Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-13T09:47:31.954Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Mankin Mak
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Atmospheric Dynamics , pp. 476 - 480
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, D. A., Holton, J. R. and Leovy, C. B. (1987). Middle Atmospheric Dynamics. Academic Press.
Bannon, P. R. and Mak, M. (1986). A diagnosis of moist frontogenesis with an analytic model. J. Atmos. Sci. 43, 2017–2022.2.0.CO;2>CrossRefGoogle Scholar
Bjerknes, J. (1919). On the structure of moving cyclones. Gesfysiske Publikasioner, 1.Google Scholar
Boer, G. and Shepherd, T. (1983). Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci. 40, 164–184.2.0.CO;2>CrossRefGoogle Scholar
Bretherton, F. P. (1966). Critical layer instability in baroclinic flows. Quart. J. Roy. Meteorol. Soc. 92, 325–334.CrossRefGoogle Scholar
Cai, M. (1992). A physical interpretation for the stability property of a localized disturbance in a deformation flow. J. Atmos. Sci. 49, 2177–2182.2.0.CO;2>CrossRefGoogle Scholar
Cai, M. (2004). Local instability dynamics of storm tracks. In Observation, Theory, and Modeling of Atmospheric Variability, ed. Zhu, X.et al., World Scientific Publishing pp. 3–38.CrossRefGoogle Scholar
Cai, M. and Mak, M. (1987). On the multiplicity of equilibria of baroclinic waves. Tellus 39A, 116–137.CrossRefGoogle Scholar
Cai, M. and Mak, M. (1990). Symbiotic relation between planetary and synoptic scale waves. J. Atmos. Sci. 47, 2953–2968.2.0.CO;2>CrossRefGoogle Scholar
Cai, M. and Dool, H. M. (1992). Low frequency waves and traveling storm tracks. Part II: Three-dimensional structure. J. Atmos. Sci. 49, 2506–2524.2.0.CO;2>CrossRefGoogle Scholar
Chang, E. K. M., Lee, S. and Swanson, K. L. (2002). Storm track dynamics. J. Climate 15, 2163–2183.2.0.CO;2>CrossRefGoogle Scholar
Charney, J. G. (1947). The dynamics of long waves in a baroclinic westerly current. J. Meteor. 4, 135–162.2.0.CO;2>CrossRefGoogle Scholar
Charney, J. G. (1971). Geostrophic turbulence. J. Atmos. Sci. 28, 1087–1095.2.0.CO;2>CrossRefGoogle Scholar
Charney, J. G. and Drazin, P. G. (1961). Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66, 83–110.CrossRefGoogle Scholar
Charney, J. G. and Eliassen, A. (1964). On the growth of the hurricane depression. J. Atmos. Sci. 21, 68–75.2.0.CO;2>CrossRefGoogle Scholar
Charney, J. G. and Stern, M. (1962). On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci. 19, 159–172.2.0.CO;2>CrossRefGoogle Scholar
Craig, G. and Cho, H. R. (1988). Cumulus convection and CISK in midlatitudes, Part I. Polar lows and comma clouds. J. Atmos. Sci. 45, 2622–2640.2.0.CO;2>CrossRefGoogle Scholar
Cruz-Heredia, M. and Moore, G. W. K. (1999). Barotropic instability due to Kelvin wave-Rossby wave coupling. J. Atmos. Sci. 56, 2376–2383.2.0.CO;2>CrossRefGoogle Scholar
Deng, Y. and Mak, M. (2005). An idealized model study relevant to the dynamics of the midwinter minimum of the Pacific storm track. J. Atmos. Sci. 62, 1209–1225.CrossRefGoogle Scholar
Eady, E. T. (1949). Long waves and cyclone waves. Tellus 1, 33–52.CrossRefGoogle Scholar
Edmon, H. J., Hoskins, B. J. and McIntyre, M. E. (1980). Eliassen-Palm Cross Sections for the Troposphere. J. Atmos. Sci. 37, 2600–2616.2.0.CO;2>CrossRefGoogle Scholar
Ekman, V. W. (1905). On the influence of the Earth's rotation on ocean currents. Arch. Math. Astron. Phy. 2, 1–52.Google Scholar
Eliassen, A. and Palm, E. (1961). On the transfer of energy in stationary mountain waves. Geofys. Publ. 22 (8B.3), 1–23.Google Scholar
Emanuel, K. A. (1979). Inertial instability and mesoscale convective systems. Part I. Linear theory of inertial instability in rotating viscous fluids. J. Atmos. Sci. 12, 2425–2449.2.0.CO;2>CrossRefGoogle Scholar
Emanuel, K. A., Fantini, M. and Thorpe, A. J. (1987). Baroclinic instability in an environment of small stability to slantwise moist convection, Part I. Two-dimensional models. J. Atmos. Sci. 44, 1559–1573.2.0.CO;2>CrossRefGoogle Scholar
Ertel, H. (1942). Ein neuer hydrodynamischer Wirbesatz. Meteorol. Z. 59, 277–281.Google Scholar
Farrell, B. E. (1989). Optimal excitation of baroclinic waves. J. Atmos. Sci. 46, 163–172.2.0.CO;2>CrossRefGoogle Scholar
Ferrel, W. (1856). An essay on the winds and currents of the oceans. Nashville Journal of Medicine and Surgery.
