Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T21:26:32.063Z Has data issue: false hasContentIssue false

13 - Classic Markers of Human Variation

Published online by Cambridge University Press:  05 August 2012

Michael P. Muehlenbein
Affiliation:
Indiana University, Bloomington
Get access

Summary

INTRODUCTION

The door to the study of genetically based variation in humans cracked open at the beginning of the twentieth century with the discovery by Landsteiner (1901) of ABO blood group substances whose Mendelian mode of inheritance was later established by Bernstein (1924). Needless to say, an early trickling of discoveries has led to a flood over the past century of new and important revelations concerning the nature and significance of human genetic variation. This chapter will cover approximately three-fourths of that history as it unfolded via the discovery and elucidation of a host of markers. A helpful review of genetic markers known as of the early 1970s and their role in the study of human evolution can be found in Crawford (1973). Another recent review of classic markers and their contribution toward understanding North American Native genetic variation appeared in O'Rourke (2006). Two current textbooks that provide substantial coverage of traditional markers, along with DNA markers and other topics relevant to human biological variation, are Mielke et al. (2006) and Molnar (2006).

Over the years markers have come to mean fairly consistently defined hereditary units. An early reference to the use of the term is found in Race and Sanger (1962) who discuss markers, in their case human blood groups, as characters that help to locate genes on chromosomes. This was, of course, early in any attempts to construct physical gene maps. Sometime later, genetic markers were associated with specific polymorphic loci that defined particular segments of chromosomes (Cavalli-Sforza et al.,1994).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, S. J., O'Donnell, A., Alexander, N. D. E., et al. (1997). α+-Thalassemia protects children against disease caused by other infections as well as malaria. Proceedings of the National Academy of Sciences of the United States of America, 94, 14736–14741.CrossRefGoogle ScholarPubMed
Allison, A. C. (1956). The sickle and hemoglobin C-genes in some African populations. Annals of Human Genetics, 21, 67–89.CrossRefGoogle ScholarPubMed
Allison, M. J. J., Hossaini, A. A., Munizaga, J., et al. (1978). ABO blood groups in Chilean and Peruvian Mummies. American Journal of Physical Anthropology, 49, 139–142.CrossRefGoogle ScholarPubMed
Baker, P. T. and Little, M. A. (1976). Man in the Andes: a Multidisciplinary Study of High-Altitude Quechua. Stroudsburg, PA: Dowden, Hutchinson, and Ross.Google Scholar
Bernstein, F. (1924). Ergebnisse einer biostatischen zusammenfassenden betrachtung uber die erblichen blutstruckeren des Menschen. Klinische Wochenschrift, 3, 1495–1497.CrossRefGoogle Scholar
Birdsell, J. B. (1993). Microevolutionary Patterns in Aboriginal Australia. New York: Oxford University Press.Google Scholar
Boas, F. (1912). Changes in bodily form of descendents of immigrants. American Anthropologist, 14, 530–562.CrossRefGoogle Scholar
Boren, T., Falk, P., Roth, K. A., et al. (1993). Attachment of Helicobactor pylori to human gastric epithelium mediated by blood group antigens. Science, 262, 1892–1895.CrossRefGoogle Scholar
Boyd, W. C. (1950). Genetics and the Races of Man: an Introduction to Modern Physical Anthropology. Boston: Little, Brown, and Company.Google Scholar
Boyd, W. C. (1963a). Genetics and the human race. Science, 140, 1057–1064.CrossRefGoogle ScholarPubMed
Boyd, W. C. (1963b). Four achievements of the genetical method in physical anthropology. American Anthropologist, 65, 243–252.CrossRefGoogle Scholar
