Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-26T20:31:52.721Z Has data issue: false hasContentIssue false

61 - Modeling the dynamics of tropical montane cloud forest in central Veracruz, Mexico

from Part VI - Effects of climate variability and climate change

Published online by Cambridge University Press:  03 May 2011

N. Rüger
Affiliation:
UFZ Centre for Environmental Research, Germany
G. Williams-Linera
Affiliation:
Instituto de Ecología, A.C., Mexico
A. Huth
Affiliation:
Helmholtz Centre for Environmental Research – UFZ, Germany
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
F. N. Scatena
Affiliation:
University of Pennsylvania
L. S. Hamilton
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The area covered by tropical montane cloud forest (TMCF) in central Veracruz, eastern Mexico, has decreased rapidly over the last 50 years. Deforestation has been accompanied by fragmentation of the remaining forest. Restoring the TMCF and the important ecological services it provides (e.g. high-quality water, soil protection, biodiversity conservation) requires an understanding of ecosystem dynamics. This study investigates the dynamics of fragments of old-growth TMCF in central Veracruz, with particular reference to regeneration after abandonment of other land uses. A modified version of the process-based forest growth model FORMIND was used. FORMIND is individual-tree-oriented and simulates the spatio-temporal dynamics of an uneven-aged mixed forest stand. Model modifications included: (i) grouping of tree species according to their light demands and maximum height, (ii) defining regeneration, growth, and mortality parameters for each species group, and (iii) developing allometric relations of tree geometry. Model verification was achieved by comparing model outcomes and field data. The model was able to reproduce the structure of old-growth TMCF. Simulations of forest regeneration revealed that aggregated variables (e.g. total stem number and total basal area) reached values similar to those of old-growth forest after approximately 80 years, whereas the proportion of basal area of the different species groups continued to change until ~300 years after the start of succession. These insights can be used to support regional decision-making in forest conservation and restoration planning.

Type
Chapter
Information
Tropical Montane Cloud Forests
Science for Conservation and Management
, pp. 584 - 594
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar-Rodríguez, S., Abundiz-Bonilla, L., and Barajas-Morales, J. (2001). Comparación de la gravedad específica y características anatómicas de la madera de dos comunidades vegetales en México. Anales del Instituto de Biología, Universidad Autónoma de México, Serie Botánica 72: 171–185.Google Scholar
Aiba, , S., Takyu, M., and Kitayama, K. (2005). Dynamics, productivity and species richness of tropical rainforests along elevational and edaphic gradients on Mount Kinabalu, Borneo. Ecological Research 20: 279–286.CrossRefGoogle Scholar
Álvarez-Aquino, C. (2002). Regeneration of tree species in Mexican cloud forest. Ph.D. thesis, University of Edinburgh, Edinburgh, UK.Google Scholar
Álvarez-Aquino, C., Williams-Linera, G., and Newton, A. C. (2004). Experimental native tree seedling establishment for the restoration of a Mexican cloud forest.Restoration Ecology 12: 412–418.CrossRefGoogle Scholar
Álvarez-Aquino, C., Williams-Linera, G., and Newton, A. C. (2005). Disturbance effects on the seed bank of Mexican cloud forest fragments. Biotropica 37: 337–342.CrossRefGoogle Scholar
Arriaga, L. (1987). Perturbaciones naturales por la caída de árboles. In El Bosque mesófilo de montaña de Tamaulipas, pp. 133–152. México, DF: Instituto de Ecología.Google Scholar
