Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-11T23:18:32.257Z Has data issue: false hasContentIssue false

19 - Why Women Differ in Ovarian Function: Genetic Polymorphism, Developmental Conditions, and Adult Lifestyle

Published online by Cambridge University Press:  05 August 2012

Michael P. Muehlenbein
Affiliation:
Indiana University, Bloomington
Get access

Summary

VARIATION IN LEVELS OF REPRODUCTIVE HORMONES

High levels of ovarian steroid hormones in menstrual cycles are crucial for successful pregnancy (Lipson and Ellison,1996; Venners et al., 2006) and, as such, are important determinants of female reproductive success and evolutionary fitness. However, there are substantial differences in mean levels of estradiol and progesterone between populations, among women within a single population, and among menstrual cycles of a single woman (Figure 19.1) (Ellison et al., 1993; Jasienska and Jasienski, 2008). For example, urban women in the United States have progesterone levels that are on average 65% higher than those of women from the Democratic Republic of Congo (Ellison et al., 1993). In a rural population from Poland, as much as 46% of the among-cycle variation in salivary progesterone is due to differences among individual women, while the remaining 54% of variation is due to differences among cycles of individual women (Jasienska and Jasienski, 2008). Such high intercycle variation is probably caused by a seasonality of agricultural workload and is much higher than in nonseasonal, industrial populations. However, even in urban women from the United States and the United Kingdom, where lifestyle is less influenced by seasons, progesterone levels vary from cycle to cycle (Lenton et al., 1983; Sukalich et al., 1994; Gann et al., 2001).

The present chapter reviews recent findings about variation in human female ovarian function, and more specifically, the levels of two primary female reproductive hormones: 17-β estradiol and progesterone.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adair, L. S. (2001). Size at birth predicts age at menarche. Pediatrics, 107, e59.CrossRefGoogle ScholarPubMed
Adams, A. M. (1995). Seasonal variations in energy balance among agriculturalists in central Mali: compromise or adaptation?European Journal of Clinical Nutrition, 49, 809–823.Google ScholarPubMed
Anderheim, L., Holter, H., Bergh, C., et al. (2005). Does psychological stress affect the outcome of in vitro fertilization?Human Reproduction, 20, 2969–2975.CrossRefGoogle ScholarPubMed
Apter, D. (1996). Hormonal events during female puberty in relation to breast cancer risk. European Journal of Cancer Prevention, 5, 476–482.Google ScholarPubMed
Bailey, R. C., Jenike, M. R., Ellison, P. T., et al. (1992). The ecology of birth seasonality among agriculturalist in central Africa. Journal of Biosocial Science, 24, 393–412.CrossRefGoogle Scholar
Baird, D. T., Cnattingius, S., Collins, J., et al. (2006). Nutrition and reproduction in women. Human Reproduction Update, 12, 193–207.Google Scholar
Barker, D. J. P. (1994). Mothers, Babies, and Disease in Later Life. London: BMJ Publishing.Google Scholar
Barnett, J. B., Woods, M. N., Rosner, B., et al. (2002). Waist-to-hip ratio, body mass index and sex hormone levels associated with breast cancer risk in premenopausal Caucasian women. Journal of Medical Sciences, 2, 170–176.Google Scholar
Barrett-Conor, E. and Bush, T. L. (1991). Estrogen and coronary heart disease in women. Journal of the American Medical Association, 265, 1861–1867.CrossRefGoogle Scholar
Becker, A. E., Grinspoon, S. K., Klibanski, A., et al. (1999). Current concepts – eating disorders. New England Journal of Medicine, 340, 1092–1098.CrossRefGoogle Scholar
Benefice, E., Simondon, K. and Malina, R. M. (1996). Physical activity patterns and anthropometric changes in Senegalese women observed over a complete seasonal cycle. American Journal of Human Biology, 8, 251–261.3.0.CO;2-L>CrossRefGoogle Scholar
Bernstein, L. and Ross, R. K. (1993). Endogenous hormones and breast cancer risk. Epidemiological Reviews, 15, 48–65.CrossRefGoogle ScholarPubMed
Bernstein, L., Ross, R. K., Lobo, R. A., et al. (1987). The effects of moderate physical activity on menstrual cycle patterns in adolescence: implications for breast cancer prevention. British Journal of Cancer, 55, 681–685.CrossRefGoogle ScholarPubMed
Bisdee, J., James, W. and Shaw, M. (1989). Changes in energy expenditure during the menstrual cycle. British Journal of Nutrition, 61, 187–199.CrossRefGoogle ScholarPubMed
Bledsoe, R. E., O'Rourke, M. T. and Ellison, P. T. (1990). Characterization of progesterone profiles of recreational runners. American Journal of Physical Anthropology, 81 (abstract), 195–196.Google Scholar
Boivin, J. (2003). A review of psychosocial interventions in infertility. Social Science and Medicine, 57, 2325–2341.CrossRefGoogle ScholarPubMed
Broocks, A., Pirke, K. M., Schweiger, U., et al. (1990). Cyclic ovarian function in recreational athletes. Journal of Applied Physiology, 68, 2083–2086.CrossRefGoogle ScholarPubMed
