Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T00:37:46.777Z Has data issue: false hasContentIssue false

29 - A motion illusion reveals the temporally discrete nature of visual awareness

from Part V - