Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T17:35:42.930Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Ranjan Roy
Affiliation:
Beloit College, Wisconsin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Sources in the Development of Mathematics
Series and Products from the Fifteenth to the Twenty-first Century
, pp. 943 - 958
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, N. H. 1826. Untersuchungen über die Reihe 1 + (m/1)x + (m(m - 1)/2)x2 + ···. J. Reine Angew. Math., 1, 311–339.CrossRefGoogle Scholar
Abel, N. H. 1965. Oeuvres complètes. New York: Johnson Reprint.Google Scholar
Acosta, D. J. 2003. Newton's rule of signs for imaginary roots. Amer. Math. Monthly, 110, 694–706.CrossRefGoogle Scholar
Ahlfors, L. V. 1982. Collected Papers. Boston: Birkhäuser.Google Scholar
Ahlgren, S., and Ono, K. 2001. Addition and counting: The arithmetic of partitions. Notices Amer. Math. Soc., 48, 978–984.Google Scholar
Alder, H. L. 1969. Partition identities – from Euler to the present. Amer. Math. Monthly, 76, 733–746.Google Scholar
Alexander, J. W. 1915. Functions which map the interior of the unit circle upon simple regions. Ann. Math., 17, 12–22.CrossRefGoogle Scholar
Allaire, P., and Bradley, R. E. 2004. Symbolical algebra as a foundation for calculus: D. F. Gregory's contribution. Historia Math., 29, 395–426.CrossRefGoogle Scholar
Almkvist, G., and Berndt, B. 1988. Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π, and the Ladies Diary. Amer. Math. Monthly, 95, 585–607.Google Scholar
Altmann, S., and Ortiz, E. L. 2005. Olinde Rodrigues and His Times. Providence, R.I.: Amer. Math. Soc.Google Scholar
Anderson, M., Katz, V., and Wilson, R. (eds). 2004. Sherlock Holmes in Babylon. Washington, D.C.: Math. Assoc. Amer.CrossRefGoogle Scholar
Anderson, M., Katz, V., and Wilson, R. (eds). 2009. Who Gave You the Epsilon?Washington, D.C.: Math. Assoc. Amer.CrossRefGoogle Scholar
Andrews, G. E. 1981. Ramanujan's “lost” notebook. III. The Rogers-Ramanujan continued fraction. Adv. Math., 41, 186–208.CrossRefGoogle Scholar
Andrews, G. E. 1986. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence: Amer. Math. Soc.Google Scholar
Andrews, G. E., and Garvan, F. G. 1988. Dyson's crank of a partition. Bull. Amer. Math. Soc., 18, 167–171.CrossRefGoogle Scholar
Andrews, G. E., Askey, R. A., Berndt, B. C., Ramanathan, K. G., and Rankin, R. A. (eds). 1988. Ramanujan Revisited. Boston: Academic Press.Google Scholar
Andrews, G. E., Askey, R., and Roy, R. 1999. Special Functions. New York: Cambridge Univ. Press.CrossRefGoogle Scholar
Arnold, V. I. 1990. Huygens and Barrow, Newton and Hooke. Boston: Birkhäuser. Translated by E. J. F. Primrose.CrossRefGoogle Scholar
Arnold, V. I. 2007. Yesterday and Long Ago. New York: Springer.Google Scholar
Artin, E. 1964. The Gamma Function. New York: Holt, Reinhart and Winston. Translated by Michael Butler.Google Scholar
Ash, J. M. 1976. Studies in Harmonic Analysis. Washington, D.C.: Math. Assoc. Amer.Google Scholar
Askey, R. 1975. Orthogonal polynomials and special functions. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Atkin, A. O. L. 1968. Multiplicative congruence properties. Proc. London Math. Soc., 18, 563–576.
Atkin, A. O. L., and Swinnerton–Dyer, P. 1954. Some properities of partititons. Proc. London Math. Soc., 4, 84–106.CrossRefGoogle Scholar
Babbage, C., and Herschel, J. 1813. Memoirs of the Analytical Society. Cambridge: Cambridge Univ. Press.Google Scholar
Bäcklund, R. 1918. Über die Nullstellen der Riemannschen Zetafunktion. Acta Math., 41, 345–375.CrossRefGoogle Scholar
Baernstein, A. 1986. The Bieberbach Conjecture. Providence, R.I.: Amer. Math. Soc.Google Scholar
Bag, A. K. 1966. Trigonometrical series in the Karanapaddhati and the probable date of the text. Indian J. Hist. of Sci., 1, 98–106.Google Scholar
Baillaud, B., and Bourget, H. (eds). 1905. Correspondance d'Hermite et de Stieltjes. Paris: Gauthier-Villars.Google Scholar
Baker, A. 1988. New Advances in Transcendence Theory. New York: Cambridge University Press.CrossRefGoogle Scholar
Baker, A., and Masser, D. W. 1977. Transcendence Theory. New York: Academic Press.Google Scholar
Barnes, E. W. 1908. A new development of the theory of the hypergeometric function. Proc. London Math. Soc., 6(2), 141–177.CrossRefGoogle Scholar
Baron, M. E. 1987. The Origins of the Infinitesimal Calculus. New York: Dover.Google Scholar
Barrow, I. 1735. Geometrical Lectures. London: Austen. Translated by E. Stone.Google Scholar
Bateman, H. 1907. The correspondence of Brook Taylor. Bibliotheca Math., 7, 367–371.Google Scholar
Bateman, P. T., and Diamond, H. G. 1996. A hundred years of prime numbers. Amer. Math. Monthly, 103(9), 729–741. Reprinted in Anderson, Katz, and Wilson (2009), pp. 328–336.CrossRefGoogle Scholar
Becher, H. W. 1980. Woodhouse, Babbage, Peacock, and modern algebra. Historia Math., 7, 389–400.CrossRefGoogle Scholar
Beery, J., and Stedall, J. 2009. Thomas Harriot's Doctrine of Triangular Numbers: The ‘Magisteria Magna’. Zürich: European Mathematical Society.Google Scholar
Berggren, L., Borwein, J., and Borwein, P. 1997. Pi: A Source Book. New York: Springer-Verlag.CrossRefGoogle Scholar
Berndt, B. C. 1985–1998. Ramanujan's Notebooks. New York: Springer-Verlag.CrossRefGoogle Scholar
Bernoulli, D. 1982–1996. Die Werke von Daniel Bernoulli. Basel: Birkhäuser.Google Scholar
Bernoulli, J. 1993–1999. Die Werke von Jakob Bernoulli. Basel: Birkhäuser.Google Scholar
Bernoulli, J. 2006. The Art of Conjecturing, Translation of Ars Conjectandi. Baltimore: Johns Hopkins Univ. Press. Translated by E. D. Sylla.Google Scholar
Bernoulli, Joh. 1968. Opera omnia. Hildesheim, Germany: G. Olms Verlag.Google Scholar
Bernoulli, N. 1738. Inquisitio in summam Seriei etc. Comment. Petropolitanae, 10, 19–21.Google Scholar
Bers, L. 1998. Selected Works of Lipman Bers. Providence: Amer. Math. Soc.Google Scholar
Bézout, É. 2006. General Theory of Algebraic Equations. Princeton: Princeton Univ. Press. Translated by E. Feron.Google Scholar
Bieberbach, L. 1916. Über die Koeffizienten derjenigen Potenzreihen. S.-B. Preuss Akad. Wiss., 138, 940–955.Google Scholar
Binet, J. 1839. Mémoire sur les intégrales définies Eulériennes. Journal de l'École Polytéchnique, 16, 123–340.Google Scholar
Bissell, C. C. 1989. Cartesian geometry: The Dutch contribution. Mathematical Intelligencer, 9(4), 38–44.CrossRefGoogle Scholar
Boas, R. P. 1954. Entire Functions. New York: Academic Press.Google Scholar
Bogolyubov, N. N., Mikhailov, G. K., and Yushkevich, A. P. (eds). 2007. Euler and Modern Science. Washington, D.C.: Math. Assoc. Amer.Google Scholar
Bohr, H., and Mollerup, J. 1922. Laerebog i Matematisk Analyse. Copenhagen: Jul. Gjellerups Forlag.Google Scholar
Bolibruch, A. A., Osipov, Yu. S., and Sinai, Ya. G. (eds). 2006. Mathematical Events of the Twentieth Century. New York: Springer.CrossRefGoogle Scholar
Bombieri, E., and Gubler, W. 2006. Heights in Diophantine Geometry. New York: Cambridge Univ. Press.Google Scholar
Boole, G. 1841. Exposition of a general theory of linear transformations, Parts I and II. Cambridge Math. J., 3, 1–20, 106–111.Google Scholar
Boole, G. 1844a. Notes on linear transformations. Cambridge Math. J., 4, 167–71.Google Scholar
Boole, G. 1844b. On a general method in analysis. Phil. Trans. Roy. Soc. London, 124, 225–282.CrossRefGoogle Scholar
Boole, G. 1847. The Mathematical Analysis of Logic. London: George Bell.Google Scholar
Boole, G. 1877. A Treatise on Differential Equations. London: Macmillan.Google Scholar
Borel, É. 1900. Leçons sur les fonctions entières. Paris: Gauthier-Villars.Google Scholar
Bornstein, M. 1997. Symbolic Integration. New York: Springer-Verlag.CrossRefGoogle Scholar
Boros, G., and Moll, V. 2004. Irresistible Integrals. New York: Cambridge Univ. Press.CrossRefGoogle Scholar