Bruning, P. F., Bonfrer, J. M. G., Hart, A. A. M., et al. (1992). Body measurements, estrogen availability and the risk of human breast cancer: a case-control study. International Journal of Cancer, 51, 14–19.CrossRefGoogle ScholarPubMed
Bullen, B. A., Skrinar, G. S., Beitins, I. Z., et al. (1985). Induction of menstrual disorders by strenuous exercise in untrained women. New England Journal of Medicine, 312, 1349–1353.CrossRefGoogle ScholarPubMed
Campagne, D. M. (2006). Should fertilization treatment start with reducing stress?Human Reproduction, 21, 1651–1658.CrossRefGoogle ScholarPubMed
Clark, A. M., Ledger, W., Galletly, C., et al. (1995). Weight-loss results in significant improvement in pregnancy and ovulation rates in anovulatory obese women. Human Reproduction, 10, 2705–2712.CrossRefGoogle ScholarPubMed
Cresswell, J. L., Egger, P., Fall, C. H. D., et al. (1997). Is the age of menopause determined in-utero?Early Human Development, 49, 143–148.CrossRefGoogle ScholarPubMed
Curtis, V., Henry, C. J. K., Birch, E., et al. (1996). Intraindividual variation in the basal metabolic rate of women: effect of the menstrual cycle. American Journal of Human Biology, 8, 631–639.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Cwikel, J., Gidron, Y. and Sheiner, E. (2004). Psychological interactions with infertility among women. European Journal of Obstetrics, Gynecology and Reproductive Biology, 117, 126–131.CrossRefGoogle ScholarPubMed
Davies, M. J. and Norman, R. J. (2002). Programming and reproductive functioning. Trends in Endocrinology and Metabolism, 13, 386–392.CrossRefGoogle ScholarPubMed
Souza, M. J., Miller, B. E., Loucks, A. B., et al. (1998). High frequency of luteal phase deficiency and anovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition. Journal of Clinical Endocrinology and Metabolism, 83, 4220–4232.Google ScholarPubMed
Dickey, R. P., Olar, T. T., Taylor, S. N., et al. (1993). Relationship of endometrial thickness and pattern to fecundity in ovulation induction cycles: effect of clomiphene citrate alone and with human menopausal gonadotropin. Fertility and Sterility, 59, 756–760.CrossRefGoogle ScholarPubMed
Doblhammer, G. (2000). Reproductive history and mortality later in life: a comparative study of England and Wales and Austria. Population Studies: a Journal of Demography, 54, 169–176.CrossRefGoogle ScholarPubMed
Domar, A. D., Seibel, M. M. and Benson, H. (1990). The Mind Body Program for Infertility – a new behavioral treatment approach for women with infertility. Fertility and Sterility, 53, 246–249.CrossRefGoogle ScholarPubMed
Domar, A. D., Clapp, D., Slawsby, E. A., et al. (2000). Impact of group psychological interventions on pregnancy rates in infertile women. Fertility and Sterility, 73, 805–811.CrossRefGoogle ScholarPubMed
Dribe, M. (2004). Long-term effects of childbearing on mortality: evidence from pre-industrial Sweden. Population Studies: a Journal of Demography, 58, 297–310.CrossRefGoogle ScholarPubMed
Eaton, S. B., Konner, M. and Shostak, M. (1988). Stone agers in the fast lane: chronic degenerative diseases in evolutionary perspective. American Journal of Medicine, 84, 739–749.CrossRefGoogle ScholarPubMed
Eaton, S. B. and Eaton, S. B. III, (1999). Breast cancer in evolutionary context. In Evolutionary Medicine, Trevathan, W. R., Smith, E. O. and Mckenna, J. J. (eds). New York: Oxford University Press, pp. 429–442.Google Scholar
Eaton, S. B., Strassman, B. I., Nesse, R. M., et al. (2002). Evolutionary health promotion. Preventive Medicine, 34, 109–118.CrossRefGoogle ScholarPubMed
Eissa, M. K., Obhrai, M. S., Docker, M. F., et al. (1986). Follicular growth and endocrine profiles in spontaneous and induced conception cycles. Fertility and Sterility, 45, 191–195.CrossRefGoogle ScholarPubMed
Ellison, P. T. (1982). Skeletal growth, fatness and menarcheal age: a comparison of two hypotheses. Human Biology, 54, 269–281.Google ScholarPubMed
Ellison, P. T. (1990). Human ovarian function and reproductive ecology: new hypotheses. American Anthropologist, 92, 933–952.CrossRefGoogle Scholar
Ellison, P. T. (1994). Salivary steroids and natural variation in human ovarian function. Annals of the New York Academy of Sciences, 709, 287–298.CrossRefGoogle ScholarPubMed
Ellison, P. T. (2003a). Energetics and reproductive effort. American Journal of Human Biology, 15, 342–351.CrossRefGoogle ScholarPubMed
Ellison, P. T. (2003b). On Fertile Ground. Cambridge, MA: Harvard University Press.Google Scholar
Ellison, P. T. (2005). Evolutionary perspectives on the fetal origins hypothesis. American Journal of Human Biology, 17, 113–118.CrossRefGoogle ScholarPubMed
Ellison, P. T. and Lager, C. (1985). Exercise-induced menstrual disorders. New England Journal of Medicine, 313, 825–826.Google Scholar
Ellison, P. T. and Lager, C. (1986). Moderate recreational running is associated with lowered salivary progesterone profiles in women. American Journal of Obstetrics and Gynecology, 154, 1000–1003.CrossRefGoogle ScholarPubMed
