Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-19T20:19:58.142Z Has data issue: false hasContentIssue false

6 - The non-interacting electron model

Published online by Cambridge University Press:  05 June 2012

Leonard M. Sander
Affiliation:
University of Michigan
Get access

Summary

When atoms are assembled into a condensed state, it is often the case that the outer valence electrons become delocalized, and are no longer associated with a given atom. The most obvious such case is a metal where the electrons are free to move, and can conduct electricity. An ionized classical plasma is another system of this sort, but, as we have seen, the electrons in solids must be treated with quantum theory. That is the subject of this chapter. Metallic liquids and glasses exist, but we will concentrate on metallic crystals. As we will see, the theory that we will develop will also apply to the valence electrons in semiconductors and insulators.

Since electrons in metals are free to move it is natural to think of them as a gas; the term electron gas is often used. The most extreme version of this idea is surprisingly useful, namely the idea of the free electron gas. In this idealization the electrons don't see the ions that they were detached from except in an average way, to neutralize their charge. Also, in this model the electrons are non-interacting, and act as if their Coulomb repulsion is not present.

We should say from the outset that both these assumptions appear to be totally unreasonable. The strength of the electron-electron interaction in Cu was estimated in Chapter 1. It turned out to be about 3 eV, which is the same order of magnitude as the energies that we will find in the next section.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×