Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T16:26:29.520Z Has data issue: false hasContentIssue false

14 - 7TM receptor functional selectivity

from PART IV - LIGAND PHARMACOLOGY OF GPCRS

Published online by Cambridge University Press:  05 June 2012

Terry Kenakin
Affiliation:
GlaxoSmithKline Research and Development
Sandra Siehler
Affiliation:
Novartis Institute for Biomedical Research
Graeme Milligan
Affiliation:
University of Glasgow
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
G Protein-Coupled Receptors
Structure, Signaling, and Physiology
, pp. 270 - 286
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kenakin, T.P. (1995) Agonist-receptor efficacy II: agonist trafficking of receptor signals. Trends Pharmacol. Sci. 16: 232–238CrossRefGoogle ScholarPubMed
Roth, B.L., Chuang, D.-M. (1987) Multiple mechanisms of serotonergic signal transduction. Life Sci. 41: 1051–1064CrossRefGoogle ScholarPubMed
Lawler, C.P., Prioleua, C., Lewis, M.M., Mak, C., Jiang, D., Schetz, J.A., Gonzalez, A.M., Sibley, D.R., and Mailman, R.B. (1999) Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypesNeuropsychopharmacol. 20: 612–627CrossRefGoogle ScholarPubMed
Ward, J.S., Merrit, L., Calligaro, D.O., Bymaster, F.P., Shannon, H.E., Sawyer, B.D., Mitch, C.H., Deeter, J.B., Peters, S.C., Sheardown, M.J., Olesen, P.H., Swedberg, M.D.B., and Sauerberg, P. (1995) Functionally selective M1 muscarinic agonists. 3. Side chains and azacycles contributing to functional muscarinic selectivity among pyrazacycles. J. Med. Chem. 38: 3469–3481CrossRefGoogle Scholar
Heldman, E., Barg, J., Fisher, A., Levy, R., Pittel, Z., Zimlichman, R., Kushnir, M. and Vogel, Z. (1996) Pharmacological basis for functional selectivity of partial muscarinic receptor agonists. Eur. J. Pharmacol. 297: 283–291CrossRefGoogle ScholarPubMed
Black, J.W., Leff, P. (1983) Operational models of pharmacological agonist. Proc. R. Soc. Lond. [Biol.] 220:141–162CrossRefGoogle Scholar
Spengler, D., Waeber, C., Pantoloni, C., Holsboer, F., Bockaert, J., Seeburg, P.H., and Journot, L. (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365: 170–175Google ScholarPubMed
Kenakin, T.P., Morgan, P.H. (1989) The theoretical effects of single and multiple transducer receptor coupling proteins on estimates of the relative potency of agonists. Mol. Pharmacol. 35:214–222Google ScholarPubMed
Kenakin, T.P. (2002) Efficacy at G protein coupled receptors. An. Rev. Pharmacol. Toxicol. 42: 349–379CrossRefGoogle ScholarPubMed
Kenakin, T.P. (2003) Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol. Sci. 24: 346–354CrossRefGoogle ScholarPubMed
Fraunfelder, H., Parak, F., and Young, R.D. (1988) Conformational substrates in proteins. Annu. Rev. Biophys. Biophys. Chem. 17: 451–479CrossRefGoogle Scholar
Fraunfelder, H., Sligar, S.G., and Wolynes, P.G. (1991) The energy landscapes and motions of proteins. Science 254: 1598–1603CrossRefGoogle Scholar
Hilser, V.J., Garcia-Moreno, B., Oas, T.G., Kapp, G., and Whitten, S.T. (2006) A statistical thermodynamic model of the protein ensemble. Chem. Rev. 106: 1545–1558CrossRefGoogle ScholarPubMed
Hilser, V.J., Thompson, E.B. (2007) Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Porc. Nat. Acad. Sci. USA 104: 8311–8315CrossRefGoogle ScholarPubMed
Liu, J., Perumal, N.B., Oldfield, J., Su, E.W., Uversky, V.N., Dunker, A.K. (2006) Intrinsic disorder in transcription factors. Biochem. 45: 6873–6888CrossRefGoogle ScholarPubMed
Burgen, A.S.V. (1966) Conformational changes and drug action. Fed. Proc. 40: 2723–2728Google Scholar
Gether, U., Sansan, L., and Kobilka, B.K. (1995) Fluorescent labeling of purified β2-adrenergic receptor: evidence for ligand specific conformational changes. J. Biol. Chem. 270: 28268–28275.Google Scholar
Ghanouni, P., Gryczynski, Z., Steenhuis, J.J., Lee, T.W., Farrens, D.L., Lakowicz, J.R., Kobilka, B.K. (2001) Functionally different agonists produce distinct conformations in G-protein coupling domains of the b2-adrenergic receptor. J. Biol. Chem. 276: 24433–24436CrossRefGoogle Scholar
Hruby, V.J., Tollin, G. (2007) Plasmon-waveguide resonance (PWR) spectroscopy for directly viewing rates of GPCR/G-protein interactions and quantifying affinities. Curr. Opin Pharmacol. 7: 507–514CrossRefGoogle ScholarPubMed
Okada, T., Palczewski, K. (2001) Crystal structure of rhodopsin: implications for vision and beyond. Curr. Opin. Struc. Biol. 11: 420–426CrossRefGoogle ScholarPubMed
Palanche, T., Ilien, B., Zoffmann, S., Reck, M.-P., Bucher, B., Edelstein, S.J., and Galzi, J.-L. (2001) The neurokinin A receptor activates calcium and cAMP responses through distinct conformational states. J. Biol. Chem. 276: 34853–34861CrossRefGoogle ScholarPubMed
Swaminath, G., Xiang, Y., Lee, T.W., Steenhuis, J., Parnot, C., Kobilka, B.K. (2004) Sequential binding of agonists to the β2 adrenoceptor: kinetic evidence for intermediate conformational states. J. Biol. Chem. 279: 686–691CrossRefGoogle ScholarPubMed
Lefkowitz, R.J., Shenoy, S.K. (2005) Transduction of receptor signals by β-arrestins. Science 308: 512–517CrossRefGoogle ScholarPubMed
Luttrell, L.M. (2005) Composition and function of G protein-coupled receptor signalsomes controlling mitogen-activated protein kinase activity. J. Mol. Neurosci. 26: 253–263CrossRefGoogle ScholarPubMed
Tilakaratne, N., Sexton, P.M. (2005) G-protein-coupled receptor-protein interactions: basis for new concepts on receptor structure and function. Clin. Expt. Pharmacol. Physiol. 32: 979–987CrossRefGoogle ScholarPubMed
Wang, Q., Limbird, L.E. (2007) Regulation of alpha(2)AR trafficking and signaling by interacting proteins. Biochem. Pharmacol. 73: 1135–1145CrossRefGoogle ScholarPubMed
Brady, A.E., Limbird, L.E. (2002) G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction [review]. Cell Signal. 14: 297–309CrossRefGoogle Scholar
Ikezu, T., Okamoto, T., Ogata, E., and Nishimoto, I. (1992) Amino acids constitute a Gi-activator sequence of the α2-adrenergic receptor and have a Phe substitute in the G-protein-activator sequence motif. FEBS Lett. 311: 29–32CrossRefGoogle Scholar
Jones, B.W., Hinkle, P.M. (2008) Arrestin binds to different phosphorylated regions of the thyrotropin-releasing hormone receptor with distinct functional consequences. Mol. Pharmacol. 74: 195–202CrossRefGoogle ScholarPubMed
Hilser, J. and Freire, E. (1997) Predicting the equilibrium protein folding pathway: structure-based analysis of staphylococcal nuclease. Protein Struct. Funct. Bioinform. 27: 171–1833.0.CO;2-J>CrossRefGoogle ScholarPubMed
Hilser, V.J., Dowdy, D., Oas, T.G., and Freire, E. (1998) The structural distribution of cooperative interactions in proteins: analysis of the native state ensemble. Proc. Natl. Acad. Sci. USA 95: 9903–9908CrossRefGoogle ScholarPubMed
Woodward, C., Simon, I., and Tuchsen, E. (1982) Hydrogen exchange and the dynamic structure of proteins. Mol. Cell. Biochem. 48:135–141CrossRefGoogle ScholarPubMed
Woodward, C. (1993) Is the slow-exchange core the protein folding core?Trends Biochem. Sci. 18: 359–360CrossRefGoogle ScholarPubMed
Watson, C., Chen, G., Irving, P.E., Way, J., Chen, W.-J. and Kenakin, T.P. (2000) The use of stimulus-biased assay systems to detect agonist-specific receptor active states: implications for the trafficking of receptor stimulus by agonists. Mol. Pharmacol. 58: 1230–1238CrossRefGoogle ScholarPubMed
Koshland, D.E. (1960) The active site of enzyme action. Adv. Enzymol. 22: 45–97Google ScholarPubMed
Monod, J., Wyamn, J., and Changeux, J.P. (1965) On the nature of allosteric transitions. J. Biol. Chem. 12: 88–118Google ScholarPubMed
Thron, C.D. (1973) On the analysis of pharmacological experiments in terms of an allosteric receptor model. Mol. Pharmacol. 9: 1–9Google ScholarPubMed
Karlin, A. (1967) On the application of ‘a plausible model’ of allosteric proteins to the receptor for acetylcholine. J. Theoret. Biol, 16: 306–320CrossRefGoogle Scholar
Colquhoun, D. (1973) The relationship between classical and cooperative models for drug action. In: A Symposium on Drug Receptors, ed. by Rang, H.P., pp 149–182, Baltimore: University Park Press.
Birdsall, N.J., Hulme, E.C., and Stockton, J.M. (1983) Muscarinic receptor subclasses: allosteric interactions. Cold Spring Harbor Symposia on Quantitative Biology. 48 Pt 1: 53–56CrossRefGoogle ScholarPubMed
Stockton, J.M., Birdsall, N.J., Burgen, A.S., and Hulme, E.C. (1983) Modification of the binding properties of muscarinic receptors by gallamine. Molecul Pharmacol. 23: 551–557Google ScholarPubMed
Jakubik, J., el-Fakahany, E.E. (1997) Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol. Pharmacol. 52: 172–179CrossRefGoogle ScholarPubMed
Jakubik, J., Bacakova, L., Lisa, V., el-Fakahany, E.E., and Tucek, S. (1996) Activation of muscarinic acetylcholine receptors via their allosteric binding sites. Proc. Nat Acad Sci USA 93: 8705–8709CrossRefGoogle ScholarPubMed
Black, J.W., Duncan, W.A., and Shanks, R.G. (1965) Comparison of some properties of pronethalol and propranolol. Br. J. Pharmacol. Chemo. 25:577–591CrossRefGoogle ScholarPubMed
Azzi, M., Charest, P.G., Angers, S., Rousseau, G., Kohout, T., Bouvier, M., and Piñeyro, G. (2003) β-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G-protein-coupled receptors. Proc. Natl. Acad. Sci. USA 100: 11406–11411CrossRefGoogle ScholarPubMed
Milligan, G. (2003) High-content assays for ligand regulation of G-protein coupled receptors. Drug Disc. Today 8: 579–585CrossRefGoogle ScholarPubMed
Lefkowitz, R.J., Whalen, E.J. (2004) β-arrestins: traffic cops of cell signaling. Curr. Opin. Cell Biol. 16: 162–168CrossRefGoogle ScholarPubMed
Fredriksson, R., Schioth, H.B. (2005) The repertoire of G-protein receptors in fully sequenced genomes. Mol. Pharmacol. 67: 1414–1425CrossRefGoogle ScholarPubMed