Ellison, P. T., Peacock, N. R. and Lager, C. (1986). Salivary progesterone and luteal function in two low-fertility populations of northeast Zaire. Human Biology, 58, 473–483.Google ScholarPubMed
Ellison, P. T., Lipson, S. F., O'Rourke, M. T., et al. (1993). Population variation in ovarian function. Lancet, 342, 433–434.CrossRefGoogle ScholarPubMed
Ellison, P. T., Lipson, S. F., Jasienska, G., et al. (2007). Moderate anxiety, whether acute or chronic, is not associated with ovarian suppression in healthy, well-nourished, Western women. American Journal of Physical Anthropology, 134, 513–519.CrossRefGoogle Scholar
Evans, D. J., Hoffmann, R. G., Kalkhoff, R. K., et al. (1983). Relationship of androgenic activity to body-fat topography, fat-cell morphology, and metabolic aberrations in premenopausal women. Journal of Clinical Endocrinology and Metabolism, 57, 304–310.CrossRefGoogle ScholarPubMed
Falsetti, L., Pasinetti, E., Mazzani, M. D., et al. (1992). Weight-loss and menstrual-cycle – clinical and endocrinologic evaluation. Gynecological Endocrinology, 6, 49–56.CrossRefGoogle Scholar
Feicht, C. B., Johnson, T. S., Martin, B. J., et al. (1978). Secondary amenorrhoea in athletes. Lancet, 26, 1145–1146.CrossRefGoogle Scholar
Feigelson, H. S., Shames, L. S., Pike, M. C., et al. (1998). Cytochrome p450c17α gene (CYP17) polymorphism is associated with serum estrogen and progesterone concentrations. Cancer Research, 58, 585–587.Google ScholarPubMed
Frisch, R. E. (1984). Body-fat, puberty and fertility. Biological Reviews of the Cambridge Philosophical Society, 59, 161–188.CrossRefGoogle ScholarPubMed
Furberg, A. S., Jasienska, G., Bjurstam, N., et al. (2005). Metabolic and hormonal profiles: HDL cholesterol as a plausible biomarker of breast cancer risk. The Norwegian EBBA study. Cancer Epidemiology, Biomarkers and Prevention, 14, 33–40.Google ScholarPubMed
Galletly, C., Clark, A., Tomlinson, L., et al. (1996). Improved pregnancy rates for obese, infertile women following a group treatment program – an open pilot study. General Hospital Psychiatry, 18, 192–195.CrossRefGoogle ScholarPubMed
Gann, P. H., Giovanazzi, S., Horn, L., et al. (2001). Saliva as a medium for investigating intra- and interindividual differences in sex hormone levels in premenopausal women. Cancer Epidemiology, Biomarkers and Prevention, 10, 59–64.Google ScholarPubMed
Garcia-Closas, M., Herbstman, J., Schiffman, M., et al. (2002). Relationship between serum hormone concentrations, reproductive history, alcohol consumption and genetic polymorphisms in pre-menopausal women. International Journal of Cancer, 102, 172–178.CrossRefGoogle ScholarPubMed
George, D., Everson, P., Stevenson, J., et al. (2000). Birth intervals and early childhood mortality in a migrating Mennonite community. American Journal of Human Biology, 12, 50–63.3.0.CO;2-X>CrossRefGoogle Scholar
Gluckman, P. D. and Hanson, M. A. (2004). Living with the past: evolution, development, and patterns of disease. Science, 305, 1733–1736.CrossRefGoogle Scholar
Gluckman, P. D. and Hanson, M. A. (2005). The Fetal Matrix: Evolution, Development and Disease. Cambridge: Cambridge University Press.Google Scholar
Gluckman, P. D., Cutfield, W., Hofman, P., et al. (2005a). The fetal, neonatal, and infant environments – the long-term consequences for disease risk. Early Human Development, 81, 51–59.CrossRefGoogle ScholarPubMed
Gluckman, P. D., Hanson, M. A. and Spencer, H. G. (2005b). Predictive adaptive responses and human evolution. Trends in Ecology and Evolution, 20, 527–533.CrossRefGoogle ScholarPubMed
Grodstein, F., Goldman, M. B. and Cramer, D. W. (1994). Body-mass index and ovulatory infertility. Epidemiology, 5, 247–250.CrossRefGoogle ScholarPubMed
Hackney, A. C. and Viru, A. (1999). Twenty-four-hour cortisol response to multiple daily exercise sessions of moderate and high intensity. Clinical Physiology, 19, 178–182.CrossRefGoogle ScholarPubMed
Haiman, C. A., Dossus, L., Setiawan, V. W., et al. (2007). Genetic variation at the CYP19A1 locus predicts circulating estrogen levels but not breast cancer risk in postmenopausal women. Cancer Research, 67, 1893–1897.CrossRefGoogle Scholar
Harrison, R. F., Omoore, R. R. and Omoore, A. M. (1986). Stress and fertility – some modalities of investigation and treatment in couples with unexplained infertility in Dublin. International Journal of Fertility, 31, 153–159.Google ScholarPubMed
Helle, S., Lummaa, V. and Jokela, J. (2002). Sons reduced maternal longevity in preindustrial humans. Science, 296, 1085.CrossRefGoogle ScholarPubMed
Homan, G. F., Davies, M. and Norman, R. (2007). The impact of lifestyle factors on reproductive performance in the general population and those undergoing infertility treatment: a review. Human Reproduction Update, 13, 209–223.CrossRefGoogle ScholarPubMed