Fjortoft, R. (1953). On the changes in the spectral distribution of kinetic energy for two dimensional nondivergent flow. Tellus 5, 225–230.CrossRefGoogle Scholar
Frederiksen, J. S. (1983). Disturbances and eddy fluxes in Northern Hemisphere flows: Instability of three dimensional January and July flows. J. Atmos. Sci. 40, 836–855.2.0.CO;2>CrossRefGoogle Scholar
Gill, A. E. (1982). Atmosphere-Ocean Dynamics. International Geophysics Series, vol. 30, Academic Press.Google Scholar
Green, A. E. and Naghdi, P. M. (1976). A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78, 237–246.CrossRefGoogle Scholar
Gyakum, J. R. (1983). On the evolution of the QEII storm, II. Dynamic and thermodynamic structure. Mon. Wea. Rev. 111, 1156–1173.2.0.CO;2>CrossRefGoogle Scholar
Hadley, G. (1735). Concerning the cause of the general trade winds. Philos. Trans., 39.CrossRefGoogle Scholar
Haynes, P. H. and McIntyre, M. E. (1990). On the conservation and impermeability theorems for potential vorticity. J. Atmos. Sci. 16, 2021–2031.2.0.CO;2>CrossRefGoogle Scholar
Heifetz, E., Bishop, C. H., Hoskins, B. J. and Methven, J. (2004). The counter-propagatinjg Rossby perspective on baroclinic instability. I: Mathematical basis. Quart. J. Roy. Meteorol. Soc. 130, 211–231.CrossRefGoogle Scholar
Held, I. M. and Hou, A. (1980). Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515–533.2.0.CO;2>CrossRefGoogle Scholar
Held, I. M. and Schneider, T. (1999). The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci. 56, 1688–1697.2.0.CO;2>CrossRefGoogle Scholar
Hide, R. (1966). Review article on the dynamics of rotating fluids and related topics in geophysical fluid mechanics. Bull. Amer. Meteorol. Soc. 47, 873–885.Google Scholar
Holton, J. R. (1983). The influence of gravity waves breaking on the general circulation of the middle atmosphere. J. Atmos. Sci. 40, 2497–2507.2.0.CO;2>CrossRefGoogle Scholar
Holton, J. R. (1992). An Introduction to Dynamic Meteorology, 3rd edn.Academic Press.Google Scholar
Hoskins, B. J. (1975). The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci. 32, 233–242.2.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J. (1982). The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech. 14, 131–151.CrossRefGoogle Scholar
Hoskins, B. J. and Bretherton, F. P. (1972). Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci. 29, 11–37.2.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J., McIntyre, M. E. and Robertson, A. W. (1985). On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteorol. Soc. 111, 877–946.CrossRefGoogle Scholar
Hsu, C-P. F. (1980). Air parcel motions during a numerically simulated sudden stratospheric warming. J. Atmos. Sci. 37, 2768–2792.2.0.CO;2>CrossRefGoogle Scholar
James, I. N. (1987). Suppression of baroclinic instability in horizontally sheared flows. J. Atmos. Sci. 44, 3710–3720.2.0.CO;2>CrossRefGoogle Scholar
James, I. N. (1994). Introduction to Circulating Atmospheres. Cambridge University Press.CrossRefGoogle Scholar
Kuo, H. L. (1949). Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteorol. 6, 105–122.2.0.CO;2>CrossRefGoogle Scholar
Kwon, H. J. and Mak, M. (1988). On the equilibration in nonlinear barotropic instability. J. Atmos. Sci. 45, 294–308.2.0.CO;2>CrossRefGoogle Scholar
Lee, B. D. and Wilhelmson, R. B. (1997). The numerical simulation of non-supercell tornadgenesis. Part I: Initiation and evolution of pretornadic misocyclone and circulations along a dry outflow boundary. J. Atmos. Sci. 54, 32–60.2.0.CO;2>CrossRefGoogle Scholar
Lindzen, R. S. and Hou, A. (1988). Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci. 45, 2416–2427.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. (1963). The mechanics of vacillation. J. Atmos. Sci. 20, 448–464.2.0.CO;2>CrossRefGoogle Scholar
