Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-16T19:31:44.138Z Has data issue: false hasContentIssue false

5 - The proportion of atoms trapped in quasi-dark states

Published online by Cambridge University Press:  06 July 2010

François Bardou
Affiliation:
Université Louis Pasteur, Strasbourg
Jean-Philippe Bouchaud
Affiliation:
Commissariat à l'Energie Atomique (CEA), Saclay
Alain Aspect
Affiliation:
Institut d'Optique, Palaiseau
Claude Cohen-Tannoudji
Affiliation:
Collège de France, Paris
Get access

Summary

We now have all the mathematical tools in hand to address the important questions for the cooling process, namely: what is the proportion ftrap(θ) of ‘trapped’ atoms (i.e. those which have a very small momentum p < ptrap); what is the ‘line shape’, i.e. the momentum distribution, after an interaction time θ?

In Section 5.1, we define precisely the trapped proportion ftrap(θ) in terms of an ensemble average and compare it to a time average defined as the mean fraction of the time spent in the trap. The two averages do not always coincide, as shown by the explicit computation of Section 5.2. This reveals the non-ergodic character of the cooling process, as discussed in Section 5.3.

Ensemble averages versus time averages

We define the trapped proportion ftrap(θ) as the probability of finding the atom in the trap at time t = θ. Therefore, ftrap(θ) corresponds to an ensemble average, over many independent realizations of the stochastic process of Fig. 3.1. It is instructive to consider also a time average, by examining how a given atom shares its time between the ‘inside’ and the ‘outside’ of the trap. Because of the non-ergodic character of subrecoil laser cooling, ensemble averages and time averages do not in general coincide. In fact, we will see later on that the ensemble average ftrap(θ) and the time average only coincide when 〈τ〉 and are finite, whereas they differ when either µ or is smaller than one.

Type
Chapter
Information
Lévy Statistics and Laser Cooling
How Rare Events Bring Atoms to Rest
, pp. 60 - 68
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×