Hong, C. C., Thompson, H. J., Jiang, C., et al. (2004). Association between the T27C polymorphism in the cytochrome P450c17α (CYP17) gene and risk factors for breast cancer. Breast Cancer Research and Treatment, 88, 217–230.CrossRefGoogle Scholar
Howe, J. C., Rumpler, W. V. and Seale, J. L. (1993). Energy expenditure by indirect calorimetry in premenopausal women: Variation within one menstrual cycle. Journal of Nutritional Biochemistry, 4, 268–273.CrossRefGoogle Scholar
Ibanez, L., Potau, N. and Zegher, F. (2000a). Ovarian hyporesponsiveness to follicle stimulating hormone in adolescent girls born small for gestational age. Journal of Clinical Endocrinology and Metabolism, 85, 2624–2626.CrossRefGoogle ScholarPubMed
Ibanez, L., Potau, N., Enriquez, G., et al. (2000b). Reduced uterine and ovarian size in adolescent girls born small for gestational age. Pediatric Research, 47, 575–577.CrossRefGoogle ScholarPubMed
Ibanez, L., Potau, N., Ferrer, A., et al. (2002). Reduced ovulation rate in adolescent girls born small for gestational age. Journal of Clinical Endocrinology and Metabolism, 87, 3391–3393.CrossRefGoogle ScholarPubMed
Jacobson, J. D. and Ansari, M. A. (2004). Immunomodulatory actions of gonadal steroids may be mediated by gonadotropin-releasing hormone. Endocrinology, 145, 330–336.CrossRefGoogle ScholarPubMed
Jasienska, G. (1996). Energy expenditure and ovarian function in Polish rural women. PhD thesis, Harvard University, Cambridge, MA.Google Scholar
Jasienska, G. (2001). Why energy expenditure causes reproductive suppression in women. An evolutionary and bioenergetic perspective. In Reproductive Ecology and Human Evolution, Ellison, P. T. (ed.). New York: Aldine de Gruyter, pp. 59–85.Google Scholar
Jasienska, G. (2002). Are sex steroids suitable as biomarkers of breast cancer risk? Variation and repeatability of estimates. International Journal of Cancer, 13(suppl.), 129.Google Scholar
Jasienska, G. (2003). Energy metabolism and the evolution of reproductive suppression in the human female. Acta Biotheoretica, 51, 1–18.CrossRefGoogle ScholarPubMed
Jasienska, G. (2009). Low birth weight of contemporary African Americans: intergenerational effect of slavery?American Journal of Human Biology, 21, 16–24.CrossRefGoogle ScholarPubMed
Jasienska, G. and Ellison, P. T. (1998). Physical work causes suppression of ovarian function in women. Proceedings of the Royal Society of London. Series B, 265, 1847–1851.CrossRefGoogle ScholarPubMed
Jasienska, G. and Ellison, P. T. (2004). Energetic factors and seasonal changes in ovarian function in women from rural Poland. American Journal of Human Biology, 16, 563–580.CrossRefGoogle ScholarPubMed
Jasienska, G. and Jasienski, M. (2008). Interpopulation, interindividual, intercycle, and intracycle natural variation in progesterone levels: a quantitative assessment and implications for population studies. American Journal of Human Biology, 20, 35–42.CrossRefGoogle ScholarPubMed
Jasienska, G. and Thune, I. (2001a). Lifestyle, hormones, and risk of breast cancer. British Medical Journal, 322, 586–587.CrossRefGoogle ScholarPubMed
Jasienska, G. and Thune, I. (2001b). Lifestyle, progesterone and breast cancer. British Medical Journal, 323, 1002.Google Scholar
Jasienska, G., Thune, I. and Ellison, P. T. (2000). Energetic factors, ovarian steroids and the risk of breast cancer. European Journal of Cancer Prevention, 9, 231–239.CrossRefGoogle ScholarPubMed
Jasienska, G., Ziomkiewicz, A., Ellison, P. T., et al. (2004). Large breasts and narrow waists indicate high reproductive potential in women. Proceedings of the Royal Society of London. Series B, 271, 1213–1217.CrossRefGoogle ScholarPubMed
Jasienska, G., Kapiszewska, M., Ellison, P. T., et al. (2006a). CYP17 genotypes differ in salivary 17-β estradiol levels: a study based on hormonal profiles from entire menstrual cycles. Cancer Epidemiology Biomarkers and Prevention, 15, 2131–2135.CrossRefGoogle ScholarPubMed
Jasienska, G., Lipson, S. F., Ellison, P. T., et al. (2006b). Symmetrical women have higher potential fertility. Evolution and Human Behavior, 27, 390–400.CrossRefGoogle Scholar
Jasienska, G., Nenko, I. and Jasienski, M. (2006c). Daughters increase longevity of fathers, but daughters and sons equally reduce longevity of mothers. American Journal of Human Biology, 18, 422–425.CrossRefGoogle ScholarPubMed
Jasienska, G., Thune, I. and Ellison, P. T. (2006d). Fatness at birth predicts adult susceptibility to ovarian suppression: an empirical test of the Predictive Adaptive Response hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12759–12762.CrossRefGoogle ScholarPubMed
Jasienska, G., Ziomkiewicz, A., Lipson, S. F., et al. (2006e). High ponderal index at birth predicts high estradiol levels in adult women. American Journal of Human Biology, 18, 133–140.CrossRefGoogle ScholarPubMed
Jasienska, G., Ziomkiewicz, A., Thune, I., et al. (2006f). Habitual physical activity and estradiol levels in women of reproductive age. European Journal of Cancer Prevention, 15, 439–445.CrossRefGoogle ScholarPubMed