Mak, M. (1982). On moist quasi-geostrophic baroclinic instability. J. Atmos. Sci. 39, 2028–2037.2.0.CO;2>CrossRefGoogle Scholar
Mak, M. (1985). Equilibration in nonlinear baroclinic instability. J. Atmos. Sci. 42, 1089–1101.2.0.CO;2>CrossRefGoogle Scholar
Mak, M. (1994). Cyclogenesis in a conditionally unstable moist baroclinic atmosphere. Tellus 46A, 14–33.CrossRefGoogle Scholar
Mak, M. (2001). Nonhydrostatic barotropic instability: Applicability to nonsupercell tornadogenesis. J. Atmos. Sci. 58, 1965–1977.2.0.CO;2>CrossRefGoogle Scholar
Mak, M. (2002). Wave-packet resonance: Instability of a localized barotropic jet. J. Atmos. Sci. 59, 823–836.2.0.CO;2>CrossRefGoogle Scholar
Mak, M. (2008). Dynamics of the mean Asian summer monsoon in a maximally simplified model. Q. J. R. Meteorol. Soc. 134, 429–437.CrossRefGoogle Scholar
Mak, M. and Bannon, P. R. (1984). Frontogenesis in a moist semigeostrophic model. J. Atmos. Sci. 41, 3485–3500.2.0.CO;2>CrossRefGoogle Scholar
Mak, M. and Cai, M. (1989). Local barotropic instability. J. Atmos. Sci. 46, 3289–3311.2.0.CO;2>CrossRefGoogle Scholar
Mak, M. and Deng, Y. (2007). Diagnostic and dynamical analyses of two outstanding aspects of storm tracks. Dyn. of Atmos. and Oceans 43, 80–99.CrossRefGoogle Scholar
Marshall, J. and Plumb, R. A. (2008). Atmospheric, Ocean and Climate Dynamics: An introductory text. Elsevier Academic Press.Google Scholar
Matsuno, T. (1966). Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Jpn. 44, 25–43.CrossRefGoogle Scholar
Matsuno, T. (1971). A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. 28, 1479–1494.2.0.CO;2>CrossRefGoogle Scholar
Merkine, L. (1977). Convective and absolute instability of baroclinic eddies. Geophys. Astrophys. Fluid Dyn. 9, 129–157.CrossRefGoogle Scholar
Mihaljan, J. M. (1963). The exact solution of the Rossby adjustment problem. Tellus 15, 150–154.CrossRefGoogle Scholar
Montmomery, M. T. and Farrel, B. F. (1991). Moist surface frontogenesis associated with interior potential vorticity anomalies in a semigeostrophic model. J. Atmos. Sci. 48, 343–367.2.0.CO;2>CrossRefGoogle Scholar
Nakamura, H. (1992). Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci. 49, 1629–1642.2.0.CO;2>CrossRefGoogle Scholar
Niino, H. and Misawa, N. (1984). An experimental and theoretical study of barotropic instability. J. Atmos. Sci. 41, 1992–2111.2.0.CO;2>CrossRefGoogle Scholar
Orlanski, I. and Chang, E. K. M. (1993). Ageostrophic geopotential fluxes in downstream and upstream development of baroclinic waves. J. Atmos. Sci. 50, 212–225.2.0.CO;2>CrossRefGoogle Scholar
Parker, D. J. and Thorpe, A. J. (1995). Conditional convective heating in a baroclinic atmosphere: A model of convective frontogenesis. J. Atmos. Sci. 52, 1699–1711.2.0.CO;2>CrossRefGoogle Scholar
Pedlosky, J. (1987). Geophysical Fluid Dynamics, 2nd edn. Springer-Verlag.CrossRefGoogle Scholar
Peixoto, J. P. and Oort, A. H. (1992). Physics of Climate. American Institute of Physics.Google Scholar
Phillips, N. A. (1954). Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus VI, 273–286.CrossRefGoogle Scholar
Pierrehumbert, R. T. (1984). Local and global baroclinic instability of zonally varying flow. J. Atmos. Sci. 41, 2141–2162.2.0.CO;2>CrossRefGoogle Scholar
Randel, W. J. and Held, I. M. (1991). Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci. 48, 688–697.2.0.CO;2>CrossRefGoogle Scholar
Randel, W., Udelhofen, P., Fleming, E., et al. (2004). The SPARC intercomparison of middle-atmosphere climatologies. J. Climate 17, 986–1003.2.0.CO;2>CrossRefGoogle Scholar
,Rayleigh, Lord (John William Strutt) (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170–177.