Arriaga, L. (2000). Types and causes of tree mortality in a tropical montane cloud forest of Tamaulipas, Mexico. Journal of Tropical Ecology 16: 623–636.CrossRefGoogle Scholar
Bracho, R., and Puig, H. (1987). Producción de hojarasca y fenología de ocho especies importantes del estrato arbóreo. In El Bosque mesófilo de montaña de Tamaulipas, pp. 81–106. México, DF: Instituto de Ecología.Google Scholar
Chave, J. (1999). Study of structural, successional and spatial patterns in tropical rain forests using TROLL, a spatially explicit forest model. Ecological Modelling 124: 233–254.CrossRefGoogle Scholar
Dillenburg, L. R., Teramura, A. H., Forseth, I. N., and Whigham, D. F. (1995). Photosynthetic and biomass allocation responses of Liquidambar styraciflua (Hamamelidaceae) to vine competition. American Journal of Botany 82: 454–461.CrossRefGoogle Scholar
Ditzer, T., Glauner, R., Förster, M., Köhler, P., and Huth, A. (2000). The process-based stand growth model FORMIX3-Q applied in a GIS environment for growth and yield analysis in a tropical rain forest. Tree Physiology 20: 367–381.CrossRefGoogle Scholar
Ellis, A. R., Hubbel, S. P., and Potvin, C. (2000). In situ field measurements of photosynthetic rates of tropical tree species: a test of the functional group hypothesis. Canadian Journal of Botany 78: 1336–1347.CrossRefGoogle Scholar
Fleischbein, K., Wilcke, W., Goller, R., et al. (2006). Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties. Hydrological Processes 19: 1355–1371.CrossRefGoogle Scholar
Glauner, R., Ditzer, T., and Huth, A. (2003). A new approach for AAC calculation in tropical moist forest: an example from Sabah, Malaysia. Canadian Journal of Forest Research 33: 1–15.Google Scholar
Gomez-Cardenas, M. (2009). Transpiration in contrasting vegetation cover types in the tropical montane cloud forest belt of eastern Mexico. Ph.D. thesis, University of Iowa, Ames, IA, USA.Google Scholar
Grimm, V., Berger, U., Bastiansen, F., et al. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling 198: 115–126.CrossRefGoogle Scholar
Hafkenscheid, R. (2000). Hydrology and biogeochemistry of tropical montane rain forests of contrasting stature in the Blue Mountains, Jamaica. PhD thesis, VU University Amsterdam, Amsterdam, the Netherlands. Also available at http://dare.ubvu.vu.nl/bitstream/1871/12734/1/tekst.pdf.Google Scholar
Homeier, J., and Breckle, S. W. (2008). Gap dynamics in a tropical lower montane forest in South Ecuador. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 311–317. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Hughes, R. F., Kauffman, J. B., and Jaramillo, V. J. (1999). Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology 80: 1892–1907.Google Scholar
Huth, A., and Ditzer, T. (2000). Simulation of the growth of a dipterocarp lowland rain forest with FORMIX3. Ecological Modelling 134: 1–25.CrossRefGoogle Scholar
Huth, A., and Ditzer, T. (2001). Long-term impacts of logging in a tropical rain forest: a simulation study. Forest Ecology and Management 142: 33–51.CrossRefGoogle Scholar
Huth, A., Ditzer, T., and Bossel, H. (1998). The Rain Forest Model FORMIX3. Göttingen, Germany: Erich Goltze Verlag.Google Scholar
Huth, A., Drechsler, M., and Köhler, P. (2005). Using multicriteria decision analysis and a forest growth model to assess impacts of tree harvesting in dipterocarp lowland rain forests. Forest Ecology and Management 207: 215–232.CrossRefGoogle Scholar
,INECOL-VUA (2007). Medición y análisis de los efectos de distintos tipos de cubierta forestal sobre los procesos climáticos, hidrológicos y erosivos en Veracruz, México. Xalapa, Mexico: Instituto de Ecologia, and Amsterdam, the Netherlands: VU University.Google Scholar