Olson, K.R., Eglen, R.M. (2007) Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 5: 137–144CrossRefGoogle ScholarPubMed
Zhao, X., Jones, A., Olson, K.R., Peng, K., Wehrman, T., Park, A., Mallari, R., Nebalasca, D., Young, S.W., and Xiao, S.-H. (2008) A homogeneous enzyme fragment complementation-based b-arrestin translocation assay for high-throughput screening of G-protein-coupled receptors. J. Biomol. Screen 13: 737–747CrossRefGoogle Scholar
Barnea, G., Strapps, W., Herrada, G., Berman, Y., Ong, J., Kloss, B., Axesl, R., and Lee, K.J. (2008) The genetic design of signaling cascades to record receptor activation. Proc. Natl. Acad. Sci USA 105: 64–69CrossRefGoogle ScholarPubMed
Verkaar, F., Rosmalen, J.W.G., Blomenrohr, M., Koppen, C.J., Blankesteijn, W.M., Smits, J.F.M., and Zaman, G.J.R. (2008) G-protein independent cell-based assays for drug discovery on seven-transmembrane receptors. Biotechnol. Ann. Rev. 14: 253–274CrossRefGoogle ScholarPubMed
Verdonk, E., Johnson, K., McGuinness, R., Leung, G., Chen, Y.-W., Tang, H.R., Michelotti, J.M., and Liu, V.F. (2006) Cellular dielectric spectroscopy: a label-free comprehensive platform for functional evaluation of endogenous receptors. Assay Drug Dev. Technol. 4: 609–619CrossRefGoogle ScholarPubMed
McGuinness, R. (2007) Impedance-based cellular assay technologies: recent advances. Curr. Opin. Pharmacol. 7: 535–540CrossRefGoogle ScholarPubMed
Peter, M.F., Knappenberger, K.S., Wilkins, D., Sygowski, L.A., Lazor, L.A., Liu, J., and Scott, C.W. (2007) Evaluation of cellular dielectric spectroscopy, a whole-cell label-free technology for drug discovery on Gi-coupled GPCRs. J. Biomol. Screen 12: 312–319CrossRefGoogle Scholar
Fang, Y., Ferrie, A.M., Fontaine, N.H., and Yuen, P.K. (2005) Characteristics of dynamic mass redistribution of EGF receptor signaling in living cells measured with label free optical biosensors. Anal. Chem. 77: 5720–5725CrossRefGoogle ScholarPubMed
Fang, Y., Li, G., and Peng, J. (2005) Optical biosensor provides insights for bradykinin B2 receptor signaling in A431 cells. FEBS Lett 579: 6365–6374CrossRefGoogle ScholarPubMed
Fang, Y. (2006) Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev. Technol. 4: 583–595CrossRefGoogle ScholarPubMed
Cunningham, B.T., Li, P., Schultz, S., Lin, B., Baird, C., Gerstenmaier, J., et al. (2004) Label free assays on the BIND system. J Biomolec. Screen. 9: 481–490CrossRefGoogle ScholarPubMed
Yu, N., Atienza, J.M., Bernard, J., Blanc, S., Zhu, J., Wang, X., et al. (2006) Real-time monitoring of morphological changes in living cells by electronic cell sensor assays: an approach to study G-protein coupled receptors. Anal. Chem. 78: 35–43CrossRefGoogle ScholarPubMed
Fang, Y., Ferrie, A.M., Fontaine, N., Mauro, J., and Balikrishnan, J. (2006) Resonant waveguide grating biosensors for living cell sensing. Biophys. J. 91: 1925–1940CrossRefGoogle ScholarPubMed
Whistler, J.L., Zastrow, M. (1998) Morphine-activated opioid receptors elude desensitization by β-arrestin. Proc. Nat. Acad. Sci. USA 95: 9914–9919CrossRefGoogle ScholarPubMed
Zhang Jie Zhang, Ferguson, S.S.G., Brak, L.S., Bodduluri, S.R., Laporte, S.A., Law, P-Y., and Caron, M.G. (1998) Role for G protein-coupled receptor kinase in agonist-specific regulation of μ-opioid receptor responsiveness. Proc. Natl. Acad. Sci. USA 95: 7157–7162CrossRefGoogle Scholar
