Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-28T21:35:54.960Z Has data issue: false hasContentIssue false

8 - Phylogeny inference based on parsimony and other methods using PAUP

from Section III - Phylogenetic inference

Published online by Cambridge University Press:  05 June 2012

Philippe Lemey
Affiliation:
University of Oxford
Marco Salemi
Affiliation:
University of California, Irvine
Anne-Mieke Vandamme
Affiliation:
Katholieke Universiteit Leuven, Belgium
Get access

Summary

THEORY

Introduction

Methods for inferring evolutionary trees can be divided into two broad categories: those that operate on a matrix of discrete characters that assigns one or more attributes or character states to each taxon (i.e. sequence or gene-family member); and those that operate on a matrix of pairwise distances between taxa, with each distance representing an estimate of the amount of divergence between two taxa since they last shared a common ancestor (see Chapter 1). The most commonly employed discrete-character methods used in molecular phylogenetics are parsimony and maximum likelihood methods. For molecular data, the character-state matrix is typically an aligned set of DNA or protein sequences, in which the states are the nucleotides A, C, G, and T (i.e. DNA sequences) or symbols representing the 20 common amino acids (i.e. protein sequences); however, other forms of discrete data such as restriction-site presence/absence and gene-order information also may be used.

Parsimony, maximum likelihood, and some distance methods are examples of a broader class of phylogenetic methods that rely on the use of optimality criteria. Methods in this class all operate by explicitly defining an objective function that returns a score for any input tree topology. This tree score thus allows any two or more trees to be ranked according to the chosen optimality criterion. Ordinarily, phylogenetic inference under criterion-based methods couples the selection of a suitable optimality criterion with a search for an optimal tree topology under that criterion.

Type
Chapter
Information
The Phylogenetic Handbook
A Practical Approach to Phylogenetic Analysis and Hypothesis Testing
, pp. 267 - 312
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×