Johnson, W. G., Corrigan, S. A., Lemmon, C. R., et al. (1994). Energy regulation over the menstrual cycle. Physiology and Behavior, 56, 523–527.CrossRefGoogle ScholarPubMed
Jones, B. C., Little, A. C., Penton-Voak, I. S., et al. (2001). Facial symmetry and judgements of apparent health – support for a “good genes” explanation of the attractiveness-symmetry relationship. Evolution and Human Behavior, 22, 417–429.CrossRefGoogle Scholar
Kapiszewska, M., Miskiewicz, M., Ellison, P. T., et al. (2006). High tea consumption diminishes salivary 17 β-estradiol concentration in Polish women. British Journal of Nutrition, 95, 989–995.CrossRefGoogle ScholarPubMed
Key, T. J. A. and Pike, M. C. (1988). The role of oestrogens and progestagens in the epidemiology and prevention of breast cancer. European Journal of Clinical Oncology, 24, 29–43.CrossRefGoogle ScholarPubMed
Kovacs, E. J., Messingham, K. A. N. and Gregory, M. S. (2002). Estrogen regulation of immune responses after injury. Molecular and Cellular Endocrinology, 193, 129–135.CrossRefGoogle ScholarPubMed
Kuiper, G., Lemmen, J. G., Carlsson, B., et al. (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology, 139, 4252–4263.CrossRefGoogle ScholarPubMed
Kusin, J. A., Kardjati, S., Renqvist, U., et al. (1992). Reproduction and maternal nutrition in Madura, Indonesia. Tropical and Geographical Medicine, 44, 248–255.Google ScholarPubMed
Kuzawa, C. W. (2005). Fetal origins of developmental plasticity: are fetal cues reliable predictors of future nutritional environments?American Journal of Human Biology, 17, 5–21.CrossRefGoogle ScholarPubMed
Lager, C. and Ellison, P. T. (1990). Effect of moderate weight loss on ovarian function assessed by salivary progesterone measurements. American Journal of Human Biology, 2, 303–312.CrossRefGoogle ScholarPubMed
Lake, J. K., Power, C. and Cole, T. J. (1997). Women's reproductive health: the role of body mass index in early and adult life. International Journal of Obesity, 21, 432–438.CrossRefGoogle ScholarPubMed
Lawrence, M. and Whitehead, R. G. (1988). Physical activity and total energy expenditure in child-bearing Gambian women. European Journal of Clinical Nutrition, 42, 145–160.Google Scholar
Lawrence, M., Coward, W. A., Lawrence, F., et al. (1987). Fat gain during pregnancy in rural African women: the effect of season and dietary status. American Journal of Clinical Nutrition, 45, 1442–1450.CrossRefGoogle ScholarPubMed
Lechtig, A., Yarbrough, C., Delgado, H., et al. (1975). Influence of maternal nutrition on birth weight. American Journal of Clinical Nutrition, 28, 1223–1233.CrossRefGoogle ScholarPubMed
Lenton, E. A., Lawrence, G. F., Coleman, R. A., et al. (1983). Individual variation in gonadotrophin and steroid concentration and in lengths of the follicular and luteal phases in women with regular menstrual cycles. Clinical Reproduction and Fertility, 2, 143–150.Google Scholar
Lipson, S. F. (2001). Metabolism, maturation, and ovarian function. In Reproductive Ecology and Human Evolution, Ellison, P. T. (ed.). New York: Aldine de Gruyter, pp. 235–248.Google Scholar
Lipson, S. F. and Ellison, P. T. (1996). Comparison of salivary steroid profiles in naturally occurring conception and non-conception cycles. Human Reproduction, 11, 2090–2096.CrossRefGoogle ScholarPubMed
Little, M. A., Leslie, P. W. and Campbell, K. L. (1992). Energy reserves and parity of nomadic and settled Turkana women. American Journal of Human Biology, 4, 729–738.CrossRefGoogle ScholarPubMed
Lu, Y. C., Bentley, G. R., Gann, P. H., et al. (1999). Salivary estradiol and progesterone levels in conception and nonconception cycles in women: evaluation of a new assay for salivary estradiol. Fertility and Sterility, 71, 863–868.CrossRefGoogle ScholarPubMed
Lunn, P. G. (1994). Lactation and other metabolic loads affecting human reproduction. Annals of the New York Academy of Sciences, 709, 77–85.CrossRefGoogle ScholarPubMed
Lurie, G., Maskarinec, G., Kaaks, R., et al. (2005). Association of genetic polymorphisms with serum estrogens measured multiple times during a two-year period in premenopausal women. Cancer Epidemiology Biomarkers and Prevention, 14, 1521–1527.CrossRefGoogle Scholar
Manning, J. T., Scutt, D., Whitehouse, G. H., et al. (1997). Breast asymmetry and phenotypic quality in women. Evolution and Human Behavior, 18, 223–236.CrossRefGoogle Scholar
Manning, J. T., Scutt, D., Wilson, J., et al. (1998). The ratio of second to fourth digit length: a predictor of sperm numbers and concentrations of testosterone, luteinizing hormone and oestrogen. Human Reproduction, 13, 3000–3004.CrossRefGoogle Scholar
Manning, J. T., Bundred, P. E. and Flanagan, B. F. (2002). The ratio of second to fourth digit length: a proxy for transactivation activity of the androgen receptor gene?Medical Hypotheses, 59, 334–336.CrossRefGoogle Scholar
McIntyre, M. H., Chapman, J. F., Lipson, S. F., et al. (2007). Index-to-ring finger length ratio (2D:4D) predicts levels of salivary estradiol, but not progesterone, over the menstrual cycle. American Journal of Human Biology, 19, 434–436.CrossRefGoogle Scholar