Borwein, J., Bailey, D., and Girgensohn, R. 2004. Experimentation in Mathematics: Computational Paths to Discovery. Natick, Mass.: A K Peters.Google Scholar
Bos, H. J. M. 1974. Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Arch. Hist. Exact Sci., 14, 1–90.CrossRefGoogle Scholar
Bottazzini, U. 1986. The Higher Calculus. New York: Springer-Verlag.Google Scholar
Bourbaki, N. 1994. Elements of the History of Mathematics. New York: Springer-Verlag. Translated by J. Meldrum.CrossRefGoogle Scholar
Boyer, C. B. 1943. Pascal's formula for the sums of the powers of integers. Scripta Math., 9, 237–244.Google Scholar
Boyer, C. B., and Merzbach, U. C. 1991. A History of Mathematics. New York: Wiley.Google Scholar
Bradley, R. E., and Sandifer, C. E. (eds). 2007. Leonhard Euler: Life, Work and Legacy. Amsterdam: Elsevier.Google Scholar
Bradley, R. E., and Sandifer, C. E. 2009. Cauchy's Cours d'analyse. New York: Springer.CrossRefGoogle Scholar
Bressoud, D. 2002. Was calculus invented in India?College Math. J., 33(1), 2–13. Reprinted in Anderson, Katz, and Wilson (2004), 131–137.CrossRefGoogle Scholar
Bressoud, D. 2007. A Radical Approach to Real Analysis. 2nd edn. Washington, D.C.: Math. Assoc. Amer.Google Scholar
Bressoud, D. 2008. A Radical Approach to Lesbesgue's Theory of Integration. New York: Cambridge Univ. Press.Google Scholar
Brezinski, C. 1991. History of Continued Fractions and Padé Approximations. New York: Springer.CrossRefGoogle Scholar
Bronstein, M. 1997. Symbolic Integration. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Browder, F. E. (ed). 1976. Mathematical Developments Arising from Hilbert Problems. Providence: Amer. Math. Soc.Google Scholar
,Budan de Boislaurent, Ferdinand-François-Désiré. 1822. Nouvelle méthode pour la résolution des équations numérique…. Paris: Dondey-Dupré.Google Scholar
Bühler, W. K. 1981. Gauss: A Biographical Study. New York: Springer-Verlag.CrossRefGoogle Scholar
Burn, R. P. 2001. Alphose Antonio de Sarasa and logarithms. Historia Math., 28, 1–17.CrossRefGoogle Scholar
Burnside, W. S., and Panton, A. W. 1960. The Theory of Equations. New York: Dover.Google Scholar
Butzer, P. L., and Sz-Nagy, B. 1974. Linear Operators and Approximation II. Basel: Birkhäuser.CrossRefGoogle Scholar
Cahen, E. 1894. Sur la fonction ζ(s) de Riemann et sur des fonctions analogues. Ann. Sci. École Norm. Sup., 11, 75–164.CrossRefGoogle Scholar
Campbell, G. 1728. A method of determining the number of impossible roots in affected aequations. Phil. Trans. Roy. Soc., 35, 515–531.CrossRefGoogle Scholar
Campbell, P. J. 1978. The origin of “Zorn's Lemma”. Historia Math., 5, 77–89.CrossRefGoogle Scholar
Cannon, J. T., and Dostrovsky, S. 1981. The Evolution of Dynamics: Vibration Theory from 1687 to 1742. New York: Springer-Verlag.CrossRefGoogle Scholar
Cantor, G. 1932. Gesammelte Abhandlungen. Berlin: Springer.CrossRefGoogle Scholar
Cardano, G. 1993. Ars Magna or the Rules of Algebra. New York: Dover. Translated by T. R. Witmer.Google Scholar
Carleson, L. 1966. On convergence and growth of partial sums of Fourier series. Acta. Math., 116, 135–157.CrossRefGoogle Scholar
Cauchy, A.-L. 1823. Résumé des leçons donnés à l'École Royale Polytechnique sur le calcul infinitésimal. Paris: De Bure.Google Scholar
Cauchy, A.-L. 1829. Calcul différentiel. Paris: De Bure.Google Scholar
Cauchy, A.-L. 1843. Sur l'emploi légitime des séries divergentes. Compt. Rend., 17, 370–376.Google Scholar
Cauchy, A.-L. 1882–1974. Oeuvres complétes. Paris: Gauthier-Villars.Google Scholar
Cauchy, A.-L. 1989. Analyse algébrique. Paris: Jacques Gabay.Google Scholar
Cayley, A. 1889–1898. Collected Mathematical Papers. Cambridge: Cambridge Univ. Press.Google Scholar
Cayley, A. 1895. Elliptic Functions. London: Bell.Google Scholar
Cesàro, E. 1890. Sur la multiplication des séries. Bull. Sci. Math., 14, 114–20.Google Scholar
Chabert, J.-L. 1999. A History of Algorithms: From the Pebble to the Microchip. New York: Springer. Translated by C. Weeks.CrossRefGoogle Scholar
Chebyshev, P. L. 1899–1907. Oeuvres de P. L. Tchebychef. St. Petersburg: Académie Impériale des Sciences.Google Scholar
Cheney, E. (ed). 1980. Approximation Theory III. New York: Academic Press.Google Scholar
Cherry, W., and Ye, Z. 2001. Nevanlinna Theory of Value Distribution. New York: Springer.CrossRefGoogle Scholar
Child, J. M. 1916. Geometrical Lectures of Isaac Barrow. Chicago: Open Court.Google Scholar
Child, J. M. 1920. The Early Mathematical Manuscripts of Leibniz. Chicago: Open Court.Google Scholar
Chudnovsky, D.V., and Chudnovsky, G. V. 1988. Approximations and complex multiplication according to Ramanujan. Pages 375–472 of: Andrews, G. E., Askey, R. A., Berndt, B. C., Ramanathan, K. G., and Rankin, R. A. (eds), Ramanujan Revisited: Proceedings of the Ramanujan Centenary Conference held at the University of Illinois, Urbana-Champaign, Illinois, June 1Đ5, 1987. Boston: Academic Press.Google Scholar
Clairaut, A.-C. 1739. Recherches générales sur le calcul intégral. Mémoires de l'Académie Royale des Sciences, 1, 425–436.Google Scholar
Clairaut, A.-C. 1740. Sur l'intégration ou la construction des équations différentielles du premier ordre. Mémoires de l'Académie Royale des Sciences, 2, 293–323.Google Scholar
Clarke, F. M. 1929. Thomas Simpson and his Times. Baltimore: Waverly Press.Google Scholar
Clausen, T. 1828. Ueber die Fälle, wenn die Reihe von der Form y = 1 + ··· etc. ein Quadrat von der Form z = 1 + ··· etc. hat. J. Reine Angew. Math., 3, 89–91.CrossRefGoogle Scholar
Cohen, H. 2007. Number Theory, Volume II: Analytic and Modern Tools. New York: Springer.Google Scholar
Cooke, R. 1984. The Mathematics of Sonya Kovalevskaya. New York: Springer-Verlag.CrossRefGoogle Scholar
Cooke, R. 1993. Uniqueness of trigonometric series and descriptive set theory 1870–1985. Arch. Hist. Exact Sci., 45, 281–334.CrossRefGoogle Scholar
Cooper, S. 2006. The quintuple product identity. Int. J. Number Theory, 2, 115–161.CrossRefGoogle Scholar
Corry, L. 2004. Modern Algebra and the Rise of Mathematical Structures. Basel: Birkhäuser.CrossRefGoogle Scholar
Cotes, R. 1722. Harmonia Mensurarum. Cambridge: Cambridge Univ. Press.Google Scholar
Cox, D. A. 1984. The arithmetic-geometric mean of Gauss. Lénseignement mathématique, 30, 275–330.Google Scholar
Cox, D. A. 2004. Galois Theory. Hoboken: Wiley.CrossRefGoogle Scholar
Craik, A. D. D. 2000. James Ivory, F.R.S., mathematician: “The most unlucky person that ever existed”. Notes and Records Roy. Soc. London, 54, 223–247.CrossRefGoogle Scholar
Craik, A. D. D. 2005. Prehistory of Faà di Bruno's formula. Amer. Math. Monthly, 112, 119–130.Google Scholar
Crilly, T. 2006. Arthur Cayley. Baltimore: Johns Hopkins Univ. Press.Google Scholar
D'Alembert, J. 1761–1780. Opuscules mathématiques. Paris: David.Google Scholar
Dauben, J. 1979. Georg Cantor. Princeton: Princeton Univ. Press.Google Scholar
Davenport, H. 1980. Multiplicative Number Theory. New York: Springer-Verlag.CrossRefGoogle Scholar
Davis, P. J. 1959. Leonhard Euler's Integral: A historical profile of the gamma function. Amer. Math. Monthly, 66, 849–869.Google Scholar
de Beaune, F., Girard, A., and Viète, F. 1986. The Early Theory of Equations: On Their Nature and Constitution. Annapolis, Md.: Golden Hind Press. Translated by Robert Smith.Google Scholar
De Branges, L. 1985. A proof of the Bieberbach conjecture. Acta Math., 157, 137–162.CrossRefGoogle Scholar
de Moivre, A. 1730a. Miscellanea analytica de seriebus et quadraturis. London: Tonson and Watts.Google Scholar
de Moivre, A. 1730b. Miscellaneis analyticis supplementum. London: Tonson and Watts.Google Scholar
de Moivre, A. 1967. The Doctrine of Chances. New York: Chelsea.Google Scholar
Dedekind, R. 1930. Gesammelte Mathematische Werke. Braunschweig: F. Vieweg.Google Scholar
Dedekind, R. 1963. Essays on the Theory of Numbers. New York: Dover.Google Scholar