Brace, C. L. (2005). “Race” Is A Four-Letter Word. Oxford: Oxford University Press.Google Scholar
Buchi, E. C. (1968). Somatic groups composing the modern populations of India. In Proceedings of Eighth International Congress of Anthropological and Ethnological Sciences. Tokyo: Science Council of Japan, pp. 154–162.Google Scholar
Buettner-Janusch, J. (1966). Origins of Man. Physical Anthropology. New York: John Wiley and Sons.Google Scholar
Cavalli-Sforza, L. L. and Bodmer, W. F. (1999). The Genetics of Human Populations. Mineola, NY: Dover Publications.Google Scholar
Cavalli-Sforza, L. L., Menozzi, P. and Piazza, A. (1994). The History and Geography of Human Genes. Princeton: Princeton University Press.Google Scholar
Chakravarti, A. and Chakraborty, R. (1978). Elevated frequency of Tay–Sachs disease among Ashkenazic Jews unlikely by genetic drift alone. American Journal of Human Genetics, 30, 256–261.Google ScholarPubMed
Chown, B. and Lewis, M. (1953). The ABO, MNSs, P, Rh, Lutheran, Kell, Lewis, Duffy and Kidd blood groups and the secretor status of the Blackfoot Indians of Alberta, Canada. American Journal of Physical Anthropology, 11, 369–383.CrossRefGoogle Scholar
Crawford, M. H. (1973). The use of genetic markers of the blood in the study of the evolution of human populations. In Methods and Theories of Anthropological Genetics, Crawford, M. H. and Workman, P. L. (eds). Albuquerque, NM: University of New Mexico Press, pp. 19–38.Google Scholar
Crawford, M. H. (ed.) (1984). Current Developments in Anthropological Genetics, vol. 3. Black Caribs. A Case Study in Biocultural Adaptation. New York: Plenum Press.
Crawford, M. H. (ed.) (2007). Anthropological Genetics: Theory, Methods and Applications. New York: Cambridge University Press.
Crawford, M. H. and Mielke, J. H. (ed.) (1982). Current Developments in Anthropological Genetics, vol. 2. New York: Plenum Press.CrossRef
Crawford, M. H. and Workman, P. L. (ed.) (1973). Methods and Theories of Anthropological Genetics. Albuquerque, NM: University of New Mexico Press.
Crawford, M. H., Leyshon, W. C., Brown, K., et al. (1974). Human Biology in Mexico, part 2: a comparison of blood group, serum, and red cell enzyme frequencies, and genetic distances of the Indian populations of Mexico. American Journal of Physical Anthropology, 41, 251–268.CrossRefGoogle Scholar
Mattos, L. C., Cintra, J. R., Sanches, F. E., et al. (2002). ABO, Lewis, secretor and non-secretor phenotypes in patients infected or uninfected by the Helicobacter pylori bacillus. São Paulo Medical Journal, 120(2), doi: 10.1590/S1516–31802002000200006.CrossRefGoogle ScholarPubMed
Drayna, D., Coon, H., Kim, U. K., et al. (2003). Genetic analysis of a complex trait in the Utah Genetic Reference Project: a major locus for PTC taste ability on chromosome 7q and a secondary locus on chromosome 16p. Human Genetics, 112, 567–572.Google Scholar
Duggleby, C. R. (1978). Blood group antigens and the population genetics of Macaca mulatta on Cayo Santiago. American Journal of Physical Anthropology, 48, 35–40.CrossRefGoogle Scholar
Eaton, J. W. and Gavan, J. A. (1965). Sensitivity to P-T-C among primates. American Journal of Physical Anthropology, 23, 381–388.CrossRefGoogle ScholarPubMed
Eaton, J. W., Brandt, P., Mahoney, J. R., et al. (1982). Haptoglobin: a natural bacteriostat. Science, 215, 691–693.CrossRefGoogle ScholarPubMed
Etcheverry, R. (1967). Blood groups in natives of Easter Island. Nature, 216, 690–691.CrossRefGoogle ScholarPubMed
Fraikor, A. L. (1977). Tay–Sachs disease: genetic drift among the Ashkenazi Jews. Social Biology, 24(2), 117–134.CrossRefGoogle Scholar
Friedlaender, J. S. (1975). Patterns of Human Variation: the Demography, Genetics, and Phenetics of Bougainville Islanders. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Friedlaender, J. S. (ed.) (1987). The Solomon Islands Project. Oxford: Clarendon Press.
