Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T10:10:03.917Z Has data issue: false hasContentIssue false

1 - X-ray polarimetry: historical remarks and other considerations

Published online by Cambridge University Press:  06 July 2010

M. C. Weisskopf
Affiliation:
Nasa/Marshall Space Flight Center
Ronaldo Bellazzini
Affiliation:
Istituto Nazionale di Fisica Nucleare (INFN), Rome
Enrico Costa
Affiliation:
Istituto Astrofisica Spaziale, Rome
Giorgio Matt
Affiliation:
Università degli Studi Roma Tre
Gianpiero Tagliaferri
Affiliation:
Osservatorio Astronomico di Brera
Get access

Summary

We briefly discuss the history of X-ray polarimetry for astronomical applications including a guide to the appropriate statistics. We also provide an introduction to some of the new techniques discussed in more detail elsewhere in these proceedings. We conclude our discussion with our concerns over adequate ground calibration, especially with respect to unpolarized beams, and at the system level.

Introduction

Sensitive X-ray polarimetry promises to reveal unique and crucial information about physical processes in and structures of neutron stars, black holes, and ultimately all classes of X-ray sources. We do not review the astrophysical problems for which X-ray polarization measurements will provide new insights, as these will be discussed in some detail in many of the presentations at this conference.

Despite major progress in X-ray imaging, spectroscopy, and timing, there have been only modest attempts at X-ray polarimetry. The last such dedicated experiment, conducted by Bob Novick (Columbia University) over three decades ago, had such limited observing time (and sensitivity) that even ∼10% degree of polarization would not have been detected from some of the brightest X-ray sources in the sky. Statistically significant X-ray polarization was detected in only one X-ray source, the Crab Nebula.

History

The first positive detection of X-ray polarization was performed in a sounding-rocket experiment that viewed the Crab Nebula in 1971. Using the X-ray polarimeter on the Orbiting Solar Observatory (OSO)-8, this result was confirmed with a 19-σ detection (P = 19.2%±1.0%), conclusively proving the synchrotron origin of the X-ray emission.

Type
Chapter
Information
X-ray Polarimetry
A New Window in Astrophysics
, pp. 1 - 8
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×