McNamara, J. P. (1995). Role and regulation of metabolism in adipose tissue during lactation. Journal of Nutritional Biochemistry, 6, 120–129.CrossRefGoogle Scholar
McNeely, M. J. and Soules, M. R. (1988). The diagnosis of luteal phase deficiency: a critical review. Fertility and Sterility, 50, 1–9.Google Scholar
Meijer, G. A. L., Westerterp, K. R., Saris, W. H. M., et al. (1992). Sleeping metabolic rate in relation to body composition and the menstrual cycle. American Journal of Clinical Nutrition, 55, 637–640.CrossRefGoogle ScholarPubMed
Merchant, K. S. and Martorell, R. (1988). Frequent reproductive cycling: does it lead to nutritional depletion of mothers?Progress in Food and Nutrition Science, 12, 339–369.Google ScholarPubMed
Miller, J. E., Rodriguez, G. and Pebley, A. R. (1994). Lactation, seasonality, and mother's postpartum weight change in Bangladesh: an analysis of maternal depletion. American Journal of Human Biology, 6, 511–524.CrossRefGoogle ScholarPubMed
Moller, A. P. and Swaddle, J. P. (1997). Asymmetry, Developmental Stability, and Evolution. Oxford: Oxford University Press.Google Scholar
Moller, A. P., Soler, M. and Thornhill, R. (1995). Breast asymmetry, sexual selection, and human reproductive success. Ethology and Sociobiology, 16, 207–219.CrossRefGoogle Scholar
Moran, C., Hernandez, E., Ruiz, J. E., et al. (1999). Upper body obesity and hyperinsulinemia are associated with anovulation. Gynecologic and Obstetric Investigation, 47, 1–5.CrossRefGoogle ScholarPubMed
,National Academy of Sciences Committee on Population (1989). Contraception and Reproduction: Health Consequences for Women and Children in the Developing World. Washington, DC: National Academy Press.
Nepomnaschy, P. A., Welch, K. B., Mcconnell, D. S., et al. (2006). Cortisol levels and very early pregnancy loss in humans. Proceedings of the National Academy of Sciences of the United States of America, 103, 3938–3942.CrossRefGoogle ScholarPubMed
Nguyen, T. V., Jones, G., Sambrook, P. N., et al. (1995). Effects of estrogen exposure and reproductive factors on bone mineral density and osteoporotic fractures. Journal of Clinical Endocrinology and Metabolism, 80, 2709–2714.Google Scholar
Norman, R. J. and Clark, A. M. (1998). Obesity and reproductive disorders: a review. Reproduction Fertility and Development, 10, 55–63.CrossRefGoogle ScholarPubMed
Norman, R. J., Noakes, M., Wu, R. J., et al. (2004). Improving reproductive performance in overweight/obese women with effective weight management. Human Reproduction Update, 10, 267–280.CrossRefGoogle ScholarPubMed
Nunez-De La Mora, A., Chatterton, R. T., Choudhury, O. A., et al. (2007). Childhood conditions influence adult progesterone levels. PLoS Medicine, 4, e167.CrossRefGoogle ScholarPubMed
Painter, R. C., Roseboom, T. J. and Bleker, O. P. (2005). Prenatal exposure to the Dutch famine and disease in later life: an overview. Reproductive Toxicology, 20, 345–352.CrossRefGoogle ScholarPubMed
Panter-Brick, C. (1993). Seasonality and levels of energy expenditure during pregnancy and lactation for rural Nepali women. American Journal of Clinical Nutrition, 57, 620–628.CrossRefGoogle ScholarPubMed
Panter-Brick, C. (1996). Physical activity, energy stores, and seasonal energy balance among men and women in Nepali households. American Journal of Human Biology, 8, 263–274.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Panter-Brick, C., Lotstein, D. S. and Ellison, P. T. (1993). Seasonality of reproductive function and weight loss in rural Nepali women. Human Reproduction, 8, 684–690.CrossRefGoogle ScholarPubMed
Paul, S. N., Kato, B. S., Hunkin, J. L., et al. (2006). The big finger: the second to fourth digit ratio is a predictor of sporting ability in women. British Journal of Sports Medicine, 40, 981–983.CrossRefGoogle ScholarPubMed
Peter, I., Kelley-Hedgepeth, A., Fox, C. S., et al. (2008). Variation in estrogen-related genes associated with cardiovascular phenotypes and circulating estradiol, testosterone, and dehydroepiandrosterone sulfate levels. Journal of Clinical Endocrinology and Metabolism, 93, 2779–2785.CrossRefGoogle ScholarPubMed
Pike, I. L. (1999). Age, reproductive history, seasonality, and maternal body composition during pregnancy for nomadic Turkana of Kenya. American Journal of Human Biology, 11, 658–672.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Pike, I. L. (2000). Pregnancy outcome for nomadic Turkana pastoralists of Kenya. American Journal of Physical Anthropology, 113, 31–45.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Pike, M. C., Krailo, M. D., Henderson, B. E., et al. (1983). “Hormonal” risk factors, “breast tissue age” and the age-incidence of breast cancer. Nature, 303, 767–770.CrossRefGoogle Scholar
Pike, M. C., Spicer, D. V., Dahmoush, L., et al. (1993). Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiological Reviews, 15, 17–35.CrossRefGoogle ScholarPubMed