Friedman, M. J. and Trager, W. (1981). The biochemistry of resistance to malaria. Scientific American, 244(3), 154–164.CrossRefGoogle ScholarPubMed
Frisch, A., Colombo, R., Michaelovsky, E., et al. (2004). Origin and spread of the 1278insTATC mutation causing Tay–Sachs disease in Ashkenazi Jews: genetic drift as a robust and parsimonious hypothesis. Human Genetics, 114, 366–376.CrossRefGoogle ScholarPubMed
Giblett, E. R. (1969). Genetic Markers in Human Blood. Oxford: Blackwell Scientific Publications.Google Scholar
Glass, R. I., Holmgren, J., Haley, C. E., et al. (1985). Predisposition for cholera of individuals with O blood group: possible evolutionary significance. American Journal of Epidemiology, 121, 791–796.CrossRefGoogle Scholar
Greenberg, J. H., Turner, C. G. and Zegura, S. L. (1986). The settlement of the Americas: a comparison of the linguistic, dental and genetic evidence. Current Anthropology, 27, 477–497.CrossRefGoogle Scholar
Hamblin, M. T. and Di Rienzo, A. (2000). Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. American Journal of Human Genetics, 66, 1669–1679.CrossRefGoogle ScholarPubMed
Harper, P. S. and Sunderland, E. (1986). Genetic and Population Studies in Wales. Cardiff: University of Wales Press.Google Scholar
Harris, H. (1980). The Principles of Human Biochemical Genetics, 3rd edn. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
He, W., Neil, S., Kukarni, H., et al. (2008). Duffy antigen receptor for chemokines mediates trans-infection of HIV-1 from red blood cells to target cells and affects HIV-AIDS susceptibility. Cell Host and Microbe, 4, 52–62.CrossRefGoogle ScholarPubMed
Hirschfeld, J. (1959). Immuno-electrophoretic demonstration of qualitative differences in human sera and their relation to the haptoglobins. Acta Pathologica et Microbiologica Scandinavica, 47, 160–168.CrossRefGoogle Scholar
Hirschfeld, L. and Hirschfeld, H. (1919). Serological differences between the blood of different races. Lancet, 18, 675–679.CrossRefGoogle Scholar
Jackson, F. L. C. (2000). Human adaptations to infectious disease. In Human Biology. An Evolutionary and Biocultural Perspective, Stinson, S., Bogin, B., Huss-Ashmore, R., et al. (eds). New York: Wiley-Liss, pp. 273–293.Google Scholar
Jamison, P. L., Zegura, S. L. and Milan, F. A. (1978). Eskimos of Northwestern Alaska: a Biological Perspective. Stroudsburg, PA: Dowden, Hutchinson, and Ross.Google Scholar
Jenkins, T., Harpending, H. and Nurse, G. T. (1978). Genetic distances among certain Southern African populations. In Evolutionary Models and Studies in Human Diversity, Meier, R. J., Otten, C. M. and Abdel-Hameed, F. (eds). The Hague: Mouton Publishers, pp. 227–243.Google Scholar
Labie, D., Pagnier, J., Wajcman, H., et al. (1986). The genetic origin of the variability of the phenotypic expression of the Hb S gene. In Genetic Variation and its Maintenance, Roberts, D. F. and DeStefano, G. F. (eds). Cambridge: Cambridge University Press, pp. 149–156.CrossRefGoogle Scholar
Landsteiner, K. (1901). Uber agglutinationserscheinungen normalen menschlichen blutes. Wiener Klinische Wochenschrift, 14, 1132–1134.Google Scholar
Lasker, G. W. (1946). Migration and physical differentiation. American Journal of Physical Anthropology, 4, 273–300.CrossRefGoogle ScholarPubMed
Lefevre-Witier, P. and Verges, H. (1978). Genetic structure of Ideles. In Evolutionary Models and Studies in Human Diversity, Meier, R. J., Otten, C. M. and Abdel-Hameed, F. (eds). The Hague: Mouton Publishers, pp. 255–277.Google Scholar
