Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-06T06:20:08.975Z Has data issue: false hasContentIssue false

13 - Efficient IIR structures

Published online by Cambridge University Press:  05 June 2012

Paulo S. R. Diniz
Affiliation:
Universidade Federal do Rio de Janeiro
Eduardo A. B. da Silva
Affiliation:
Universidade Federal do Rio de Janeiro
Sergio L. Netto
Affiliation:
Universidade Federal do Rio de Janeiro
Get access

Summary

Introduction

The most widely used realizations for IIR filters are the cascade and parallel forms of second-order, and, sometimes, first-order, sections. The main advantages of these realizations come from their inherent modularity, which leads to efficient VLSI implementations, to simplified noise and sensitivity analyses, and to simple limit-cycle control. This chapter presents high-performance second-order structures, which are used as building blocks in high-order realizations. The concept of section ordering for the cascade form, which can reduce roundoff noise in the filter output, is introduced. Then we present a technique to reduce the output roundoff-noise effect known as error spectrum shaping. This is followed by consideration of some closed-form equations for the scaling coefficients of second-order sections for the design of parallel-form filters.

We also deal with other interesting realizations, such as the doubly complementary filters, made from allpass blocks, and IIR lattice structures, whose synthesis method is presented. Arelated class of realizations is the wave digital filters, which have very low sensitivity and also allow the elimination of zero-input and overflow limit cycles. The wave digital filters are derived from analog filter prototypes, employing the concepts of incident and reflected waves. The detailed design of these structures is presented in this chapter.

IIR parallel and cascade filters

The Nth-order direct forms seen in Chapter 4, Figures 4.11–4.13, have roundoff-noise transfer functions Gi(z) (see Figure 11.16) and scaling transfer functions Fi(z) (see Figure 11.20) whose L2 or L norms assume significantly high values.

Type
Chapter
Information
Digital Signal Processing
System Analysis and Design
, pp. 787 - 862
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×