Delone, B. N. 2005. The St. Petersburg School of Number Theory. Providence: Amer. Math. Soc.CrossRefGoogle Scholar
Descartes, R. 1954. La Géométrie. New York: Dover. Translated by D. E. Smith and M. L. Latham.Google Scholar
Dieudonné, J. 1981. History of Functional Analysis. Amsterdam: Elsevier.Google Scholar
Dirichlet, P. G. L. 1862. Démonstration d'un théorème d'Abel. J. Math. Pures App., 7(2), 253–255. Also in Werke I, 305–306.Google Scholar
Dirichlet, P. G. L. 1969. Mathematische Werke. New York: Chelsea.Google Scholar
Dirichlet, P. G. L., and Dedekind, R. 1999. Lectures on Number Theory. Providence: Amer. Math. Soc. Translated by John Stillwell.CrossRefGoogle Scholar
Dörrie, H. 1965. 100 Great Problems of Elementary Mathematics. New York: Dover. Translated by D. Antin.Google Scholar
Duke, W., and Tschinkel, Y. 2005. Analytic Number Theory: A Tribute to Gauss and Dirichlet. Providence: Amer. Math. Soc.Google Scholar
Dunham, W. 1990. Journey Through Genius. New York: Wiley.Google Scholar
Dunnington, G. 2004. Gauss: Titan of Science. Washington, D.C.: Math. Assoc. Amer.Google Scholar
Duren, P. L. 1983. Univalent Functions. New York: Springer-Verlag.Google Scholar
Dutka, J. 1984. The early history of the hypergeometric series. Arch. Hist. Exact Sci., 31, 15–34.CrossRefGoogle Scholar
Dutka, J. 1991. The early history of the factorial function. Arch. Hist. Exact Sci., 43, 225–249.CrossRefGoogle Scholar
Edwards, A. W. F. 2002. Pascal's Arithmetical Triangle. Baltimore: Johns Hopkins Univ. Press.Google Scholar
Edwards, H. M. 1977. Fermat's Last Theorem. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Edwards, H. M. 1984. Galois Theory. New York: Springer-Verlag.Google Scholar
Edwards, H. M. 2001. Riemann's Zeta Function. New York: Dover.Google Scholar
Edwards, J. 1954. An Elementary Treatise on the Differential Calculus. London: Macmillan.Google Scholar
Edwards, J. 1954b. Treatise on Integral Calculus. New York: Chelsea.Google Scholar
Eie, M. 2009. Topics In Number Theory. Singapore: World Scientific.Google Scholar
Eisenstein, F. G. 1975. Mathematische Werke. New York: Chelsea.Google Scholar
Elliott, E. B. 1964. An Introduction to the Algebra of Quantics. New York: Chelsea.Google Scholar
Ellis, D. B., Ellis, R., and Nerurkar, M. 2000. The topological dynamics of semigroup actions. Trans. Amer. Math. Soc., 353, 1279–1320.CrossRefGoogle Scholar
Ellis, R. L. 1845. Memoir to D. F. Gregory. Cambridge and Dublin Math. J., 4, 145–152.Google Scholar
Engelsman, S. B. 1984. Families of Curves and the Origins of Partial Differentiation. Amsterdam: North-Holland.Google Scholar
Enros, P. 1983. The analytical society (1812–1813). Historia Math., 10, 24–47.CrossRefGoogle Scholar
Erdős, P. 1932. Beweis eines Satz von Tschebyschef. Acta. Sci. Math., 5, 194–198.Google Scholar
Erman, A. 1852. Briefwechsel zwischen Olbers und Bessel. Leipzig: Avenarius and Mendelssohn.Google Scholar
Euler, L. 1911–2000. Leonhardi Euleri Opera omnia. Berlin: Teubner.Google Scholar
Euler, L. 1985. An essay on continued fractions. Math. Syst. Theory, 18, 295–328.Google Scholar
Euler, L. 1988. Introduction to Analysis of the Infinite. New York: Springer-Verlag. Translated by J. D. Blanton.CrossRefGoogle Scholar
Euler, L. 2000. Foundations of Differential Calculus. English Translation of First Part of Euler's Institutiones calculi differentialis. New York: Springer-Verlag. Translated by J. D. Blanton.CrossRefGoogle Scholar
Fagnano, G. C. 1911. Opere matematiche. Rome: Albrighi.Google Scholar
Farkas, H. M., and Kra, I. 2001. Theta Constants, Riemann Surfaces and the Modular Group. Providence, R. I.: Amer. Math. Soc.CrossRefGoogle Scholar
Fatou, P. 1906. Séries trigonométriques et séries de Taylor. Acta Math., 30, 335–400.CrossRefGoogle Scholar
Feigenbaum, L. 1981. Brook Taylor's “Methodus incrementorum”: A Translation with Mathematical and Historical Commentary. Ph.D. thesis, Yale University.
Feigenbaum, L. 1985. Taylor and the method of increments. Arch. Hist. Exact Sci., 34, 1–140.CrossRefGoogle Scholar
Feingold, M. 1990. Before Newton. New York: Cambridge Univ. Press.CrossRefGoogle Scholar
Feingold, M. 1993. Newton, Leibniz and Barrow too. Isis, 84, 310–338.Google Scholar
Fejér, . 1970. Gesammelte Arbeiten. Basel: Birkhäuser.Google Scholar
Feldheim, E. 1941. Sur les polynomes généralisés de Legendre. Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Adad. Nauk SSSR], 5, 241–254.Google Scholar
Ferraro, G. 2004. Differentials and differential coefficients in the Eulerian foundations of the calculus. Historia Math., 31, 34–61.CrossRefGoogle Scholar
Ferreirós, J. 1993. On the relations between Georg Cantor and Richard Dedekind. Historia Math., 20, 343–63.CrossRefGoogle Scholar
FitzGerald, C. H. 1985. The Bieberbach conjecture: Retrospective. Notices Amer. Math. Soc., 32, 2–6.Google Scholar
Foata, D., and Han, G.-N. 2001. The triple, qunituple and sextuple product identities revisited. Pages 323–334 of: Foata, D., and Han, G.-N. (eds), The Andrews Festschrift: Seventeen Papers on Classical Number Theory and Combinatorics. New York: Springer.CrossRefGoogle Scholar
Fomenko, O. M., and Kuzmina, G. V. 1986. The last 100 days of the Bieberbach conjecture. Mathematical Intelligencer, 8, 40–47.CrossRefGoogle Scholar
Forrester, P. J., and Warnaar, S. O. 2008. The Importance of the Selberg Integral. Bull. Amer. Math. Soc., 45, 498–534.CrossRefGoogle Scholar
Fourier, J. 1955. The Analytical Theory of Heat. New York: Dover. Translated by A. Freeman.Google Scholar
Français, J. F. 1812–1813. Analise transcendante. Memoire tendant à démontrer la légitimité de la séparation des échelles de différentiation et d'intégration des fonctions qu'elles affectent. Annales de Gergonne, 3, 244–272.Google Scholar
Frei, G. 2007. The unpublished section eight: On the way to function fields over a finite field. Pages 159–198 of: Goldstein, C., Schappacher, N., and Schwermer, J. (eds), The Shaping of Arithmetic after C. F. Gauss's Disquisitiones Arithmeticae. New York: Springer.Google Scholar
Friedelmeyer, J. P. 1994. Le calcul des dérivations d'Arbogast dans le projet d'algébrisation de l'analyse à fin du xviiie siècle. Nantes, France: Université de Nantes.Google Scholar
Frobenius, G. 1880. Ueber die Leibnizsche Reihe. J. Reine Ang. Math., 89, 262–264.Google Scholar
Fuss, P. H. 1968. Correspondance mathématique et physique. New York: Johnson Reprint.Google Scholar
Galois, E. 1897. Oeuvres mathématiques. Paris: Gauthier-Villars.Google Scholar
Gårding, L. 1994. Mathematics in Sweden before 1950. Providence: Amer. Math. Soc.Google Scholar
Gauss, C. F. 1863–1927. Werke. Leipzig: Teubner.Google Scholar
Gauss, C. F. 1966. Disquisitiones Arithmeticae (An English Translation). New Haven, Conn.: Yale Univ. Press. Translated by A. A. Clarke.Google Scholar
Gauss, C. F. 1981. Arithmetische Untersuchungen. New York: Chelsea.Google Scholar
Gegenbauer, L. 1884. Zur Theorie der Functionen. Denkschriften der Akademie der Wissenschaften in Wien, Math. Naturwiss. Klasse, 48, 293–316.Google Scholar
Gelfand, I. M. 1988. Collected Papers. New York: Springer-Verlag.Google Scholar
Gelfand, I. M., Kapranov, M. M., and Zelevinsky, A. V. 1994. Discriminants, Resultants, and Multidimensional Determinants. Boston: Birkhäuser.CrossRefGoogle Scholar
Gelfond, A. O. 1960. Transcendental and Algebraic Numbers. New York: Dover. Translated by Leo F. Boron.Google Scholar
Gelfond, A. O., and Linnik, Yu., V. 1966. Elementary Methods in the Analytic Theory of Numbers. Cambridge: MIT Press. Translated by D. E. Brown.Google Scholar
Georgiadou, M. 2004. Constantine Carathéodory. New York: Springer-Verlag.CrossRefGoogle Scholar
Glaisher, J. W. L. 1878. Series and products for π and powers of π. Messenger of Math., 7, 75–80.Google Scholar
