Skip to main content Accessibility help
×
Hostname: page-component-6d856f89d9-xkcpr Total loading time: 0 Render date: 2024-07-16T04:52:08.200Z Has data issue: false hasContentIssue false

7 - Quantum Darwinism and envariance

from Part III - Quantum reality: theory

Published online by Cambridge University Press:  29 March 2011

Wojciech H. Zurek
Affiliation:
Los Alamos National Laboratory
John D. Barrow
Affiliation:
University of Cambridge
Paul C. W. Davies
Affiliation:
Macquarie University, Sydney
Charles L. Harper, Jr
Affiliation:
John Templeton Foundation
Get access

Summary

Introduction

Quantum measurement problem is a technical euphemism for a much deeper and less well-defined question: How do we, “the observers,” fit within the physical universe? The problem is especially apparent in quantum physics because, for the first time in the history of science a majority of (but not all) physicists seriously entertains the possibility that the framework for the ultimate universal physical theory provided by quantum mechanics is here to stay.

Quantum physics relevant for this discussion is (contrary to the common prejudice) relatively simple. By this I mean that some of the key features of its predictions can be arrived at on the basis of overarching principles of quantum theory and without reference to the minutiae of other specific ingredients (such as the details of the forces).

Quantum superposition principle is such an overarching principle of quantum theory. It leads to predictions that seem difficult to reconcile with our perception of the familiar classical universe of everyday experience. The aim of this paper is to show that appearance of the classical reality can be viewed as a result of the emergence of the preferred states from within the quantum substrate through the Darwinian paradigm, once the survival of the fittest quantum states and selective proliferation of the information about them throughout the universe are properly taken into account.

Type
Chapter
Information
Science and Ultimate Reality
Quantum Theory, Cosmology, and Complexity
, pp. 121 - 137
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×