. O. (1992). The Diversity of Life. Cambridge, MA: Harvard University Press.Google Scholar
Wilson, J. W, Gutiérrez, D., Martinez, D., Agudo, R. and Monserrat, V. J. (2005). Changes to the elevational limits and extent of species ranges associated with climate change. Ecological Letters, 8, 1138–1146.CrossRefGoogle ScholarPubMed
Wnuk, C. (1996). The development of floristic provinciality during the Middle and Late Paleozoic. Review of Palaeobotany and Palynology, 90, 6–40.CrossRefGoogle Scholar
Woodward, F. I. (1987). Stomatal numbers are sensitive to increase in CO2 from pre-industrial levels. Nature, 327, 617–618.CrossRefGoogle Scholar
Woodward, F. I. and Kelly, C. K. (2008). Responses of global plant biodiversity capacity to changes in carbon dioxide concentration and climate. Ecology Letters, 11, 1229–1237.CrossRefGoogle ScholarPubMed
Wunsch, C. (2004). Quantitative estimate of the Milankovitch-forced contribution to observed Quaternary climate change. Quarterly Science Reviews, 23, 1001–1012.CrossRefGoogle Scholar
Yesson, C. and Culham, A. (2006a). A phyloclimatic study of Cyclamen. BMC Evolutionary Biology, 6, 72.CrossRefGoogle ScholarPubMed
Yesson, C. and Culham, A. (2006b). Phyloclimatic modelling: combining phylogenetics and bioclimatic modelling. Systematic Biology, 55, 785–802.CrossRefGoogle Scholar
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001). Trends, rythms and aberrations in global climate 65 Ma to present. Science, 292, 686–693.CrossRefGoogle Scholar
Zachos, J. C., Dickens, G. R. and Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279–283.CrossRefGoogle ScholarPubMed
Zeebe, R. E., Zachos, J. C. and Dickens, G. R. (2009). Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nature Geoscience, 2, 576–580.CrossRefGoogle Scholar
Ziegler, A.M., Eshel, G., McAllister, R. et al. (2003). Tracing the tropics across land and sea: Permian to present. Lethaia, 36, 227–254.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×