Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-29T14:16:19.890Z Has data issue: false hasContentIssue false

10 - Analytical Treatment of Shock Wave???Boundary-Layer Interactions

Published online by Cambridge University Press:  05 June 2012

Holger Babinsky
Affiliation:
University of Cambridge
John K. Harvey
Affiliation:
Imperial College London
Get access

Summary

Introduction

Motivation for Analytical Work in the Computer Age

Notwithstanding the success of powerful CFD codes in predicting complex aerodynamic flowfields, analytical methods continue to be a valuable tool in the study of viscous-inviscid interaction problems for the following reasons:

  1. Such methods appreciably enhance physical insight by illuminating the underlying basic mechanisms and fine-scale features of the problem, including the attendant similitude properties [1]. An example in the case of shock wave–boundary-layer interaction (SBLI) is the fundamental explanation of the phenomena of upstream influence and free interaction provided by the pioneering triple-deck–theory studies of Lighthill [2], Stewartson and Williams [3], and Neiland [4].

  2. Analysis provides an enhanced conceptual framework to guide both the design of related experimental studies and the correlation and interpretation of the resulting data. This was exemplified in a recent study of wall-roughness effects on shock-wave–turbulent boundary-layer interaction wherein a two-layered analytical theory revealed key features and appropriate scaling properties of the problem that were then used to design and evaluate a companion experimental program [5].

  3. Analytical solutions can enhance substantially the efficiency and cost-reduction of large-scale numerical codes [6] by both providing accurate representation of otherwise difficult far-field boundary conditions and serving as an imbedded local element within a global computation to capture key smaller-scale physics. An example of the latter is the application of a small-perturbation theory of transonic normal shock–turbulent boundary-layer interaction in a global inviscid-boundary layer [7]; the resulting hybrid code provided more than 100-fold savings in design-related parametric-study costs.

