Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-04-30T14:21:07.349Z Has data issue: false hasContentIssue false

9 - Degenerate parametric oscillator

Published online by Cambridge University Press:  05 May 2014

Peter D. Drummond
Affiliation:
Swinburne University of Technology, Victoria
Mark Hillery
Affiliation:
Hunter College, City University of New York
Get access

Summary

The optical parametric oscillator is one of the most well-characterized devices in nonlinear optics, with many useful applications, especially as a frequency converter and as a wide-band amplifier. Novel discoveries made with these devices in the quantum domain include demonstrations of large amounts of both single-mode and two-mode squeezing, and, in the two-mode case, significant quantum intensity correlations between the two modes and quadrature correlations, which provided the first experimental demonstration of the original Einstein–Podolsky–Rosen (EPR) paradox. In this chapter, a systematic theory is developed of quantum fluctuations in the degenerate parametric oscillator.

The quantum statistical effects produced by the degenerate parametric amplifier and oscillator have been intensely studied. As we have seen, the amount of transient squeezing produced in an ideal lossless parametric amplifier was calculated using asymptotic methods by Crouch and Braunstein. It was found to scale inversely with the square root of the initial pump photon number. When the system is put into a cavity, and driving and dissipation are introduced, we find that the steady state of a driven degenerate parametric oscillator bifurcates. There is a single steady state at low driving strengths, but, as the driving field increases, a threshold value is reached and the single state splits and forms two stable states. Below the threshold, a linearized analysis of squeezing in the quantum quadratures is possible; while above this threshold, or critical point, the tunneling time between the two states due to quantum fluctuations can be calculated.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

P. D., Drummond, K. J., McNeil, and D. F., Walls, J. Mod. Opt. 27, 321 (1980).
P. D., Drummond, K. J., McNeil, and D. F., Walls, J. Mod. Opt. 28, 211 (1981).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×