Kammesheidt, L., Köhler, P., and Huth, A. (2001). Sustainable timber harvesting in Venezuela: a modeling approach. Journal of Applied Ecology 38: 756–770.CrossRefGoogle Scholar
Kammesheidt, L., Köhler, P., and Huth, A. (2002). Simulating logging scenarios in secondary forest embedded in a fragmented neotropical landscape. Forest Ecology and Management 170: 89–105.CrossRefGoogle Scholar
Kira, T. (1978). Community architecture and organic matter dynamics in tropical lowland rainforests of Southeast Asia with special reference to Pasoh Forest, West Malaysia. In Tropical Trees as Living Systems, eds. Tomlinson, P. B. and Zimmermann, M. H., pp. 26–30. Cambridge, UK: Cambridge University Press.Google Scholar
Köhler, P. (2000). Modelling antropogenic impacts on the growth of tropical rain forests. Ph.D. thesis, University of Kassel, Kassel, Germany.Google Scholar
Köhler, P., and Huth, A. (1998). The effect of tree species grouping in tropical rain forest modelling: simulation with the individual based model FORMIND. Ecological Modelling 109: 301–321.CrossRefGoogle Scholar
Köhler, P., and Huth, A. (2004). Simulating growth dynamics in a South-East Asian rainforest threatened by recruitment shortage and tree harvesting. Climate Change 67: 95–117.CrossRefGoogle Scholar
Köhler, P., and Huth, A. (2007). Impacts of recruitment limitation and canopy disturbance on tropical tree species richness. Ecological Modelling 203: 511–517.CrossRefGoogle Scholar
Köhler, P., Huth, A., and Ditzer, T. (2000). Concepts for the aggregation of tropical tree species into functional types and the application on Sabah's dipterocarp lowland rain forests. Journal of Tropical Ecology 16: 591–602.CrossRefGoogle Scholar
Köhler, P., Ditzer, T., Ong, R. C., and Huth, A. (2001). Comparison of measured and modelled growth on permanent plots in Sabahs rain forest. Forest Ecology and Management 144: 101–111.CrossRefGoogle Scholar
Köhler, P., Chave, J., Riera, B., and Huth, A. (2003). Simulating long-term response of tropical wet forests to fragmentation. Ecosystems 6: 129–143.Google Scholar
Larcher, W. (2001). Ökophysiologie der Pflanzen. Stuttgart, Germany: Verlag Eugen Ullmer.Google Scholar
Leuschner, Ch., Moser, G., Bertsch, C., Röderstein, M., and Hertel, D. (2007). Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology 8: 219–230.CrossRefGoogle Scholar
Liu, J., and Ashton, P. S. (1999). Simulating effects of landscape context and timber harvest on tree species diversity. Ecological Applications 9: 186–201.CrossRefGoogle Scholar
Monsi, M., and Saeki, T. (1953). Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Japanese Journal of Botany 14: 22–52.Google Scholar
Moser, G., Hertel, D., and Leuschner, Ch. (2007). Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10: 924–935.CrossRefGoogle Scholar
Motzer, T. (2003). Bestandesklima, Energiehaushalt und Evapotranspiration eines neotropischen Bergregenwaldes. Forstmeteorologische und ökophysiologische Untersuchungen in den Anden Süd-Ecuadors. Mannheim, Germany: Department of Geography, University of Mannheim.Google Scholar
Motzer, T. (2005). Micrometeorological aspects of a tropical mountain forest. Agricultural and Forest Meteorology 135: 230–240.CrossRefGoogle Scholar
Muñiz-Castro, M. A., Williams-Linera, G., and Rey-Benayas, J. M. (2006). Distance effect from cloud forest fragments on plant community structure in abandoned pastures in Veracruz, Mexico. Journal of Tropical Ecology 22: 431–440.CrossRefGoogle Scholar
Muñoz-Villers, L. E., and López-Blanco, J. (2008). Land use/cover changes using Landsat TM/ETM images in a tropical and biodiverse mountainous area of central-eastern Mexico. International Journal of Remote Sensing 29: 71–93.CrossRefGoogle Scholar