  4. A final noteworthy benefit is the occasional revelation of the deeper basic explanation for well-known empiricisms, such as the local pressure-distribution inflection-point criteria for incipient separation that are widely used by experimentalists.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Malmuth, D.Some Applications of Combined Asymptotics and Numerics in Fluid Mechanics and AerodynamicsAsymptotics and Numerics in Transonic AerodynamicsCook, L.Philadelphia, PASIAM 1993 65CrossRefGoogle Scholar
Lighthill, J.On boundary-layers upstream influence: II Supersonic flows without separationProceedings of the Royal Society, London, A 217 1953 478CrossRefGoogle Scholar
Stewartson, K.Williams, P. G.Self-induced separationProceedings of the Royal Society, London, A 312 1969 181CrossRefGoogle Scholar
Neiland, Y.Towards a theory of separation of a laminar boundary layer in supersonic streamIzvestia Akadmii Nauk SSSR, Mekhanika Zhidkostii Gaza 4 1969 33Google Scholar
Babinsky, H.Inger, G. R.Effect of surface roughness on unseparated shock wave–turbulent boundary layer interactionsAIAA Journal 40 2002 1567CrossRefGoogle Scholar
Wilcox, C.Perturbation Methods in the Computer AgeLa Canada, CAD.C.W. Industries 1995Google Scholar
Nietubicz, J.Inger, G. R.Danberg, J. E.A theoretical and experimental investigation of a transonic projectile flowfieldAIAA Journal 22 1984 35CrossRefGoogle Scholar
Cox, N.Crabtree, L. F.Elements of Hypersonic Gas DynamicsNew YorkAcademic Press 1965Google Scholar
Hayes, D.Probstein, R. F.Hypersonic Flow TheoryNew YorkAcademic 1959 277Google Scholar
Neiland, Ya.Propagation of perturbations upstream with interaction between a hypersonic flow and a boundary layerIZV. Akad. Nauk SSSR March. Zhid. Gaza 4 1970 40Google Scholar
Kuethe, M.Chow, C. Y.Foundations of AerodynamicsJ. Wiley & Sons 1998Google Scholar
White, F. M.Viscous Fluid FlowNew YorkMcGraw-Hill 1991 511Google Scholar
Bush, B.Fendell, F. E.Asymptotic analysis of turbulent channel and boundary layer flowJournal of Fluid Mechanics 158 1971 657Google Scholar
Délery, J.Marvin, J. G.Shock-Wave–Boundary-Layer InteractionsAGARDograph #280 1986Google Scholar
Shapiro, H.The Dynamics and Thermodynamics of Compressible Fluid Flow II Ronald Press 1954 1138Google Scholar
Green, E.Reflexion of an oblique shock wave by a turbulent boundary layer; Pt. IJournal of Fluid Mechanics 140 1970 81CrossRefGoogle Scholar
Yajnik, K. S.Asymptotic theory of turbulent wall boundary layer flowsJournal of Fluid Mechanics 42 1970 411CrossRefGoogle Scholar
Mellor, L.The large reynolds number, asymptotic theory of turbulent boundary-layersInternational Journal of Engineering Science 10 1972CrossRefGoogle Scholar
Gadd, E.Holder, D. W.Regan, J. D.An experimental investigation of the interaction between shock waves and boundary layersProc. Royal Society of London, Series A, Mathematics and Physical Sciences 226 1954 227CrossRefGoogle Scholar
Honda, M.A theoretical investigation of the interaction between shock waves and boundary layersJ. AeroSpace Science 25 1958 667CrossRefGoogle Scholar
Carter, J. E.Numerical solutions of the Navier-Stokes equations for supersonic laminar flow over a two-dimensional compression cornerNASA TR R-385 1972Google Scholar
Shang, J. S.Hankey, W. L.Law, H. C.Numerical simulation of shock wave- turbulent boundary layer interactionAIAA Journal 14 1976 1451Google Scholar
Tani, I.Review of some experimental results on the response of a turbulent boundary layer to sudden perturbationsProc. AFOSR-IFP Stanford Conference on Computation of Turbulent Boundary Layers 1 1968 483Google Scholar
Green, J. E.Interaction between shock-waves and turbulent boundary layersProgress in Aerospace Science II 1970 235CrossRefGoogle Scholar
Bogdonoff, S. M.Kepler, C. E.Separation of a supersonic turbulent boundary layerJournal of Aeronautical Science 22 1955 414CrossRefGoogle Scholar
Kuehn, D. M.Experimental investigation of the pressure rise for incipient separation of turbulent boundary layers in two-dimensional supersonic flowNASA Memo 1 21 1959Google Scholar
Settles, G. S.Fitzpatrick, T. J.Bogdonoff, S. M.Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flowAIAA Journal 17 1979 579CrossRefGoogle Scholar
Adamson, T. C.Feo, A.Interaction between a shock wave and a turbulent layer in transonic flowSIAM Journal of Applied Mathematics 29 1975 121CrossRefGoogle Scholar
Sykes, R. I.An asymptotic theory of incompressible turbulent boundary-layer flow over a small humpJournal of Fluid Mechanics 101 1980 647CrossRefGoogle Scholar
Adamson, T. C.Messiter, A. F.Analysis of two-dimensional interactions between shock waves and boundary layersAnnual Review of Fluid Mechanics 12 1980 103CrossRefGoogle Scholar
