Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-04-30T15:43:41.542Z Has data issue: false hasContentIssue false

10 - Stellar Populations and Chemical Evolution

Published online by Cambridge University Press:  05 June 2012

Houjun Mo
Affiliation:
University of Massachusetts, Amherst
Frank van den Bosch
Affiliation:
Yale University, Connecticut
Simon White
Affiliation:
MPI fur Astrophysik, Munchen
Get access

Summary

Following up on the previous chapter, in which we discussed star formation, we now address how individual stars evolve with time. As we will see below, most stars, during most of their evolutionary histories, can be considered as spherically symmetric objects with a constant mass that are in hydrostatic equilibrium. Under these conditions, the evolution of a star is almost completely determined by its mass and chemical composition through a set of ordinary differential equations that describe the structure of the star. In this chapter, we start with a brief description of the basic concepts of the theory of stellar evolution. A detailed description is beyond the scope of this book, but can be found in many monographs and textbooks on this subject (e.g. Schwarzschild, 1965; Clayton, 1983; Kippenhahn & Weigert, 1990). We then use the theory of stellar evolution to predict the properties of individual stars (e.g. spectrum, luminosity, metal production, etc.) at different evolutionary stages, and discuss how these results can be synthesized to make predictions regarding the evolution of populations of stars (e.g. galaxies). Finally, we discuss how the evolution of stars affects the chemical evolution of galaxies.

The Basic Concepts of Stellar Evolution

A stellar evolution model generally starts with two basic assumptions: (i) stars are in hydrostatic equilibrium, and (ii) stars are spherically symmetric.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×