Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-21T11:23:29.940Z Has data issue: false hasContentIssue false

6 - Fault and event trees

from Part III - System analysis and quantification

Published online by Cambridge University Press:  05 June 2012

Tim Bedford
Affiliation:
Technische Universiteit Delft, The Netherlands
Roger Cooke
Affiliation:
Technische Universiteit Delft, The Netherlands
Get access

Summary

Fault and event trees

Fault and event trees are modeling tools used as part of a quantitative analysis of a system. Other semi-quantitative or qualitative tools such as failure modes and effects analysis (FMEA) are often performed in preparation for a more exact analysis. Such tools are outside the (quantitative) scope of this book, and the interested reader is referred to [Kumamoto and Henley, 1996], [Andrews and Moss, 1993]. These books also provide further information and more examples on fault tree modeling as does the Fault Tree Handbook [Vesely et al., 1981].

Fault tree and event tree analyses are two of the basic tools in system analysis. Both methodologies give rise to a pictorial representation of a statement in Boolean logic. We shall concentrate on fault tree analysis, but briefly explain the difference in the situations modeled by event trees and fault trees.

Event trees use ‘forward logic’. They begin with an initiating event (an abnormal incident) and ‘propagate’ this event through the system under study by considering all possible ways in which it can effect the behaviour of the (sub)system. The nodes of an event tree represent the possible functioning or malfunctioning of a (sub)system. If a sufficient set of such systems functions normally then the plant will return to normal operating conditions. A path through an event tree resulting in an accident is called an accident sequence.

Type
Chapter
Information
Probabilistic Risk Analysis
Foundations and Methods
, pp. 99 - 120
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Fault and event trees
  • Tim Bedford, Technische Universiteit Delft, The Netherlands, Roger Cooke, Technische Universiteit Delft, The Netherlands
  • Book: Probabilistic Risk Analysis
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813597.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Fault and event trees
  • Tim Bedford, Technische Universiteit Delft, The Netherlands, Roger Cooke, Technische Universiteit Delft, The Netherlands
  • Book: Probabilistic Risk Analysis
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813597.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Fault and event trees
  • Tim Bedford, Technische Universiteit Delft, The Netherlands, Roger Cooke, Technische Universiteit Delft, The Netherlands
  • Book: Probabilistic Risk Analysis
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813597.007
Available formats
×