Glaisher, J. W. L. 1883. A theorem in partitions. Messenger of Math., 12, 158–170.Google Scholar
Goldstein, C., Schappacher, N., and Schwermer, J. (eds). 2007. The Shaping of Arithmetic after C. F. Gauss's Disquisitiones Arithmeticae. New York: Springer.CrossRefGoogle Scholar
Goldstein, L. J. 1973. A history of the prime number theorem. Amer. Math. Monthly, 80, 599–615. Correction, 1115. Reprinted in Anderson, Katz, and Wilson (2009), pp. 318–327.CrossRefGoogle Scholar
Goldstine, H. H. 1977. A History of Numerical Analysis. New York: Springer-Verlag.Google Scholar
Gong, S. 1999. The Bieberbach Conjecture. Providence: Amer. Math. Soc.CrossRefGoogle Scholar
Gordon, B. 1961. A combinatorial generalization of the Rogers-Ramanujan identities. Amer. J. Math., 83, 393–399.CrossRefGoogle Scholar
Gouvêa, F. Q. 1994. A marvelous proof. Amer. Math. Monthly, 101, 203–222.Google Scholar
Gowing, R. 1983. Roger Cotes. New York: Cambridge Univ. Press.Google Scholar
Grabiner, J. V. 1981. The Origins of Cauchy's Rigorous Calculus. Cambridge, Mass.: MIT Press.Google Scholar
Grabiner, J. V. 1990. The Calculus as Algebra. New York: Garland Publishing.Google Scholar
Grace, J. H., and Young, A. 1965. The Algebra of Invariants. New York: Chelsea.Google Scholar
Graham, G., Rothschild, B. L., and Spencer, J. H. 1990. Ramsey Theory. New York: Wiley.Google Scholar
Grattan–Guinness, I. 1972. Joseph Fourier 1768–1830. New York: MIT Press.Google Scholar
Grattan–Guinness, I. 2005. Landmark Writings in Western Mathematics. Amsterdam: Elsevier.Google Scholar
Graves, R. P. 1885. Life of Sir William Rowan Hamilton. London: Longmans.Google Scholar
Gray, J. 1986. Linear Differential Equations and Group Theory from Riemann to Poincaré. Boston: Birkhäuser.CrossRefGoogle Scholar
Gray, J. 1994. On the history of the Riemann mapping theorem. Rendiconti del Circolo Matematico di Palermo, 34, 47–94. Series II, Supplemento 34.Google Scholar
Gray, J., and Parshall, K. H. (eds). 2007. Episodes in the History of Modern Algebra (1800–1950). Providence: Amer. Math. Soc.Google Scholar
Green, G. 1970. Mathematical Papers. New York: Chelsea.Google Scholar
Greenberg, J. L. 1995. The Problem of the Earth's Shape from Newton to Clairaut. New York: Cambridge Univ. Press.Google Scholar
Gregory, D. F. 1865. The Mathematical Writings of Duncan Farquharson Gregory. Cambridge: Deighton, Bell, and Co. Edited by W. Walton.Google Scholar
Gronwall, T. H. 1914. Some remarks on conformal representation. Ann. Math., 16, 72–76.CrossRefGoogle Scholar
Grootendorst, A. W., and van Maanen, J. A. 1982. Van Heuraet's letter (1659) on the rectification of curves. Nieuw Archief Wiskunde, 30(3), 95–113.Google Scholar
Gucciardini, N. 1989. The Development of Newtonian Calculus in Britain 1700–1800. New York: Cambridge Univ. Press.CrossRefGoogle Scholar
Gupta, R. C. 1977. Paramesvara's rule for the circumradius of a cyclic quadrilateral. Historia Math., 4, 67–74.CrossRefGoogle Scholar
Hadamard, J. 1898. Théorème sur séries entières. Acta Math., 22, 55–64.CrossRefGoogle Scholar
Haimo, D. T. 1968. Orthogonal Expansions and Their Continuous Analogues. Carbondale: Southern Illinois Univ. Press.Google Scholar
Hald, A. 1990. A History of Probability and Statistics and Their Applications Before 1750. New York: Wiley.CrossRefGoogle Scholar
Hamel, G. 1905. Eine basis aller Zahlen und die unstetiggen Lösungen der Funktionalgleichung: f(x + y) = f(x) + f(y). Math. Ann., 60, 459–462.CrossRefGoogle Scholar
Hamilton, W. R. 1835. Theory of Conjugate Functions or Algebraic Couples. Dublin: Philip Dixon Hardy.Google Scholar
Hamilton, W. R. 1945. Quaternions. Proc. Roy. Irish Acad., 50, 89–92.Google Scholar
Hardy, G. H. 1905. The Integration of Functions of a Single Variable. Cambridge: Cambridge Univ. Press.Google Scholar
Hardy, G. H. 1937. A Course in Pure Mathematics. Cambridge: Cambridge Univ. Press.Google Scholar
Hardy, G. H. 1949. Divergent Series. Oxford: Clarendon Press.Google Scholar
Hardy, G. H. 1966–79. Collected Papers. Oxford: Clarendon.Google Scholar
Hardy, G. H. 1978. Ramanujan. New York: Chelsea.Google Scholar
Hardy, G. H., Littlewood, J., and Pólya, G. 1967. Inequalities. New York: Cambridge Univ. Press.Google Scholar
Harkness, J., and Morley, F. 1898. Introduction to the Theory of Analytic Functions. London: Macmillan.Google Scholar
Hawking, S. 2005. God Created the Integers. Philadelphia: Running Press.Google Scholar
Hawkins, T. 1975. Lebesgue Theory. New York: Chelsea.Google Scholar
Hayman, W. K. 1964. Meromorphic Functions. Oxford: Clarendon Press.Google Scholar
Hayman, W. K. 1994. Multivalent Functions. New York: Cambridge Univ. Press.CrossRefGoogle Scholar
Heine, E. 1847. Untersuchungen über die Reihe …. J. Reine Angew. Math., 34, 285–328.CrossRefGoogle Scholar
Hermite, C. 1873. Cours d'analyse. Paris: Gauthier-Villars.Google Scholar
Hermite, C. 1891. Cours de M. Hermite (rédigé en 1882 par M. Andoyer). Cornell Univ. Lib. Reprint.Google Scholar
Hermite, C. 1905–1917. Oeuvres. Paris: Gauthier-Villars.Google Scholar
Herschel, J. F. W. 1820. A Collection of Examples of the Applications of the Calculus of Finite Differences. Cambridge: Cambridge Univ. Press.Google Scholar
Hewitt, E., and Hewitt, R. E. 1980. The Gibbs-Wilbraham phenomenon. Arch. Hist. Exact Sci., 21, 129–160.CrossRefGoogle Scholar
Hilbert, D. 1970. Gesammelte Abhandlungen. Berlin: Springer.CrossRefGoogle Scholar
Hilbert, D. 1978. Hilbert's Invariant Theory Papers. Brookline, Mass.: Math. Sci. Press.Google Scholar
Hilbert, D. 1993. Theory of Algebraic Invariants. New York: Cambridge Univ. Press. Translated by Reinhard C. Laubenbacher.Google Scholar
Hobson, E. W. 1957a. The Theory of Functions of a Real Variable. New York: Dover.Google Scholar
Hobson, E. W. 1957b. A Treatise on Plane and Advanced Trigonometry. New York: Dover.Google Scholar
Hoe, J. 2007. A Study of the Jade Mirror of the Four Unknowns. Christchurch, N. Z.: Mingming Bookroom.Google Scholar
Hofmann, J. E. 1974. Leibniz in Paris. New York: Cambridge Univ. Press.Google Scholar
Hofmann, J. E. 1990. Ausgewählte Schriften. Zürich: Georg Olms Verlag.Google Scholar
Horiuchi, A. T. 1994. The Tetsujutsu sankei (1722), an 18th century treatise on the methods of investigation in mathematics. Pages 149–164 of: Sasaki, C., Sugiura, M., and Dauben, J. W. (eds), The Intersection of History and Mathematics. Basel: Birkhäuser.Google Scholar
Hua, L. K. 1981. Starting with the Unit Circle. New York: Springer-Verlag.CrossRefGoogle Scholar
Hutton, C. 1812. Tracts on mathematical and philosophical subjects. London: Rivington and Company.Google Scholar
Ireland, K., and Rosen, M. 1982. A Classical Introduction to Modern Number Theory. New York: Springer-Verlag.CrossRefGoogle Scholar
Ivory, J. 1796. A new series for the rectification of the ellipses. Trans. Roy. Soc. Edinburgh, 4, 177–190.CrossRefGoogle Scholar
Ivory, J. 1812. On the attractions of an extensive class of spheroids. Phil. Trans. Roy. Soc. London, 102, 46–82.CrossRefGoogle Scholar
Ivory, J. 1824. On the figure requisite to maintain the equilibrium of a homogeneous fluid mass that revolves upon an axis. Phil. Trans. Roy. Soc. London, 114, 85–150.CrossRefGoogle Scholar
Ivory, J., and Jacobi, C. G. J. 1837. Sur le développement de (1 - 2xz + z2)-½. J. Math. Pures App., 2, 105–106.Google Scholar
Jackson, F. H. 1910. On q-definite integrals. Quart. J. Pure App. Math., 41, 193–203.Google Scholar
Jacobi, C. G. J. 1969. Mathematische Werke. New York: Chelsea.Google Scholar
Jahnke, H. N. 1993. Algebraic analysis in Germany, 1780–1849: Some mathematical and philosophical issues. Historia Math., 20, 265–284.CrossRefGoogle Scholar
James, I. M. 1999. History of Topology. Amsterdam: Elsevier.Google Scholar
Jensen, J. L. W. V. 1899. Sur un nouvel et important théorèm de la théorie des fonctions. Acta Math., 22, 359–364.CrossRefGoogle Scholar