Rhines, P. B. (1975). Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417–443.CrossRefGoogle Scholar
Rodwell, M. J. and Hoskins, B. J. (1996). Monsoons and the dynamics of deserts. Quart. J. Roy. Meteorol. Soc. 122, 1385–1404.CrossRefGoogle Scholar
Rossby, C.-G. (1936). Dynamics of steady ocean currents in the light of experimental fluid mechanics. Mass. Inst. of Technology and Woods Hole Oc. Inst. Papers in Physical Oceanography and Meteorology 5 (1), 1–43.Google Scholar
Rossby, C.-G. (1938). On the mutual adjustment of pressure and velocity distributions in certain simple current systems, II. J. Marine Res. 1, 239–263.CrossRef
Rossby, C.-G.et al. (1939). Relations between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Marine Res. 2, 38–55.CrossRefGoogle Scholar
Salmon, R. (1980). Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn. 15, 167–211.CrossRefGoogle Scholar
Salmon, R. (1998). Lectures on Geophysical Fluid Dynamics. Oxford University Press.Google Scholar
Schneider, T., Held, I. M. and Garner, S. T. (2003). Boundary effects in potential vorticity dynamics. J. Atmos. Sci. 60, 1024–1040.2.0.CO;2>CrossRefGoogle Scholar
Schubert, S., Park, C.-K., Higgins, W., Moorthi, S. and Suarez, M. (1990). An Atlas of ECMWF Analysis (1980–87) Part I- First Moment Quantities. NASA Technical Memorandum 100–747.
Schubert, W. H., Hack, J. J., Dias, P. L. Silva and Fulton, S. R. (1980). Geostrophic adjustment in an axisymmetric vortex. J. Atmos. Sci. 37, 1464–1484.2.0.CO;2>CrossRefGoogle Scholar
Snyder, C. and Lindzen, R. S. (1991). Quasi-geostrophic wave-CISK in an unbounded baroclinic shear. J. Atmos. Sci. 48, 76–86.2.0.CO;2>CrossRefGoogle Scholar
Starr, V. P. (1968). Physics of Negative Viscosity Phenomena.McGraw-Hill.Google Scholar
Taylor, G. I. (1950). The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. Roy. Soc. Lond. A 201 (1065), 192–196.CrossRefGoogle Scholar
Thomson, W. (1879). On gravitational oscillations of rotating water. Proc. Roy. Soc. Edinburgh 10, 92–100.CrossRefGoogle Scholar
Thorncroft, C. D., Hoskins, B. J. and McIntyre, M. E. (1993). Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteorol. Soc. 119, 17–55.CrossRefGoogle Scholar
Ting, M. F. (1994). Maintenance of northern summer stationary waves in a GCM. J. Atmos. Sci. 51, 3286–3308.2.0.CO;2>CrossRefGoogle Scholar
Townsend, R. D. and Johnson, D. R. (1985). A diagnostic study of the isentropic zonally averaged mass circulation during the first GARP global experiment. J. Atmos. Sci. 42, 1565–1579.2.0.CO;2>CrossRefGoogle Scholar
Valdes, P. J. and Hoskins, B. J. (1989). Linear stationary wave simulations of the time-mean climatological flow. J. Atmos. Sci. 46, 2509–2527.2.0.CO;2>CrossRefGoogle Scholar
Vallis, G. K. (2006). Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Wakimoto, R. and Wilson, J. W. (1989). Non-supercell tornadoes. Mon. Wea. Rev. 117, 1113–1140.2.0.CO;2>CrossRefGoogle Scholar
Wang, H. (2000). Understanding the maintenance and seasonal transitions of the climatological stationary waves in the atmosphere. Ph.D. thesis, University of Illinois, Urbana-Champaign, IL, USA.Google Scholar
Whitaker, J. S. and Davis, C. A. (1994). Cyclogenesis in a saturated environment. J. Atmos. Sci. 51, 889–907.2.0.CO;2>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Mankin Mak, University of Illinois, Urbana-Champaign
  • Book: Atmospheric Dynamics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511762031.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Mankin Mak, University of Illinois, Urbana-Champaign
  • Book: Atmospheric Dynamics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511762031.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Mankin Mak, University of Illinois, Urbana-Champaign
  • Book: Atmospheric Dynamics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511762031.015
Available formats
×