Agrawal, S.Messiter, A. F.Turbulent boundary layer interaction with a shock wave at a compression cornerJournal of Fluid Mechanics 143 1984 23CrossRefGoogle Scholar
Kluwick, A.Stross, N.Interaction between a weak oblique shock wave and a turbulent boundary layer in purely supersonic flowActa Mechanica 53 1984 37CrossRefGoogle Scholar
Kluwick, A.Interacting Laminar and Turbulent Boundary LayersRecent Advances in Boundary Layer TheoryKluwick, A.Springer XXIII 1998 232CrossRefGoogle Scholar
Melnick, R. B.Cusic, R. L.Siclari, M. J.An Asymptotic Theory of Supersonic Turbulent Interactions in a Compression CornerProceedings of IUTAM Symposium on Turbulent Shear Layer–Shock Wave InteractionNew YorkSpringer 1986 150Google Scholar
Rose, W. C.Johnson, D. A.Turbulence in shock wave-boundary layer interactionsAIAA Journal 13 1975 884CrossRefGoogle Scholar
Davis, R. E.Perturbed turbulent flow, eddy viscosity and the generation of turbulent stressesJournal of Fluid Mechanics 63 1974 674CrossRefGoogle Scholar
Deissler, R. G. 1974 763
Stewartson, K.Multistructured Boundary Layers on Flat Plates and Related BodiesAdvances in Applied Mechanics 14 New YorkAcademic Press, Inc 1974 145Google Scholar
Rosenhead, L.Laminar Boundary LayersOxfordClarendon Press 1963Google Scholar
Moore, F. K.Theory of Laminar Flows(Princeton, NJ:Princeton University. Press 1964 214Google Scholar
Van Dyke, M. D.Perturbation Methods in Fluid MechanicsNew YorkAcademic Press 1975Google Scholar
Davis, T.Werle, M. J.Numerical Methods for Interacting Boundary LayersProceedings of the 1976 Heat Transfer and Fluid Mechanics InstituteStanford, CA: Stanford University Press 1976 317Google Scholar
Burggraf, O. R.Duck, P. W.Spectral Computation of Triple-Deck FlowsNumerical and Physical Aspects of Aerodynamic FlowsCebeci, T.Springer-Verlag 1982 145CrossRefGoogle Scholar
Van Dyke, M.The combined supersonic–hypersonic similarity ruleJournal of the Aeronautical Sciences 18 1957 499CrossRefGoogle Scholar
Sirovich, L.Huo, C.Simple waves and the transonic similarity parameterAIAA Journal 14 1976 1125CrossRefGoogle Scholar
Inger, G. R.Theory of local heat transfer in shock–laminar boundary layer interactionsJournal of Thermophysics and Heat Transfer 12 1998 336CrossRefGoogle Scholar
Bodonyi, R. J.Kluwick, A.Freely interacting transonic boundary-layerPhysics of Fluids 20 1979 1432CrossRefGoogle Scholar
Dorrance, W. H.Viscous Hypersonic FlowNew YorkMcGraw-Hill 1968 134Google Scholar
Stewartson, K.Theory of Laminar Boundary Layers in Compressible FluidsOxfordOxford University Press 1964Google Scholar
Rizzetta, D. P.Burggraf, O. R.Jenson, R.Triple-deck solutions for viscous supersonic and hypersonic flow past cornersJournal of Fluid Mechanics 89 1978 535CrossRefGoogle Scholar
Kerimberkov, R. M.Ruban, A. I.Walker, I. D. A.Hypersonic boundary layer separation on a cold wallJournal of Fluid Mechanics 274 1994 163CrossRefGoogle Scholar
Burggraf, O. R.Rizzetta, D.Werle, M. J.Vatsa, V. N.Effect of Reynolds number on laminar separation of a supersonic streamAIAA Journal 17 1979 336CrossRefGoogle Scholar
Hassaini, M. V.Baldwin, B. S.MacCormack, R. W.Asymptotic features of shock wave boundary layer interactionAIAA Journal 18 1980 1014CrossRefGoogle Scholar
Ragab, S. A.Nayfeh, A. H.Second order asymptotic solution for laminar separationPhysic of Fluids 23 1980 1091CrossRefGoogle Scholar
Smith, F. T.Laminar flow over a small bump on a flat plateJournal of Fluid Mechanics 57 1973 803CrossRefGoogle Scholar
Chapman, D. R.Kuehn, D. M.Larson, H. K.Investigation of separated flows in supersonic and subsonic streams with emphasis on the effects of transitionNACA Report 1356 1958Google Scholar
Oswatitsch, K.Wiegardt, K.Theoretishe Untersuchengen Uber Stationäre Postentialsfromangen und Grenzschichten. Bericht der Lilienthal-Gusellschaft für Luftfahrtftirschung 1941
Rothmayer, A. P.Smith, F. T.Free Interactions and Breakaway SeparationHandbook of Fluid DynamicsCRC Press 1998 24Google Scholar
Erdos, J.Pallone, A.Shock Boundary-Layer Interaction and Flow SeparationProceedings of the Heat Transfer and Fluid Mechanics InstituteStanford, CAStanford University Press 1962Google Scholar
Hakkinen, R. J.Trilling, G. L.Abarbanel, S. S.The interaction of an oblique shock wave with a laminar boundary layerNASA Memo 2 59W 1959Google Scholar
Inger, G. R.Similitude properties of high speed laminar and turbulent boundary layer incipient separationAIAA Journal 15 1977 619CrossRefGoogle Scholar
Nayfeh, A.Reed, H. L.Ragab, S. A.Flow over plates with suction through porous stripsAIAA Journal 20 1982 587CrossRefGoogle Scholar
Inger, G.Gnoffo, P. A.Analytical and computational study of wall temperature jumps in supersonic flowAIAA Journal 39 2001 79CrossRefGoogle Scholar