Ponette-González, A. G., Weathers, K. C., and Curran, L. M. (2009). Water inputs across a tropical montane landscape in Veracruz, Mexico: synergistic effects of land cover, rain and fog seasonality, and interannual precipitation variability. Global Change Biology, doi:10.1111/j.1365–2486.2009.01985.x.CrossRef
Poorter, L., and Arets, E. J. M. M. (2003). Light environment and tree strategies in a Bolivian tropical moist forest: an evaluation of the light partitioning hypothesis. Plant Ecology 166: 295–306.CrossRefGoogle Scholar
Ramírez-Marcial, N., Ochoa-Gaona, S., González-Espinosa, M., and Quintana-Ascencio, P. F. (1998). Análisis florístico y sucesional en la Estación Biológica Cerro Huitepec, Chiapas, México. Acta Botánica Mexicana 44: 59–85.CrossRefGoogle Scholar
Rossignol, J. P. (1987). Los estudios morfoedafológicos en el área Xalapa-Coatepec, Veracruz. In La morfoedafología en la ordenación de los paisajes rurales, eds. Geissert, D. and Rossignol, J. P., pp. 23–35. Xalapa, México: INIREB, ORSTOM.Google Scholar
Rüger, N., Gutiérrez, A. G., Kissling, W. D., Armesto, J. J., and Huth, A. (2007). Ecological impacts of different harvesting scenarios for temperate evergreen rain forest in southern Chile: a simulation experiment. Forest Ecology and Management 252: 52–66.CrossRefGoogle Scholar
Rüger, N., Williams-Linera, G., Kissling, W. D., and Huth, A. (2008). Long-term impacts of fuelwood extraction on a tropical montane cloud forest. Ecosystems 11: 868–881.CrossRefGoogle Scholar
Ryan, M. G. (1991). Effects of climate change on plant respiration. Ecological Applications 1: 157–167.CrossRefGoogle ScholarPubMed
Saldarriaga, J. G., West, D. C., Tharp, M. L., and Uhl, C. (1988). Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. Journal of Ecology 76: 983–958.CrossRefGoogle Scholar
Shugart, H. H. (1998). Terrestrial Ecosystems in Changing Environments. Cambridge, UK: Cambridge University Press.Google Scholar
Thornley, H. M. J., and Johnson, I. R. (1990). Plant and Crop Modelling: A Mathematical Approach to Plant and Crop Physiology. Oxford, UK: Clarendon Press.Google Scholar
Vanclay, J. K. (1995). Growth models for tropical forests: a synthesis of models and methods. Forest Science 41: 7–42.Google Scholar
Williams-Linera, G. (1991). Nota sobre la estructura del estrato arbóreo del bosque mesófilo de montaña en los alrededores del campamento “El Triunfo”, Chiapas. Acta Botánica Mexicana 13: 1–7.Google Scholar
Williams-Linera, G. (1993). Vegetación de bordes de un bosque nublado en el Parque Ecológico Clavijero, Xalapa, Veracruz, México. Revista de Biología Tropical 41: 443–453.Google Scholar
Williams-Linera, G. (1996). Crecimiento diamétrico de árboles caducifolios y perennifolios del bosque mesófilo de montaña en los alrededores de Xalapa. Madera y Bosques 2: 53–65.CrossRefGoogle Scholar
Williams-Linera, G. (2002). Tree species richness complementarity, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodiversity and Conservation 11: 1825–1843.CrossRefGoogle Scholar
Williams-Linera, G., Manson, R. H., and Isunza-Vera, E. (2002). La fragmentación del bosque mesófilo de montaña y patrones de uso del suelo en la región oeste de Xalapa, Veracruz, México. Madera y Bosques 8: 73–89.CrossRefGoogle Scholar
Zuill, H. A., and Lathrop, E. W. (1975). The structure and climate of a tropical montane rain forest and an associated temperate pine–oak–liquidambar forest in the Northern Highlands of Chiapas, Mexico. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Botánica 46: 73–118.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×