Pirke, K. M., Schweiger, V., Lemmel, W., et al. (1985). The influence of dieting on the menstrual cycle of healthy young women. Journal of Clinical Endocrinology and Metabolism, 60, 1174–1179.CrossRefGoogle ScholarPubMed
Pirke, K. M., Wuake, W. and Schweiger, U. (eds) (1989). The Menstrual Cycle and its Disorders. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Poppitt, S. D., Prentice, A. M., Jequier, E., et al. (1993). Evidence of energy sparing in Gambian women during pregnancy: a longitudinal study using whole-body calorimetry. American Journal of Clinical Nutrition, 57, 353–364.CrossRefGoogle ScholarPubMed
Poppitt, S. D., Prentice, A. M., Goldberg, G. R., et al. (1994). Energy-sparing strategies to protect human fetal growth. American Journal of Obstetrics and Gynecology, 171, 118–125.CrossRefGoogle ScholarPubMed
Prentice, A. M. and Prentice, A. (1990). Maternal energy requirements to support lactation. In Breastfeeding, Nutrition, Infection and Infant Growth in Developed and Emerging Countries, Atkinson, S. A., Hanson, L. A. and Chandra, R. K. (eds). St. John's, Newfoundland, Canada: ARTS Biomedical Publishers and Distributors, pp. 69–86.Google Scholar
Prior, J. C. (1985). Luteal phase defects and anovulation: adaptive alterations occurring with conditioning exercise. Seminars in Reproductive Endocrinology, 3, 27–33.CrossRefGoogle Scholar
Prior, J. C., Cameron, K., Yuen, B. H., et al. (1982). Menstrual cycle changes with marathon training: anovulation and short luteal phase. Canadian Journal of Applied Sport Sciences, 7, 173–177.Google ScholarPubMed
Prior, J. C., Vigna, Y. M. and Mckay, D. W. (1992). Reproduction for the athletic woman: new understandings of physiology and management. Sports Medicine, 14, 190–199.CrossRefGoogle ScholarPubMed
Rich-Edwards, J. W., Goldman, M. B., Willett, W. C., et al. (1994). Adolescent body-mass index and infertility caused by ovulatory disorder. American Journal of Obstetrics and Gynecology, 171, 171–177.CrossRefGoogle ScholarPubMed
Roberts, S. B., Paul, A. A., Cole, T. J., et al. (1982). Seasonal changes in activity, birth weight and lactational performance in rural Gambian women. Transactions of the Royal Society for Tropical Medicine and Hygiene, 76, 668–678.CrossRefGoogle ScholarPubMed
Rosetta, L. (1993). Female reproductive dysfunction and intense physical training. Oxford Reviews in Reproductive Biology, 15, 113–141.Google ScholarPubMed
Rosetta, L. (2002). Female fertility and intensive physical activity. Science and Sports, 17, 269–277.CrossRefGoogle Scholar
Rosetta, L., Harrison, G. A. and Read, G. F. (1998). Ovarian impairments of female recreational distance runners during a season of training. Annals of Human Biology, 25, 345–357.CrossRefGoogle Scholar
Santoro, N., Goldsmith, L. T., Heller, D., et al. (2000). Luteal progesterone relates to histological endometrial maturation in fertile women. Journal of Clinical Endocrinology and Metabolism, 85, 4207–4211.CrossRefGoogle ScholarPubMed
Schweiger, U., Tuschl, R. J., Laessle, R. G., et al. (1989). Consequences of dieting and exercise on menstrual function in normal weight women. In The Menstrual Cycle and its Disorders, Pirke, K. M., Wuttke, W. and Schweiger, U. (eds). Berlin: Springer-Verlag, pp. 142–149.CrossRefGoogle Scholar
Sellen, D. W. (2000). Seasonal ecology and nutritional status of women and children in a Tanzanian pastoral community. American Journal of Human Biology, 12, 758–781.3.0.CO;2-R>CrossRefGoogle Scholar
Setchell, K. D. R. and Cassidy, A. (1999). Dietary isoflavones: biological effects and relevance to human health. Journal of Nutrition, 129, 758S–767S.CrossRefGoogle ScholarPubMed
Shangold, M., Freeman, R., Thysen, B., et al. (1979). The relationship between long-distance running, plasma progesterone, and luteal phase length. Fertility and Sterility, 31, 130–133.CrossRefGoogle ScholarPubMed
Singh, D. (1993). Body shape and women's attractiveness – the critical role of waist-to-hip ratio. Human Nature – an Interdisciplinary Biosocial Perspective, 4, 297–321.Google ScholarPubMed
Siniarska, A. (1992). Socio-economic conditions of the family and somatic and physiological properties of parents and offspring. Studies in Human Ecology, 10, 139–154.Google ScholarPubMed
Sjodin, A. M., Forslund, A. H., Westerterp, K. R., et al. (1996). The influence of physical activity on BMR. Medicine and Science in Sports and Exercise, 28, 85–91.CrossRefGoogle ScholarPubMed
Small, C. M., Marcus, M., Sherman, S. L., et al. (2005). CYP17 genotype predicts serum hormone levels among pre-menopausal women. Human Reproduction, 20, 2162–2167.CrossRefGoogle ScholarPubMed
Smeenk, J. M. J., Verhaak, C. M., Eugster, A., et al. (2001). The effect of anxiety and depression on the outcome of in-vitro fertilization. Human Reproduction, 16, 1420–1423.CrossRefGoogle ScholarPubMed
Sowers, M. R., Jannausch, M. L., Mcconnell, D. S., et al. (2006). Endogenous estradiol and its association with estrogen receptor gene polymorphisms. American Journal of Medicine, 119, 16–22.CrossRefGoogle ScholarPubMed