Jensen, J. L. W. V. 1906. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math., 30, 175–193.CrossRefGoogle Scholar
Johnson, W. P. 2002. The curious history of Faà di Bruno's formula. Amer. Math. Monthly, 109, 217–234.Google Scholar
Johnson, W. P. 2007. The Pfaff/Cauchy derivative and Hurwitz type extensions. Ramanujan J. Math., 13, 167–201.CrossRefGoogle Scholar
Kac, M. 1979. Selected Papers. Cambridge, Mass.: MIT Press.Google Scholar
Kalman, D. 2009. Polynomia and Related Realms. Washington D. C.: Math. Assoc. Amer.Google Scholar
Karamata, J. 1930. Über die Hardy-Littlewoodschen Umkehrungen des Abelschen Stetigkeitssatzes. Math. Z., 32, 219–320.CrossRefGoogle Scholar
Katz, N. M. 1976. An overview of Deligne's proof of the Riemann hypothesis for varieties over finite fields. Pages 275–305 of: Browder, F. E. (ed), Mathematical Developments Arising from Hilbert Problems. Providence: Amer. Math. Soc.Google Scholar
Katz, V. J. 1979. The history of Stokes' theorem. Math. Mag., 52, 146–156.CrossRefGoogle Scholar
Katz, V. J. 1982. Change of variables in multiple integrals: Euler to Cartan. Math. Mag., 55, 3–11.CrossRefGoogle Scholar
Katz, V. J. 1985. Differential forms – Cartan to de Rham. Arch. Hist. Exact Sci., 33, 307–319.CrossRefGoogle Scholar
Katz, V. J. 1987. The calculus of the trigonometric functions. Historia Math., 14, 311–324.CrossRefGoogle Scholar
Katz, V. J. 1995. Ideas of calculus in Islam and India. Math. Mag., 3(3), 163–174. Reprinted in Anderson, Katz, and Wilson (2004), pp. 122–130.CrossRefGoogle Scholar
Katz, V. J. 1998. A History of Mathematics: An Introduction. Reading, Mass.: Addison-Wesley.Google Scholar
Khinchin, A. Y. 1998. Three Pearls of Number Theory. New York: Dover.Google Scholar
Khrushchev, S. 2008. Orthogonal Polynomials and Continued Fractions. New York: Cambridge Univ. Press.CrossRefGoogle Scholar
Kichenassamy, S. 2010. Brahmagupta's derivation of the area of a cyclic quadrilateral. Historia Math., 37(1), 28–61.CrossRefGoogle Scholar
Klein, F. 1911. Lectures on Mathematics. New York: Macmillan.Google Scholar
Klein, F. 1979. Development of Mathematics in the 19th Century. Brookline, Mass.: Math. Sci. Press. Translated by M. Ackerman.Google Scholar
Knoebel, A., Laubenbacher, R., Lodder, J., and Pengelley, D. 2007. Mathematical Masterpieces. New York: Springer.Google Scholar
Knopp, K. 1990. Theory and Application of Infinite Series. New York: Dover.Google Scholar
Knuth, D. 2003. Selected Papers. Stanford, Calif.: Center for the Study of Language and Information (CSLI).Google Scholar
Kolmogorov, A. N. 1923. Une série de Fourier-Lebesgue divergente presque partout. Fund. Math., 4, 324–328.CrossRefGoogle Scholar
Kolmogorov, A. N., and Yushkevich, A. P. (eds). 1998. Mathematics of the 19th Century: Vol. III: Function Theory According to Chebyshev; Ordinary Differential Equations; Calculus of Variations; Theory of Finite Differences. Basel: Birkhäuser.Google Scholar
Koppelman, E. 1971. The calculus of operations and the rise of abstract algebra. Arch. Hist. Exact Sci., 8, 155–242.CrossRefGoogle Scholar
Korevaar, J. 2004. Tauberian Theory. New York: Springer.CrossRefGoogle Scholar
Kronecker, L. 1968. Mathematische Werke. New York: Chelsea.Google Scholar
Kubota, K. K. 1977. Linear functional equations and algebraic independence. Pages 227–229 of: Baker, A., and Masser, D. W. (eds), Transcendence Theory. New York: Academic Press.Google Scholar
Kummer, E. E. 1840. Über die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen. J. Reine Angew. Math., 21, 74–90, 193–225, 328–371.CrossRefGoogle Scholar
Kummer, E. E. 1975. Collected Papers. Berlin: Springer-Verlag.Google Scholar
Kung, J. P. S. 1995. Gian-Carlo Rota on Combinatorics. Boston, Mass.: Birkhäuser.Google Scholar
Lacroix, S. F. 1819. Traité du calcul différentiel et du calcul intégral. Vol. 3. Paris: Courcier.Google Scholar
Lagrange, J. L. 1867–1892. Oeuvres. Paris: Gauthier-Villars.Google Scholar
Laguerre, E. 1972. Oeuvres. New York: Chelsea.Google Scholar
Landau, E. 1904. Über eine Verallgemeinerung des Picardschen Satzes. S.-B. Preuss Akad. Wiss., 38, 1118–1133.Google Scholar
Landau, E. 1907. Über einen Konvergenzsatz. Göttinger Nachrichten, 8, 25–27.Google Scholar
Landen, J. 1758. A Discourse Concerning The Residual Analysis. London: Nourse.Google Scholar
Landen, J. 1760. A new method of computing the sums of certain series. Phil. Trans. Roy. Soc. London, 51, 553–565.CrossRefGoogle Scholar
Lanzewizky, I. L. 1941. Über die orthogonalität der Fejér-Szegöschen polynome. D. R. Dokl. Acad. Sci. URSS, 31, 199–200.Google Scholar
Laplace, P. S. 1812. Théorie analytique des probabilités. Paris: Courcier.Google Scholar
Lascoux, A. 2003. Symmetric Functions and Combinatorial Operators on Polynomials. Providence R.I.: Amer. Math. Soc.CrossRefGoogle Scholar
Laudal, O.A., and Piene, R. 2002. The Legacy of Niels Henrik Abel. Berlin: Springer.Google Scholar
Laugwitz, D. 1999. Bernhard Riemann 1826–1866. Boston: Birkhäuser. Translated by A. Shenitzer.CrossRefGoogle Scholar
Lebesgue, H. 1906. Leçons sur les séries trigonométriques. Paris: Gauthier-Villars.Google Scholar
Legendre, A.M. 1811–1817. Exercices de calcul intégral. Paris: Courcier.Google Scholar
Leibniz, G.W. 1971. Mathematische Schriften. Hildesheim, Germany: Georg Olms Verlag.Google Scholar
Lemmermeyer, F. 2000. Reciprocity Laws. New York: Springer-Verlag.CrossRefGoogle Scholar
Lewin, L. 1981. Polylogarithms and Associated Functions. Amsterdam: Elsevier.Google Scholar
Lindelöf, E. 1902. Mémoire sur la théorie des fonctions entières de genre fini. Acta Soc. Sci. Fennicae, 31(1), 1–79.Google Scholar
Liouville, J. 1837a. Note sur le développement de (1–2xz+z2)-½. J. Math. Pures App., 2, 135–139.Google Scholar
Liouville, J. 1837b. Sur la sommation d'une série. J. Math. Pures Appl., 2, 107–108.Google Scholar
Liouville, J. 1851. Sur de classes très étendus de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationelles algébriques. J. Math. Pures Appl., 16, 133–142.Google Scholar
Liouville, J. 1880. Leçons sur les fonctions doublement périodiques. J. Reine Angew. Math., 88, 277–310.Google Scholar
Littlewood, J. E. 1982. Collected Papers. Oxford: Clarendon Press.Google Scholar
Littlewood, J. E. 1986. Littlewood's Miscellany. New York: Cambridge Univ. Press.Google Scholar
Loewner, C. 1988. Collected Papers. Boston: Birkhäuser.Google Scholar
Lusin, N. 1913. Sur la convergence des séries trigonométriques de Fourier. Compt. Rend., 156, 1655–1658.Google Scholar
Lützen, J. 1990. Joseph Liouville. New York: Springer-Verlag.Google Scholar
Maclaurin, C. 1729. A second letter to Martin Folkes, Esq.: Concerning the roots of equations, with the demonstration of other rules in algebra. Phil. Trans. Roy. Soc., 36, 59–96.Google Scholar
Maclaurin, C. 1742. A Treatise of Fluxions. Edinburgh: Ruddimans.Google Scholar
Maclaurin, C. 1748. A Treatise of Algebra. London: Millar and Nourse.Google Scholar
MacMahon, P. A. 1978. Collected Papers. New York: MIT Press.Google Scholar
Mahoney, M. S. 1994. The Mathematical Career of Pierre de Fermat (1601–1665). Princeton: Princeton Univ. Press.Google Scholar
Malet, A. 1993. James Gregorie on tangents and the Taylor rule. Arch. Hist. Exact Sci, 46, 97–138.CrossRefGoogle Scholar
Malmsten, C. J. 1849. De integralibus quibusdam definitis. J. Reine Angew. Math., 38, 1–38.CrossRefGoogle Scholar
Manders, K. 2006. Algebra in Roth, Faulhaber and Descartes. Historia Math., 33, 184–209.CrossRefGoogle Scholar
Manning, K. R. 1975. The emergence of the Weierstrassian approach to complex analysis. Arch. Hist. Exact Sci., 14, 297–383.CrossRefGoogle Scholar
Maor, E. 1998. Tirgonometric Delights. Princeton: Princeton Univ. Press.Google Scholar
Martzloff, J. C. 1997. A History of Chinese Mathematics. New York: Springer.CrossRefGoogle Scholar
Masani, P.R. 1990. Norbert Wiener. Basel: Birkhäuser.Google Scholar