Levy, A. P., Hochberg, I., Jablonski, K., et al. (2002). Haptoglobin phenotype is an independent risk factor for cardiovascular disease in individuals with diabetes: the strong heart study. Journal of the American College of Cardiology, 40, 1984–1990.CrossRefGoogle ScholarPubMed
Lindén, S., Mahdavi, J., Semino-Mora, C., et al. (2008). Role of ABO secretor status in mucosal innate immunity and H. pylori infection. PLoS Pathogens 4(1), e2.CrossRefGoogle ScholarPubMed
Livingstone, F. B. (1958). Anthropological implications of sickle cell gene distribution in West Africa. American Anthropologist, 60, 533–562.CrossRefGoogle Scholar
Livingstone, F. B. (1984). The Duffy blood groups, vivax malaria, and malaria selection in human populations. Human Biology, 56, 413–425.Google ScholarPubMed
Livingstone, F. B. (1985). Frequencies of Hemoglobin Variants. New York: Oxford University Press.Google Scholar
Livingstone, F. B. (1989). Who gave whom hemoglobin S: the use of restriction site haplotype variation for the interpretation of the evolution of the βs-globin gene. American Journal of Human Biology, 1, 289–302.CrossRefGoogle ScholarPubMed
Livingstone, F. B., Gershowitz, H., Neel, J. V., et al. (1960). The distribution of several blood group genes in Liberia, the Ivory Coast, and Upper Volta. American Journal of Physical Anthropology, 18, 161–178.CrossRefGoogle ScholarPubMed
Llop, E. and Rothhammer, F. (1988). A note on the presence of blood groups A and B in pre-Columbian South America. American Journal of Physical Anthropology, 75, 107–111.CrossRefGoogle Scholar
Malhotra, K. C. (1978). Microevolutionary dynamics among Gavdas of Goa. In Evolutionary Models and Studies in Human Diversity, Meier, R. J., Otten, C. M. and Abdel-Hameed, F. (eds). The Hague: Mouton Publishers, pp. 279–314.Google Scholar
Marks, J. (1995). Human Biodiversity. Genes, Race, and History. New York: Aldine de Gruyter.Google Scholar
M'charek, A. (2005). The Human Genome Diversity Project. An Ethnography of Scientific Practice. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Meier, R. J. (1969). The Easter Islander: a study in human biology. PhD thesis, University of Wisconsin, Madison, WI, USA.Google Scholar
Meier, R. J. (1980). Anthropological dermatoglyphics: a review. Yearbook of Physical Anthropology, 23, 147–178.CrossRefGoogle Scholar
Melartin, L. and Blumberg, B. S. (1966). Albumin Naskapi: a new variant of serum albumin. Science, 153, 1664–1666.CrossRefGoogle ScholarPubMed
Micle, E., Kobilyansky, M., Nathan, M., et al. (1977). ABO-typing of ancient skeletons from Israel. American Journal of Physical Anthropology, 47, 89–92.CrossRefGoogle ScholarPubMed
Mielke, J. H. and Crawford, M. H. (eds) (1980). Current Developments in Anthropological Genetics, vol. 1. New York: Plenum Press.CrossRef
Mielke, J. H., Koningsberg, L. W. and Relethford, J. H. (2006). Human Biological Variation. New York: Oxford University Press.Google Scholar
Mohr, J. (1951). Search for linkage between Lutheran blood group and other hereditary characters. Acta Pathologica et Microbiologica Scandinavica, 28, 207–210.CrossRefGoogle ScholarPubMed
Molnar, S. (2006). Human Variation: Races, Types and Ethnic Groups, 6th edn. Upper Saddle River, NJ: Pearson/Prentice Hall.Google Scholar
Montagu, M. F. A. (1960). An Introduction to Physical Anthropology, 3rd edn. Springfield, IL: Charles C. Thomas.CrossRefGoogle Scholar
Montagu, M. F. A. (1964). The concept of race. In The Concept of Race, Montagu, M. F. A. (ed.). London: Collier-Macmillan, pp. 12–28.Google Scholar