Strassmann, B. I. (1996). Energy economy in the evolution of menstruation. Evolutionary Anthropology, 5, 157–164.3.0.CO;2-C>CrossRefGoogle Scholar
Strassmann, B. I. (1997). The biology of menstruation in Homo sapiens: total lifetime menses, fecundity, and nonsynchrony in a natural-fertility population. Current Anthropology, 38, 123–129.CrossRefGoogle Scholar
Sukalich, S., Lipson, S. F. and Ellison, P. T. (1994). Intra and interwomen variation in progesterone profiles. American Journal of Physical Anthropology, 18(suppl.), 191.Google Scholar
Tovee, M. J., Maisey, D. S., Emery, J. L., et al. (1999). Visual cues to female physical attractiveness. Proceedings of the Royal Society of London. Series B, 266, 211–218.CrossRefGoogle ScholarPubMed
Tracer, D. P. (1991). Fertility-related changes in maternal body composition among the Au of Papua New Guinea. American Journal of Physical Anthropology, 85, 393–406.CrossRefGoogle ScholarPubMed
Travis, R. C., Churchman, M., Edwards, S. A., et al. (2004). No association of polymorphisms in CYP17, CYP19, and HSD17-B1 with plasma estradiol concentrations in 1090 British women. Cancer Epidemiology Biomarkers and Prevention, 13, 2282–2284.Google ScholarPubMed
Tuschen-Caffier, B., Florin, I., Krause, W., et al. (1999). Cognitive-behavioral therapy for idiopathic infertile couples. Psychotherapy and Psychosomatics, 68, 15–21.CrossRefGoogle ScholarPubMed
Tworoger, S. S., Chubak, J., Aiello, E. J., et al. (2004). Association of CYP17, CYP19, CYP1B1, and COMT polymorphisms with serum and urinary sex hormone concentrations in postmenopausal women. Cancer Epidemiology Biomarkers and Prevention, 13, 94–101.CrossRefGoogle ScholarPubMed
Valeggia, C. and Ellison, P. T. (2004). Lactational amenorrhoea in well-nourished Toba women of Formosa, Argentina. Journal of Biosocial Science, 36, 573–595.CrossRefGoogle ScholarPubMed
Venners, S. A., Liu, X., Perry, M. J., et al. (2006). Urinary estrogen and progesterone metabolite concentrations in menstrual cycles of fertile women with non-conception, early pregnancy loss or clinical pregnancy. Human Reproduction, 21, 2272–2280.CrossRefGoogle ScholarPubMed
Vermeulen, A. (1993). Environment, human reproduction, menopause, and andropause. Environmental Health Perspectives, 2, 91–100.CrossRefGoogle Scholar
Vigersky, R. A., Anderson, A. E., Thompson, R. H., et al. (1977). Hypothalamic dysfunction in secondary amenorrhea associated with simple weight loss. New England Journal of Medicine, 297, 1141–1145.CrossRefGoogle ScholarPubMed
Vihko, R. and Apter, D. (1984). Endocrine characteristics of adolescent menstrual cycles – impact of early menarche. Journal of Steroid Biochemistry and Molecular Biology, 20, 231–236.CrossRefGoogle ScholarPubMed
Vitzthum, V. J. (2001). Why not so great is still good enough. Flexible responsiveness in human reproductive functioning. In Reproductive Ecology and Human Evolution, Ellison, P. T. (ed.). New York: Aldine de Gruyter, pp. 179–202.Google Scholar
Vitzthum, V. J., Spielvogel, H. and Thornburg, J. (2004). Interpopulational differences in progesterone levels during conception and implantation in humans. Proceedings of the National Academy of Sciences of the United States of America, 101, 1443–1448.CrossRefGoogle ScholarPubMed
Westberg, L., Baghaei, F., Rosmond, R., et al. (2001). Polymorphisms of the androgen receptor gene and the estrogen receptor β gene are associated with androgen levels in women. Journal of Clinical Endocrinology and Metabolism, 86, 2562–2568.Google ScholarPubMed
Winkvist, A., Rasmussen, K. M. and Habicht, J. P. (1992). A new definition of maternal depletion syndrome. American Journal of Public Health, 82, 691–694.CrossRefGoogle ScholarPubMed
Xu, X., Duncan, A. M., Merz, B. E., et al. (1998). Effects of soy isoflavones on estrogen and phytoestrogen metabolism in premenopausal women. Cancer Epidemiology Biomarkers and Prevention, 7, 1101–1108.Google ScholarPubMed
Yue, W., Santen, R. J., Wang, J. P., et al. (2003). Genotoxic metabolites of estradiol in breast: potential mechanism of estradiol induced carcinogenesis. Journal of Steroid Biochemistry and Molecular Biology, 86, 477–486.CrossRefGoogle ScholarPubMed
Zaadstra, B. M., Seidell, J. C., Vannoord, P. A. H., et al. (1993). Fat and female fecundity – prospective study of effect of body fat distribution on conception rates. British Medical Journal, 306, 484–487.CrossRefGoogle ScholarPubMed
Ziomkiewicz, A. (2006) [Anthropometric correlates of the concentration of progesterone and estradiol in menstrual cycles of women age 24–37 living in rural and urban area of Poland]. PhD thesis, Jagiellonian University, Krakow, Poland.Google Scholar
Ziomkiewicz, A., Ellison, P. T., Lipson, S. F., et al. (2008). Body fat, energy balance and estradiol levels: a study based on hormonal profiles from complete menstrual cycles. Human Reproduction, 23, 2555–2563.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×