Maxwell, J. C. 1873. A Treatise on Electricity and Magnetism. Oxford: Clarendon Press.Google Scholar
Maz'ya, V., and Shaposhnikova, T. 1998. Jacques Hadamard. Providence: Amer. Math. Soc. Translated by Peter Basarab-Horwath.Google Scholar
McClintock, E. 1881. On the remainder of Laplace's series. Amer. J. Math., 4, 96–97.CrossRefGoogle Scholar
Mertens, F. 1874a. Ein beitrag zur analytischen Zahlentheorie. J. Reine Angew. Math., 78, 46–62.Google Scholar
Mertens, F. 1874b. Ueber einige asymptotische Gesetze der Zahlentheorie. J. Reine Angew. Math., 77, 289–338.Google Scholar
Mertens, F. 1875. Über die Multiplicationsregel für zwei unendliche Reihen. J. Reine Angew. Math., 79, 182–184.Google Scholar
Mertens, F. 1895. Über das nichtverschwinden Dirichlet-Reihen mit reellen Gliedern. S.-B. Kais. Akad. Wissensch. Wien, 104(Abt. 2a), 1158–1166.Google Scholar
Meschkowski, H. 1964. Ways of Thought of Great Mathematicians. San Francisco: Holden-Day.Google Scholar
Mikami, Y. 1974. The Development of Mathematics in China and Japan. New York: Chelsea.Google Scholar
Mittag-Leffler, G. 1923. An introduction to the theory of elliptic functions. Ann. Math., 24, 271–351.CrossRefGoogle Scholar
Miyake, K. 1994. The establishment of the Takagi-Artin class field theory. Pages 109–128 of: Sasaki, C., Sugiura, M., and Dauben, J. W. (eds), The Intersection of History and Mathematics. Basel: Birkhäuser.Google Scholar
Moll, V. 2002. The evaluation of integrals: A personal story. Notices Amer. Math. Soc., 311–317.Google Scholar
Monsky, P. 1994. Simplifying the proof of Dirichlet's theorem. Amer. Math. Monthly, 100, 861–862.Google Scholar
Montmort, P. R. de. 1717. De seriebus infinitis tractatus. Phil. Trans. Roy. Soc., 30, 633–675.Google Scholar
Moore, G. H. 1982. Zermelo's Axiom of Choice. New York: Springer-Verlag.CrossRefGoogle Scholar
Morrison, P., and Morrison, E. 1961. Charles Babbage and His Calculating Engines: Selected Writings by Charles Babbage. New York: Dover.Google Scholar
Muir, T. 1960. The Theory of Determinants in the Historical Order of Development. New York: Dover.Google Scholar
Mukhopadhyaya, A. 1998. A Diary of Asutosh Mookerjee. Calcutta: Mitra and Ghosh Publ.Google Scholar
Murphy, R. 1833. On the inverse method of definite integrals, with physical applications. Trans. Cambridge Phil. Soc., 4, 353–408.Google Scholar
Murphy, R. 1835. Second memoir on the inverse method of definite integrals. Trans. Cambridge Phil. Soc., 5, 113–148.Google Scholar
Murphy, R. 1837. First memoir on the theory of analytic operations. Phil. Trans. Roy. Soc. London, 127, 179–210.CrossRefGoogle Scholar
Murphy, R. 1839. A Treatise on the Theory of Algebraical Equations. London: Society for Diffusion of Useful Knowledge.Google Scholar
Mustafy, A. K. 1966. A new representation of Riemann's zeta function and some of its consequences. Norske Vid. Selsk. Forh. (Trondheim), 39, 96–100.Google Scholar
Mustafy, A. K. 1972. On a criterion for a point to be a zero of the Riemann zeta function. J. London Math. Soc. (2), 5, 285–288.CrossRefGoogle Scholar
Narasimhan, R. 1991. The coming of age of mathematics in India. Pages 235–258 of: Hilton, P., Hirzebruch, F., and Remmert, R. (eds), Miscellanea Mathematica. New York: Springer.CrossRefGoogle Scholar
Narkiewicz, W. 2000. The Development of Prime Number Theory. New York: SpringerCrossRefGoogle Scholar
Nesterenko, Yu., V. 2006. Hilbert's seventh problem. Pages 269–282 of: Bolibruch, A. A., Osipov, Yu., S., and Sinai, Ya., G. (eds), Mathematical Events of the Twentieth Century. Berlin: Springer. Translated by L. P. Kotova.CrossRefGoogle Scholar
Neuenschwander, E. 1978a. The Casorati-Weierstrass theorem. Historia Math., 5, 139–166.Google Scholar
Neuenschwander, E. 1978b. Der Nachlass von Casorati (1835–1890) in Pavia. Archive Hist. Exact Sci., 19, 1–89.CrossRefGoogle Scholar
Neumann, O. 2007a. Cyclotomy: From Euler through Vandermonde to Gauss. Pages 323–362 of: Bradley, R. E., and Sandifer, C. E. (eds), Leonhard Euler: Life, Work and Legacy. Amsterdam: Elsevier.CrossRefGoogle Scholar
Neumann, O. 2007b. The Disquisitiones Arithmeticae and the theory of equations. Pages 107–128 of: Goldstein, C., Schappacher, N., and Schwermer, J. (eds), The Shaping of Arithmetic after C. F. Gauss's Disquisitiones Arithmeticae. New York: Springer.CrossRefGoogle Scholar
Nevai, P. 1990. Orthogonal Polynomials: Theory and Practice. New York: Kluwer.CrossRefGoogle Scholar
Nevanlinna, R. 1974. Le théorème de Picard–Borel et la théorie des fonctions méromorphes. New York: Chelsea.Google Scholar
Newman, F. W. 1848. On Г(a), Especially When a Is Negative. Cambridge and Dublin Math. J., 3, 57–63.Google Scholar
Newton, I. 1959–1960. The Correspondence of Isaac Newton. Cambridge: Cambridge Univ. Press. Edited by H.W., Turnbull.Google Scholar
Newton, I. 1964–1967. The Mathematical Works of Isaac Newton, Introduction By D. T. Whiteside. New York: Johnson Reprint.Google Scholar
Newton, I. 1967–1981. The Mathematical Papers of Isaac Newton. Cambridge: Cambridge Univ. Press. Edited by D. T., Whiteside.Google Scholar
Nicole, F. 1717. Traité du calcul des différences finies. Histoire de l'Academie Royale des Sciences, 7–21.Google Scholar
Nikolić, A. 2009. The story of majorizability as Karamata's condition of convergence for Abel summable series. Historia Math., 36, 405–419.CrossRefGoogle Scholar
Olver, P. J. 1999. Classical Invariant Theory. Cambridge: Cambridge Univ. Press.CrossRefGoogle Scholar
Oré, Ø. 1974. Niels Henrik Abel: Mathematician Extraordinary. Providence: Amer. Math. Soc.Google Scholar
Ozhigova, E. P. 2007. The part played by the Petersburg Academy of Sciences (the Academy of Sciences of the USSR) in the publication of Euler's collected works. Pages 53–74 of: Bogolyubov, N. N., Mikhailov, G. K., and Yushkevich, A. P. (eds), Euler and Modern Science. Washington D.C.: Mathematical Association of America.Google Scholar
Parameswaran, S. 1983. Madhava of Sangamagramma. J. Kerala Studies, 10, 185–217.Google Scholar
Patterson, S. J. 2007. Gauss sums. Pages 505–528 of: Goldstein, C., Schappacher, N., and Schwermer, J. (eds), The Shaping of Arithmetic after C. F. Gauss's Disquisitiones Arithmeticae. New York: Springer.CrossRefGoogle Scholar
Peano, G. 1973. Selected Works. London: George Allen and Unwin. Edited by H. C., Kennedy.Google Scholar
Petrovski, I. G. 1966. Ordinary Differential Equations. Englewood Cliffs, N.J.: Prentice-Hall. Translated by R. A. Silverman.Google Scholar
Picard, É. 1879. Sur une propriété des fonctions entières. Comptes Rendus, 88, 1024–1027.Google Scholar
Pick, G. 1915. Über eine Eigenschaft der konformen Abbildung kreisförmiger Bereiche. Math. Ann., 77, 1–6.CrossRefGoogle Scholar
Pieper, H. 1998. Korrespondenz zwischen Legendre und Jacobi. Leipzig: Teubner.CrossRefGoogle Scholar
Pieper, H. 2007. A network of scientific philanthropy: Humboldt's relations with number theorists. Pages 201–234 of: Goldstein, C., Schappacher, N., and Schwermer, J. (eds), The Shaping of Arithmetic after C. F. Gauss's Disquisitiones Arithmeticae. New York: Springer.CrossRefGoogle Scholar
Pierpoint, W. S. 1997. Edward Stone (1702–1768) and Edmund Stone (1700–1768): Confused Identities Resolved. Notes and Records Roy. Soc. London, 51, 211–217.CrossRefGoogle Scholar
Pierpont, J. 2000. The history of mathematics in the nineteenth century. Bull. Amer. Math. Soc., 37, 9–24.CrossRefGoogle Scholar
Pietsch, A. 2007. History of Banach Spaces and Linear Operators. Boston: Birkhäuser.Google Scholar
Pingree, D. 1970–1994. Census of the exact sciences in sanskrit. Amer. Phil. Soc., 81, 86, 111, 146, 213.Google Scholar
Plofker, K. 2009. Mathematics in India. Princeton, N.J.: Princeton Univ. Press.Google Scholar
Poincaré, H. 1886. Sur les intégrales irrégulières des équations linéaires. Acta Math., 295–344.
