Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-26T06:34:57.166Z Has data issue: false hasContentIssue false

5 - Radiation and Diffraction

Published online by Cambridge University Press:  06 July 2010

John G. Harris
Affiliation:
Northeastern Illinois University
Get access

Summary

Synopsis

Chapter 5 summarizes the basic propagation processes that are encountered when studying radiation or edge diffraction. Three problems of progressive difficulty are studied. We begin by calculating the transient, antiplane radiation excited by a line source at the surface of a half-space. The Cagniard–deHoop method is used to invert the integral transforms. We then return to considering how plane waves and a knowledge of their interactions can be used to construct more general wavefields. We calculate the time harmonic, inplane radiation, from a two-dimensional center of compression buried in a half-space. Plane-wave spectral techniques are used and the resulting integrals are approximated by the method of steepest descents. This method is discussed in detail. Lastly, we extend our knowledge of plane-wave interactions by calculating the diffraction of a time harmonic, plane, antiplane shear wave by a semi-infinite slit or crack. This problem is solved exactly by using the Wiener–Hopf method and approximately by using matched asymptotic expansions. An Appendix describing the reduction of the diffraction integral to Fresnel integrals is included.

Antiplane Radiation into a Half-Space

We consider an elastic half-space. The x1 coordinate stretches along its surface and the positive x2 coordinate extends into the interior. At the origin a line load is applied to an otherwise traction-free surface. The line load is a tangentially acting force very localized in x1 and directed from −∞ to ∞ in the x3 direction.

Type
Chapter
Information
Linear Elastic Waves , pp. 77 - 120
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×