Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T15:03:54.517Z Has data issue: false hasContentIssue false

11 - Surface coatings for atomic magnetometry

from Part I - Principles and techniques

Published online by Cambridge University Press:  05 May 2013

S. J. Seltzer
Affiliation:
University of California
M.-A. Bouchiat
Affiliation:
Département de Physique de l'Ecole Normale Supérieure
M. V. Balabas
Affiliation:
S. I. Vavilov State Optical Institute
Dmitry Budker
Affiliation:
University of California, Berkeley
Derek F. Jackson Kimball
Affiliation:
California State University, East Bay
Get access

Summary

Introduction and history

Paraffin films and other surface coatings have played a decisive role in the emergence and development of optical magnetometry. When alkali atoms in the vapor phase collide with the bare surface of a glass container, they disappear inside the glass and are replaced in the vapor phase by another atom with random spin orientation. With a mean free path of the dimensions of the cell (typically on the order of 1 to several cm), the collision frequency is much too high, 104 s−1, to maintain the substantial spin polarization required for practical applications. In order to prevent this detrimental effect, vapor cells include either an inert buffer gas [1–3] or an antirelaxation surface coating [4]. In the presence of a noble gas at a pressure from 10−2 to a few atmospheres, the alkali atoms diffuse very slowly from the center of the cell to the glass walls, and their orientation is only very slightly affected by gas collisions. However, there are several advantages to the use of a surface coating instead of buffer gas. If the static magnetic field is not homogeneous, then resonance lines suffer from inhomogeneous broadening in the presence of the gas [5–7]. In addition, the optical pumping process is perturbed by the buffer gas [8, 9]: (i) it is more efficient at the center of the cell than near the uncoated walls, so that the atomic orientation is inhomogeneous inside the cell; (ii) the pump beam absorption line is broadened, and its profile varies with the distance from the entrance window. These effects are unfavorable for the production of alignment in the ground state.

Type
Chapter
Information
Optical Magnetometry , pp. 205 - 224
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×