Poincaré, H. 1985. Papers on Fuchsian Functions. New York: Springer-Verlag. Translated by John Stillwell.CrossRefGoogle Scholar
Poisson, S. D. 1823. Suite du mémoire sur les intégrales définies et sur la sommation des séries. J. de l'École Polytechnique, 12, 404–509.Google Scholar
Poisson, S. D. 1826. Sur le calcul numérique des intégrales définies. Mémoire l'Académie des Sciences, 6, 571–602.Google Scholar
Polignac, A. de. 1857. Recherches sur les nombres premiers. Compt. Rend., 45, 575–580.Google Scholar
Pommerenke, C. 1985. The Bieberbach conjecture. Math. Intelligencer, 7(2), 23–25; 32.CrossRefGoogle Scholar
Prasad, G. 1931. Six Lectures on the Mean-Value Theorem of the Differential Calculus. Calcutta: Calcutta Univ. Press.Google Scholar
Prasad, G. 1933. Some Great Mathematicians of the Nineteenth Century. Benares, India: Benares Mathematical Society.Google Scholar
Pringsheim, A. 1900. Zur Geschichte des Taylorschen Lehrsatzes. Bibliotheca Mathematica, 3, 433–479.Google Scholar
Rajagopal, C. T. 1949. A neglected chapter of Hindu mathematics. Scripta Math., 15, 201–209.Google Scholar
Rajagopal, C. T., and Rangachari, M. S. 1977. On the untapped source of medieval Keralese mathematics. Arch. Hist. Exact Sci., 18, 89–102.Google Scholar
Rajagopal, C. T., and Rangachari, M. S. 1986. On medieval Keralese mathematics. Arch. Hist. Exact Sci., 35, 91–99.CrossRefGoogle Scholar
Rajagopal, C. T., and Vedamurtha, Aiyar, T. V. 1951. On the Hindu proof of Gregory's series. Scripta Math., 17, 65–74.Google Scholar
Rajagopal, C. T., and Venkataraman, A. 1949. The sine and cosine power series in Hindu mathematics. J. Roy. Asiatic Soc. Bengal, Sci., 15, 1–13.Google Scholar
Ramanujan, S. 1988. The Lost Notebook and Other Unpublished Papers. Delhi: Narosa Publishing House.Google Scholar
Ramanujan, S. 2000. Collected Papers. Providence: AMS Chelsea.Google Scholar
Raussen, M., and Skau, C. 2010. Interview with Mikhail Gromov. Notices Amer. Math. Soc., 57, 391–403.Google Scholar
Remmert, R. 1991. Theory of Complex Functions. New York: Springer-Verlag. Translated by Robert Burckel.CrossRefGoogle Scholar
Remmert, R. 1996. Wielandt's theorem about the Г-function. Amer. Math. Monthly, 103, 214–220.Google Scholar
Remmert, R. 1998. Classical Topics in Complex Function Theory. New York: Springer-Verlag. Translated by Leslie Kay.CrossRefGoogle Scholar
Riemann, B. 1990. Gesammelte Mathematische Werke. New York: Springer-Verlag. Edited by R., Dedekind, H., Weber, R., Narasimham, and E., Neuenschwander.CrossRefGoogle Scholar
Riesz, F. 1913. Les systèmes d'équations linéaires a une infinité d'inconnues. Paris: Gauthier-Villars.Google Scholar
Riesz, F. 1960. Oeuvres complètes. Budapest: Académie des Sciences de Hongrie.Google Scholar
Riesz, M. 1928. Sur les fonctions conjugées. Math. Z., 27, 218–44.CrossRefGoogle Scholar
Rigaud, S. P. 1841. Correspondence of Scientific Men of the Seventeenth Century. Oxford: Oxford Univ. Press.Google Scholar
Rodrigues, O. 1816. Mémoire sur l'attraction des sphéroids. Correspondance sur l'École Polytechnique, 3, 361–385.Google Scholar
Rodrigues, O. 1839. Note sur les inversions, ou dérangements produits dans les permutations. J. Math. Pures Appl., 4, 236–240.Google Scholar
Rogers, L. J. 1893a. Note on the transformation of an Heinean series. Messenger of Math., 23, 28–31.Google Scholar
Rogers, L. J. 1893b. On a three-fold symmetry in the element's of Heine's series. Proc. London Math. Soc., 24, 171–179.Google Scholar
Rogers, L. J. 1893c. On the expansion of some infinite products. Proc. London Math. Soc., 24, 337–352.Google Scholar
Rogers, L. J. 1894. Second memoir on the expansion of certain infinite products. Proc. London Math. Soc., 25, 318–343.Google Scholar
Rogers, L. J. 1895. Third memoir on the expansion of certain infinite products. Proc. London Math. Soc., 26, 15–32.Google Scholar
Rogers, L. J. 1907. On function sum theorems connected with the series. Proc. London Math. Soc., 4, 169–189.CrossRefGoogle Scholar
Rogers, L. J. 1917. On two theorems of combinatory analysis and some allied identities. Proc. London Math. Soc., 16, 321–327.Google Scholar
Roquette, P. 2002. The Riemann hypothesis in characteristic p, its origin and development. Part I. The formation of the zeta-functions of Artin and of F. K. Schmidt. Mitt. Math. Ges. Hamburg, 21, 79–157.Google Scholar
Roquette, P. 2004. The Riemann hypothesis in characteristic p, its origin and development. Part II. The first steps by Davenport and Hasse. Mitt. Math. Ges. Hamburg, 23, 5–74.Google Scholar
Rosen, M. 2002. Number Theory in Function Fields. New York: Springer.CrossRefGoogle Scholar
Rothe, H. A. 1811. Systematisches Lehrbuch der Arithmetik. Erlangen: Barth.Google Scholar
Rowe, D. E., and McCleary, J. 1989. The History of Modern Mathematics. Boston: Academic Press.Google Scholar
Roy, R. 1990. The discovery of the series formula for π by Leibniz, Gregory and Nilakantha. Math. Mag., 63(5), 291–306. Reprinted in Anderson, Katz, and Wilson (2004), pp. 111–121.CrossRefGoogle Scholar
Ru, M. 2001. Nevanlinna Theory and its Relation to Diophantine Approximation. Singapore: World Scientific.CrossRefGoogle Scholar
Sandifer, C. E. 2007. The Early Mathematics of Leonhard Euler. Washington, D. C.: Math. Assoc. Amer.Google Scholar
Sarma, K. V. 1972. A History Of The Kerala School Of Hindu Astronomy. Hoshiarpur, India: Punjab Univ.Google Scholar
Sarma, K. V. 1977. Tantrasangraha of Nilakantha Somayaji. Hoshiarpur, India: Panjab Univ.Google Scholar
Sarma, K. V. 2008. Ganita-Yukti-Bhasa of Jyesthadeva. Delhi: Hindustan Book Agency.Google Scholar
Sarma, K. V., and Hariharan, S. 1991. Yuktibhasa of Jyesthadeva. Indian J. Hist. Sci., 26(2), 185–207.Google Scholar
Sasaki, C. 1994. The adoption of Western mathematics in Meiji Japan, 1853–1903. Pages 165–186 of: Sasaki, C., Sugiura, M., and Dauben, J.W. (eds), The Intersection of History and Mathematics. Basel: Birkhäuser.CrossRefGoogle Scholar
Sasaki, C., Sugiura, M., and Dauben, J. W. (eds). 1994. The Intersection of History and Mathematics. Basel: Birkhäuser.CrossRefGoogle Scholar
Schellbach, K. 1854. Die einfachsten periodischen Functionen. J. Reine Angew. Math., 48, 207–236.CrossRefGoogle Scholar
Schlömilch, O. 1843. Eineges über die Eulerischen Integrale der zweiten Art. Archiv Math. Phys., 4, 167–174.Google Scholar
Schlömilch, O. 1847. Handbuch der Differenzial-und Integralrechnung. Greifswald, Germany: Otte.Google Scholar
Schneider, I. 1968. Der Mathematiker Abraham de Moivre (1667–1754). Arch. Hist. Exact Sci, 5, 177–317.CrossRefGoogle Scholar
Schneider, I. 1983. Potenzsummenformeln im 17. Jahrhundert. Historia Math., 10, 286–296.CrossRefGoogle Scholar
Schoenberg, I. J. 1988. Selected Papers. Boston: Birkhäuser.Google Scholar
Schwarz, H. A. 1893. Formeln und Lehrsätze zum Gebrauche der elliptischen Funktionen. Berlin: Springer.CrossRefGoogle Scholar
Schwarz, H. A. 1972. Abhandlungen. New York: Chelsea.Google Scholar
Scriba, C. J. 1964. The inverse method of tangents. Arch. Hist. Exact Sci., 2, 113–137.CrossRefGoogle Scholar
Segal, S. L. 1978. Riemann's example of a continuous “nondifferentiable” function. Math. Intelligencer, 1, 81–82.CrossRefGoogle Scholar
Selberg, A. 1989. Collected Papers. New York: Springer-Verlag.Google Scholar
Sen Gupta, D. P. 2000. Sir Asutosh Mookerjee – educationist, leader and insitution-builder. Current Sci., 78, 1566–1573.Google Scholar
Shah, S. M. 1948. A note on uniqueness sets for entire functions. Proc. Indian Acad. Sci., Sect. A, 28, 519–526.Google Scholar
Shidlovskii, A. B. 1989. Transcendental Numbers. Berlin: Walter de Gruyter. Translated by N. Koblitz.CrossRefGoogle Scholar
Shimura, G. 2007. Elementary Dirichlet Series and Modular Forms. New York: Springer.CrossRefGoogle Scholar
Shimura, G. 2008. The Map of My Life. New York: Springer.Google Scholar
Siegel, C. L. 1949. Transcendental Numbers. Princeton, N.J.: Princeton Univ. Press.Google Scholar
Siegel, C. L. 1969. Topics In Complex Function Theory. New York: Wiley.Google Scholar
Simmons, G. F. 1992. Calculus Gems. New York: McGraw-Hill.Google Scholar
Simon, B. 2005. OPUC on One Foot. Bull. Amer. Math. Soc., 42, 431–460.CrossRefGoogle Scholar
Simpson, T. 1759. The invention of a general method for determining the sum of every second, third, fourth, or fifth, etc. term of a series, taken in order; the sum of the whole being known. Phil. Trans. Roy. Soc., 50, 757–769.CrossRefGoogle Scholar
Simpson, T. 1800. A Treatise of Algebra. London: Wingrave.Google Scholar
Smith, D. E. 1959. A Source Book in Mathematics. New York: Dover.Google Scholar
Smith, D. E., and Mikami, Y. 1914. A History of Japanese Mathematics. Chicago: Open Court.Google Scholar
Smith, H. J. S. 1965a. Collected Mathematical Papers. New York: Chelsea. Edited by J. W. L. Glaisher.Google Scholar