Bailey, C. P., Couch, D., Johnson, E., Griffiths, K., Kelly, E., and Henderson, G. (2003) µ-Opioid receptor desensitization in mature rat neurons: lack of interaction between DAMGO and morphine. J. Neurosci. 23: 10515–10520CrossRefGoogle Scholar
Bohn, L.M., Dykstra, L.A., Lefkowitz, R.J., Caron, M.G., and Barak, L.S. (2004) Relative opioid efficacy is determined by the complements of the G protein coupled receptor desensitization machinery. Mol. Pharmacol. 66: 106–112CrossRefGoogle ScholarPubMed
Koch, T., Widera, A., Bartzsch, K., Schulz, S., Brandenburg, L.-O., Wundrack, N., Beyer, A., Grecksch, G., and Höllt, V. (2005) Receptor endocytosis counteracts the development of opioid tolerance. Mol. Pharmacol. 67: 280–287CrossRefGoogle ScholarPubMed
Stephenson, R.P. (1956) A modification of receptor theory. Br. J. Pharmacol. 11: 379–393Google ScholarPubMed
Furchgott, R.F. (1966) The use of b-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. In Advances in Drug Research, vol 3 ed. by Harper, N.J. and Simmonds, A.B., pp 21–55, Academic Press, London, New York
Berg, K.A. et al. (1998) Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol. Pharmacol. 54, 94–104CrossRefGoogle ScholarPubMed
Kenakin, T.P. (2009) 7TM receptor allostery: putting numbers to shapeshifting proteins. Trends Pharmacol. Sci. (in press)CrossRefGoogle ScholarPubMed
Kohout, T.A., Nicholas, S.L., Perry, S.J., Reinhart, G., Junger, S., and Struthers, R.S. (2004) Differential desensitization, receptor phosphorylation, β-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem. 279: 23214–23222CrossRefGoogle ScholarPubMed
Mailman, R.B. (2007) GPCR functional selectivity has therapeutic impact. Trends Pharmacol Sci. 28: 390–397CrossRefGoogle ScholarPubMed
Schmid, C.L., Raehal, K.M., and Bohn, L.M. (2008) Agonist-directed signaling of the serotonin 2A receptor depends on β-arrestin-2 interactions in vivo. Proc Natl Acad Sci USA 105: 1079–1084CrossRefGoogle ScholarPubMed
Vassart, G., Dumont, D. (1992)The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev. 13: 596–611Google Scholar
Mazzocchi, G., Malendowicz, L.K., Aragona, F., and Nussdorfer, G.G. (2001) Human pheochromocytomas express orexin receptor type 2 gene and display an in vitro secretory response to orexins A and B. J Clin Endocrinol Metab. 86: 4818–4821CrossRefGoogle Scholar
Mazzocchi, G., Malendowicz, L.K., Gottardo, A.F., and Nussdorfer, G.G. (2001) Orexin A stimulates cortisol secretion from human adrenocortical cells through activation of the adenylate cyclase-dependent signaling cascade. J Clin Endocrinol Metab. 86: 778–782CrossRefGoogle ScholarPubMed
Mathiesen, J.M., Ulven, T., Martini, L., Gerlach, L.O., Heineman, A., and Kostenis, E. (2005) Identification of indole derivatives exclusively interfering with a G protein-independent signaling pathway of the prostaglandin D2 receptor CRTH2. Mol Pharmacol. 68: 393–402Google Scholar
Maillet, E.L., Pellegrini, N., Valant, C., Bucher, B., Hibert, M., Bourguignon, J-J., and Galzi, J-L. (2007) A novel, conformation-specific allosteric inhibitor of the tachykinin NK2 receptor (NK2R) with functionally selective properties. FASEB J 21: 2124–2134.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×