Mourant, A. E. (1954). Distribution of Human Blood Groups. Oxford: Blackwell Scientific Publications.Google Scholar
Mourant, A. E. (1983). Blood Groups and Anthropology. London: Oxford University Press.Google Scholar
Mourant, A. E., Kopec, A. C. and Domaniewska-Sobczak, K. (1976). The Distribution of the Human Blood Groups and Other Polymorphisms. Oxford: Oxford University Press.Google Scholar
Neel, J. V. and Ward, R. H. (1972). The genetic structure of a tribal population, the Yanomama Indians, part six: analysis by F-statistics (including a comparison with Makiritare and Xavante). Genetics, 72, 639–666.Google Scholar
Neel, J. V., Salzano, F. M., Junqueira, P. C., et al. (1964). Studies on the Xavante Indians of the Brazilian Mato Grosso. American Journal of Human Genetics, 16, 52–140.Google ScholarPubMed
Niswander, J. D., Brown, K. S., Iba, B. Y., et al. (1970). Population studies on southwestern Indian tribes. I. History, culture, and genetics of the Papago. American Journal of Human Genetics, 22, 7–23.Google ScholarPubMed
Omoto, K. (1978). Blood protein polymorphisms and the problem of genetic affinities of the Ainu. In Evolutionary Models and Studies in Human Diversity, Meier, R. J., Otten, C. M. and Abdel-Hameed, F. (eds). The Hague: Mouton Publishers, pp. 333–341.Google Scholar
O'Rourke, D. (2000). Genetics, geography, and human variation. In Human Biology. An Evolutionary and Biocultural Perspective, Stinson, S.Bogin, B., Huss-Ashmore, R., et al. (eds). New York: Wiley-Liss, pp. 87–133.Google Scholar
O'Rourke, D. (2006). Blood groups, immunoglobulins, and genetic variation. In Environment, Origins, and Population, vol. 3. Ubelaker, D. H. (ed.). Washington, DC: Smithsonian Institution, pp. 762–776.Google Scholar
Osborne, R. H. (1958). Serology in physical anthropology. American Journal of Physical Anthropology, 16, 187–195.CrossRefGoogle Scholar
Ottenberg, R. (1925). A classification of human races based on geographic distribution of blood groups. Journal of the American Medical Association, 84, 1393–1395.CrossRefGoogle Scholar
Race, R. R. and Sanger, R. (1962). Blood Groups in Man, 4th edn. Philadelphia: F. A. Davis.Google Scholar
Reid, M. E. and Lomas-Francis, C. (1997). The Blood Group Antigen FactsBook. San Diego, CA: Harcourt Brace and Company.Google Scholar
Relethford, J. H. (2004). Global patterns of isolation by distance based on genetic and morphological data. Human Biology, 76, 499–513.CrossRefGoogle ScholarPubMed
Relethford, J. H. and Harpending, H. C. (1995). Ancient differences in population size can mimic a recent African origin of modern humans. Current Anthropology, 36, 667–674.CrossRefGoogle Scholar
Rhoads, J. G. and Friedlaender, J. S. (1987). Blood polymorphism variation in the Solomon Islands. In The Solomon Islands Project, Friedlaender, J. S. (ed.). Oxford: Clarendon Press, pp. 125–154.Google Scholar
Robson, K. J. H., Lehmann, D. J., Wimhurst, V. L. C., et al. (2004). Synergy between the C2 allele of transferrin and the C282Y allele of the haemochromatosis gene (HFE) as risk factors for developing Alzheimer's disease. Journal of Medical Genetics, 41, 261–265.CrossRefGoogle ScholarPubMed
Roychoudhury, A. K. and Nei, M. (1988). Human Polymorphic Genes. World Distribution. New York: Oxford University Press.Google Scholar
Sahi, T. (1974). The inheritance of selective adult-type lactose malabsorption. Scandinavian Journal of Gastroenterology, 9(suppl. 30), 1–73.Google Scholar
