Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-22T11:27:28.504Z Has data issue: false hasContentIssue false

16 - Lie groups and differential equations

Published online by Cambridge University Press:  05 September 2012

Robert Gilmore
Affiliation:
Drexel University, Philadelphia
Get access

Summary

Lie group theory was initially developed to facilitate the solution of differential equations. In this guise its many powerful tools and results are not extensively known in the physics community. This chapter is designed as an antidote to this anemia. Lie's methods are an extension of Galois' methods for algebraic equations to the study of differential equations. The extension is in the spirit of Galois' work: the technical details are not similar. The principle observation – Lie's great insight – is that the simple constant that can by added to any indefinite integral of dy/dx = g(x) is in fact an element of a continuous symmetry group – the group that maps solutions of the differential equation into other solutions. This observation was used – exploited – by Lie to develop an algorithm for determining when a differential equation had an invariance group. If such a group exists, then a first order ordinary differential equation can be integrated by quadratures, or the order of a higher order ordinary differential equation can be reduced.

Galois inspired Lie. If the discrete invariance group of an algebraic equation could be exploited to generate algorithms to solve the algebraic equation “by radicals,” might it be possible that the continuous invariance group of a differential equation could be exploited to solve the differential equation “by quadratures”? Lie showed emphatically in 1874 that the answer is YES!, and work has hardly slowed down in the field that he pioneered from that time to the present.

Type
Chapter
Information
Lie Groups, Physics, and Geometry
An Introduction for Physicists, Engineers and Chemists
, pp. 284 - 308
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×