Werle, M. J.Vatsa, V. N.Numerical solution of interacting supersonic boundary layer flows including separation effectsU.S. Air Force Report 73 62 1973Google Scholar
Lewis, J. E.Kubota, T.Lees, L.Experimental investigation of supersonic laminar two-dimensional boundary-layer separation in a compression corner with and without coolingAIAA Journal 6 1968 7Google Scholar
Rizzetta, D. P.Asymptotic solutions of the energy equation for viscous supersonic flow past cornersPhysics of Fluids 22 1979 218CrossRefGoogle Scholar
Stollery, J. L.Hypersonic viscous interaction on curved surfacesJournal of Fluid Mechanics 43 1970 497CrossRefGoogle Scholar
Needham, D. A.A heat-transfer criterion for the detection of incipient separation in hypersonic flowAIAA Journal 3 1965 781CrossRefGoogle Scholar
Messiter, A. F.Feo, A.Melnik, R. E.Shock-wave strength for separation of a laminar boundary-layer at transonic speedsAIAA Journal 9 1971 1197Google Scholar
Brilliant, H. M.Adamson, T. C.Shock-wave-boundary-layer interactions in laminar transonic flowAIAA Journal 12 1974 323CrossRefGoogle Scholar
Werle, M. J.Vatsa, V. N.Bertke, S. D.Sweep effects on supersonic separated flows: A numerical studyAIAA Journal 11 1973 1763CrossRefGoogle Scholar
Gittler, Ph.Kluwick, A.Interacting laminar boundary layers in quasi-two dimensional flowFluid Dynamics Research 5 1989 29CrossRefGoogle Scholar
Gittler, Ph.Kluwick, A.Triple-deck solutions for supersonic flows past flared cylindersJournal of Fluid Mechanics 179 1987 469CrossRefGoogle Scholar
Leblanc, R.Ginoux, J.Influence of cross flow on two-dimensional separationVon Karman Institute for Fluid Dynamics Technical NoteBelgium 1970Google Scholar
Kluwick, A.Gittler, Ph.Bodonyi, R. J.Freely interacting axisymmetric boundary layers on bodies of revolutionQuarterly Journal of Applied Mathematics 38 1985 575CrossRefGoogle Scholar
Inger, G. R.Nonasymptotic Theory of Unseparated Turbulent Boundary Layer???Shock Wave InteractionNumerical and Physical Aspects of Aerodynamic FlowsCebeci, T.Springer-Verlag 1981 159Google Scholar
Carriere, P.Sirieix, M.Solignac, J.-L.Proceedings of 12th International Congress of Applied MechanicsStanford University 1968Google Scholar
Messiter, A. F.Adamson, T. C.A Study of the Interaction of a Normal Shock- Wave with a Turbulent Boundary-Layer at Transonic SpeedsNASA Langley Research Center Advanced Technology Airfoil Research 1 1978 271Google Scholar
Melnik, R. E.Turbulent interactions on airfoils at transonic speeds: Recent developmentsAGARD CP 291 1981Google Scholar
Melnick, R. E.Grossman, B.Further Developments in an Analysis of the Interaction of a Weak Normal Shock Wave with a Turbulent Boundary LayerProceedings of Symposium Transonicum IISpringer-Verlag 1975 262Google Scholar
Adamson, T. C.Liou, M. S.Messiter, A. F.Interaction between a normal shock-wave and a turbulent boundary-layer at high transonic speedsNASA-CR3194 1980Google Scholar
Messiter, A. F.Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part I: Pressure distributionJournal of Applied Mathematics and Physics (ZAMP) 31 1980 204CrossRefGoogle Scholar
Adamson, T. C.Liou, M. S.Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part II: Wall shear stressJournal of Applied Mathematics and Physics (ZAMP) 31 1980 227Google Scholar
Inger, G. R.Mason, W. H.Analytical theory of transonic normal shock–turbulent boundary-layer interactionAIAA Journal 14 1976 1266Google Scholar
Settles, G. S.Dolling, D. S.Swept Shock Wave Boundary Layer Interactions.???Tactical Missile AerodynamicsNew YorkAIAA Progress in Astronautics and Astronautics 1986 297Google Scholar
Migotsky, E.Morkovin, M. V.Three-dimensional shock-wave reflectionJournal Aeronautical Sciences 18 1951 484CrossRefGoogle Scholar
Gai, S. I.Teh, S. L.Interaction between a conical shock wave and a plane turbulent boundary layerAIAA Journal 28 2000 804CrossRefGoogle Scholar
Stalker, R. J.Sweepback effects in turbulent boundary layer shock wave interactionJournal Aeronautical Sciences 8 1960 348Google Scholar
Kubota, H.Stollery, J. L.An experimental study of the interaction between a glancing shock wave and a turbulent boundary layerJournal of Fluid Mechanics 116 1982 431CrossRefGoogle Scholar
Inger, G. R.Spanwise propagation of upstream influence in conical swept shock–boundary layer interactionsAIAA Journal 25 1987 287CrossRefGoogle Scholar
Settles, G. S.On the Inception Lengths of Swept Shock Wave???Turbulent Boundary Layer InteractionsProceedings of IUTAM Symposium on Turbulent Shear Layer–Shock Wave InteractionsNew YorkSpringer 1986 203CrossRefGoogle Scholar
Schetz, J. A.Boundary Layer AnalysisEnglewood Cliffs, NJPrentice Hall 1993 433Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×