Sanghvi, L. D. (1953). Comparison of genetical and morphological methods for a study of biological differences. American Journal of Physical Anthropology, 11, 385–404.CrossRefGoogle ScholarPubMed
Schanfield, M. S. (1980). The anthropological usefulness of polymorphic systems: HLA and immunological allotypes. In Current Developments in Anthropological Genetics, vol. 1, Mielke, J. H. and Crawford, M. H. (eds). New York: Plenum Press, pp. 65–85.CrossRefGoogle Scholar
Schanfield, M. S. and Fudenberg, H. H. (1978). The anthropological usefulness of IgA allotypic markers. In Evolutionary Models and Studies in Human Diversity, Meier, R. J., Otten, C. M. and Abdel-Hameed, F. (eds), The Hague: Mouton Publishers, pp. 343–351.Google Scholar
Shapiro, H. L. and Hulse, F. (1940). Migration and Environment. New York: Oxford University Press.Google Scholar
Smithies, O. (1955). Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults. Biochemical Journal, 61, 629–641.CrossRefGoogle ScholarPubMed
Smithies, O. (1958). Third allele at the serum β-globulin locus in humans. Nature, 181, 1203–1204.CrossRefGoogle ScholarPubMed
Snyder, L. H. (1930). The “laws” of serologic race-classification studies in human inheritance IV. Human Biology, 2, 128–133.Google Scholar
Steel, C. M., Beatson, D., Cuthbert, R. J. G., et al. (1988). HLA haplotype A1 B8 DR3 as a risk factor for HIV related disease. Lancet, 331, 1185–1188.CrossRefGoogle Scholar
Suarez, B. K., Crouse, J. D. and O'Rourke, D. H. (1985). Genetic variation in North American populations: the geography of gene frequencies. American Journal of Physical Anthropology, 67, 217–232.CrossRefGoogle ScholarPubMed
Szathmáry, E. J. E. (1983). Dogrib Indians of the NWT, Canada: genetic diversity and genetic relationship among subarctic Indians. Annals of Human Biology, 10, 147–162.CrossRefGoogle Scholar
Szathmáry, E. J. E., Ferrell, R. E. and Gershowitz, H. (1983). Genetic differentiation in Dogrib Indians: serum protein and erythrocyte enzyme variation. American Journal of Physical Anthropology, 62, 249–254.CrossRefGoogle ScholarPubMed
Thieme, F. P. and Otten, C. M. (1957). The unreliability of blood typing aged bone. American Journal of Physical Anthropology, 15, 387–397.CrossRefGoogle ScholarPubMed
Tills, D., Kopec, A. C. and Tills, R. E. (1983). The Distribution of the Human Blood Groups and other Polymorphisms. Oxford: Oxford University Press.Google Scholar
Vogel, F. and Chakravarartti, M. R. (1966). ABO blood groups and smallpox in a rural population of Bengal and Bihar (India). Human Genetics, 3, 166–180.CrossRefGoogle Scholar
Vogel, F. and Motulsky, A. G. (1997). Human Genetics: Problems and Approaches, 3rd edn. Berlin, Springer.CrossRefGoogle Scholar
Volkman, S. K., Barry, A. E., Lyons, E. J., et al. (2001). Recent origin of Plasmodium falciparum from a single progenitor. Science, 293, 482–484.CrossRefGoogle ScholarPubMed
Washburn, S. L. (1951). The new physical anthropology. Transactions of the New York Academy of Sciences Series II, 13, 298–304.CrossRefGoogle ScholarPubMed
Weiner, J. S. and Lourie, J. A. (1969). Human Biology. A Guide to Field Methods. IBP Handbook No. 9. Philadephia, PA: F. A. Davis Company.Google Scholar
Weiss, K. M. (1993). Genetic Variation and Human Disease. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Wiener, A. S. (1948). Blood grouping tests in anthropology. American Journal of Physical Anthropology, 6, 236–237.Google ScholarPubMed
Wooding, S. (2006). Phenylthiocarbamide: a 75-year adventure in genetics and natural selection. Genetics, 172, 2015–2023.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×