Smith, H. J. S. 1965b. Report on the Theory of Numbers. New York: Chelsea.Google Scholar
Spence, W. 1819. Mathematical Essays. London: Whittaker. Edited by J. F. W. Herschel.Google Scholar
Srinivasiengar, C. N. 1967. The History of Ancient Indian Mathematics. Calcutta: World Press.Google Scholar
Stäckel, P., and Ahrens, W. 1908. Briefwechsel zwischen C. G. J. Jacobi und P. H. Fuss. Leipzig: Teubner.Google Scholar
Stedall, J. A. 2000. Catching proteus: The collaborations of Wallis and Brouncker, I and II. Notes and Records Roy. Soc. London, 54, 293–331.CrossRefGoogle Scholar
Stedall, J. A. 2003. The Greate Invention of Algebra: Thomas Harriot's Treatise on Equations. Oxford: Oxford Univ. Press.CrossRefGoogle Scholar
Steele, J. M. 2004. The Cauchy-Schwarz Master Class. Cambridge: Cambridge Univ. Press.CrossRefGoogle Scholar
Steffens, K.-G. 2006. The History of Approximation Theory. Boston: Birkhäuser.Google Scholar
Stieltjes, T. J. 1886. Recherches sur quelques séries semi-convergentes. Ann. Sci. Éc. Norm., 3, 201–258.CrossRefGoogle Scholar
Stieltjes, T. J. 1993. Collected Papers. New York: Springer-Verlag.Google Scholar
Stirling, J. 1730. Methodus differentialis. London: Strahan.Google Scholar
Stirling, J. 2003. Methodus Differentialis. London: Springer. Translated by I. Tweddle.Google Scholar
Stone, E. 1730. The Method of Fluxions both Direct and Inverse. London: W. Innys.Google Scholar
Strichartz, R. S. 1995. The Way of Analysis. London: Jones and Bartlett.Google Scholar
Struik, D. J. 1969. A Source Book in Mathematics. Cambridge, Mass.: Harvard Univ. Press.Google Scholar
Stubhaug, A. 2000. Niels Henrik Abel and His Times. New York: Springer.CrossRefGoogle Scholar
Sturm, C. 1829. Analyse d'un mémoire sur la résolution des équations numériques. Bulletin des Sciences de Férussac, 11, 419.Google Scholar
Sturmfels, B. 2008. Algorithms on Invariant Theory. Wien: Springer.Google Scholar
Sylvester, J. J. 1973. Mathematical Papers. New York: Chelsea.Google Scholar
Szegő, G. 1982. The Collected Papers of Gabor Szegő. Boston: Birkhäuser. Edited by R. Askey.Google Scholar
Szekeres, G. 1968. A combinatorial interpretation of Ramanujan's continued fraction. Canadian Math. Bull., 11, 405–408.CrossRefGoogle Scholar
Takagi, T. 1990. Collected Papers. Tokyo: Springer-Verlag.CrossRefGoogle Scholar
Takase, M. 1994. Three aspects of the theory of complex multiplication. Pages 91–108 of: Sasaki, C., Sugiura, M., and Dauben, J. W. (eds), The Intersection of History and Mathematics. Basel: Birkhäuser.Google Scholar
Thomson, W., and Tait, P. G. 1890. Treatise on Natural Philosophy. Cambridge: Cambridge Univ. Press.Google Scholar
Tignol, J.-P. 1988. Galois' Theory of Algebraic Equations. New York: Wiley.Google Scholar
Titchmarsh, E. C., and Heath-Brown, D. R. 1986. The Theory of the Riemann-Zeta Function. Oxford: Oxford Univ. Press.Google Scholar
Truesdell, C. 1960. The Rational Mechanics of Flexible or Elastic Bodies, 1638–1788. Introduction to Vols. 10 and 11, Second Series of Euler's Opera omnia. Zurich: Orell Füssli Turici.CrossRefGoogle Scholar
Truesdell, C. 1984. An Idiot's Fugitive Essays on Science. New York: Springer-Verlag.CrossRefGoogle Scholar
Tucciarone, J. 1973. The development of the theory of summable divergent series from 1880 to 1925. Arch. Hist. Exact Sci., 10, 1–40.CrossRefGoogle Scholar
Turán, P. 1990. Collected Papers. Budapest: Akadémiai Kiadó.Google Scholar
Turnbull, H. W. 1933. James Gregory: A study in the early history of interpolation. Proc. Edinburgh Math. Soc., 3, 151–172.CrossRefGoogle Scholar
Turnbull, H. W. 1939. James Gregory Tercentenary Memorial Volume. London: Bell.Google Scholar
Tweddle, I. 1984. Approximating n! Historical origins and error analysis. Amer. J. Phys., 52, 487–488.CrossRefGoogle Scholar
Tweddle, I. 1988. James Stirling: “This About Series And Such Things”. Edinburgh: Scottish Academic Press.Google Scholar
Tweddle, I. 2003. James Stirling's Methodus differentialis, An Annotated Translation of Stirling's Text. London: Springer.CrossRefGoogle Scholar
Tweedie, C. 1917–1918. Nicole's contributions to the foundations of the calculus of finite differences. Proc. Edinburgh Math. Soc., 36, 22–39.CrossRefGoogle Scholar
Tweedie, C. 1922. James Stirling: A Sketch of His Life and Works along with His Scientific Correspondence. Oxford: Oxford Univ. Press.Google Scholar
Valiron, G. 1949. Lectures on the General Theory of Integral Functions. New York: Chelsea.Google Scholar
Van Brummelen, G. 2009. The Mathematics of the Heavens and the Earth. Princeton: Princeton Univ. Press.Google Scholar
Van Brummelen, G., and Kinyon, M. 2005. Mathematics and the Historian's Craft. New York: Springer.CrossRefGoogle Scholar
Van Maanen, J. A. 1984. Hendrick van Heuraet (1634–1660?): His life and work. Centaurus, 27, 218–279.CrossRefGoogle Scholar
Varadarajan, V. S. 2006. Euler Through Time. Providence: Amer. Math. Soc.Google Scholar
Viète, F. 1983. The Analytic Art. Kent, Ohio: Kent State Univ. Press.Google Scholar
Vladuţ, S. G. 1991. Kronecker's Jugendtraum and Modular Equations. Basel: Birkhäuser.Google Scholar
Wali, K. C. 1991. Chandra: A Biography of S. Chandrasekhar. Chicago: Univ. Chicago Press.Google Scholar
Wallis, J. 2004. The Arithmetic of Infinitesimals. New York: Springer. Translation of Arithmetica Infinitorum by J. A. Stedall.CrossRefGoogle Scholar
Waring, E. 1779. Problems concerning interpolations. Phil. Trans. Roy. Soc. London, 69, 59–67.CrossRefGoogle Scholar
Waring, E. 1991. Meditationes Algebraicae. Providence: Amer. Math. Soc. Translated by D. Weeks.Google Scholar
Watson, G. N. 1933. The marquis and the land-agent. Math. Gazette, 17, 5–17.CrossRefGoogle Scholar
Weber, H. 1895. Lehrbuch der Algebra. Braunschweig: Vieweg.Google Scholar
Weierstrass, K. 1894–1927. Mathematische Werke. Berlin: Mayer and Müller.Google Scholar
Weil, A. 1979. Collected Papers. New York: Springer-Verlag.Google Scholar
Weil, A. 1984. Number Theory: An Approach Through History from Hammurapi to Legendre. Boston: Birkhäuser.Google Scholar
Weil, A. 1989a. On Eisenstein's copy of the Disquisitiones. Adv. Studies Pure Math., 17, 463–469.Google Scholar
Weil, A. 1989b. Prehistory of the zeta function. Pages 1–9 of: Aubert, K. E., Bombieri, E., and Goldfeld, D. (eds), Number Theory, Trace Formulas, and Discrete Groups. Boston: Academic Press.Google Scholar
Weil, A. 1992. The Apprenticeship of a Mathematician. Boston: Birkhäuser.CrossRefGoogle Scholar
Whiteside, D. T. 1961. Patterns of mathematical thought in the later seventeenth century. Arch. Hist. Exact Sci., 1, 179–388.CrossRefGoogle Scholar
Whittaker, E. T., and Watson, G. N. 1927. A Course of Modern Analysis. Cambridge: Cambridge Univ. Press.Google Scholar
Wiener, N. 1958. The Fourier Integral and Certain of Its Applications. New York: Dover.Google Scholar
Wiener, N. 1979. Collected Works. Cambridge: MIT Press.Google Scholar
Wilbraham, H. 1848. On a certain periodic function. Cambridge and Dublin Math. J., 3, 198–201.Google Scholar
Wilf, H. S. 2001. The number-theoretic content of the Jacobi triple product identity. Pages 227–230 of: Foata, D., and Han, G.-N. (eds), The Andrews Festschrift: Seventeen Papers on Classical Number Theory and Combinatorics. New York: Springer.CrossRefGoogle Scholar
Woodhouse, R. 1803. The Principles of Analytical Calculation. Cambridge: Cambridge Univ. Press.Google Scholar
Yandell, B. H. 2002. The Honors Class. Natick, Mass.: AK Peters.Google Scholar
Young, G. C., and Young, W. H. 1909. On derivatives and the theorem of the mean. Quart. J. Pure Appl. Math., 40, 1–26.Google Scholar
Young, G. C., and Young, W. H. 2000. Selected Papers. Lausanne, Switzerland: Presses Polytechniques. Edited by S. D. Chatterji and H. Wefelscheid.Google Scholar
Yushkevich, A. P. 1964. Geschichte der Mathematik in Mittelalter. Leipzig: Teubner.Google Scholar
Yushkevich, A. P. 1971. The concept of function up to the middle of the 19th century. Arch. Hist. Exact Sci., 16, 37–85.Google Scholar
Zdravkovska, S., and Duren, P. 1993. Golden Years of Moscow Mathematics. Providence: Amer. Math. Soc.Google Scholar
Zolotarev, E. 1876. Sur la série de Lagrange. Nouvelles Annales, 15, 422–423.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Ranjan Roy, Beloit College, Wisconsin
  • Book: Sources in the Development of Mathematics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511844195.043
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Ranjan Roy, Beloit College, Wisconsin
  • Book: Sources in the Development of Mathematics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511844195.043
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Ranjan Roy, Beloit College, Wisconsin
  • Book: Sources in the Development of Mathematics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511844195.043
Available formats
×