Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-22T15:17:39.615Z Has data issue: false hasContentIssue false

2 - Thermodynamics

Published online by Cambridge University Press:  05 June 2012

Shun-ichiro Karato
Affiliation:
Yale University, Connecticut
Get access

Summary

The nature of the deformation of materials depends on the physical and chemical state of the materials. Thermodynamics provides a rigorous way by which the physical and chemical state of materials can be characterized. A brief account is made of the concepts of thermodynamics of reversible as well as irreversible processes that are needed to understand the plastic deformation of materials and related processes. The principles governing the chemical equilibrium are outlined including the concept of chemical potential, the law of mass action, and the Clapeyron slope (i.e., the slope of a phase boundary in the pressure-temperature space). When a system is out of equilibrium, a flow of materials and/or energy occurs. The principles governing the irreversible processes are outlined. Irreversible processes often occur through thermally activated processes. The basic concepts of thermally activated processes are summarized based on the statistical physics.

Key words entropy, chemical potential, Gibbs free energy, fugacity, activity, Clapeyron slope, phase diagrams, rate theory, generalized force, the Onsager reciprocal relation.

Thermodynamics of reversible processes

Thermodynamics provides a framework by which the nature of thermochemical equilibrium is defined, and, in cases where a system is out of equilibrium, it defines the direction to which a given material will change. It gives a basis for analyzing the composition and structure of geological materials, experimental data and the way in which the experimental results should be extrapolated to Earth's interior where necessary.

Type
Chapter
Information
Deformation of Earth Materials
An Introduction to the Rheology of Solid Earth
, pp. 13 - 33
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Thermodynamics
  • Shun-ichiro Karato, Yale University, Connecticut
  • Book: Deformation of Earth Materials
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804892.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Thermodynamics
  • Shun-ichiro Karato, Yale University, Connecticut
  • Book: Deformation of Earth Materials
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804892.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Thermodynamics
  • Shun-ichiro Karato, Yale University, Connecticut
  • Book: Deformation of Earth Materials
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804892.003
Available formats
×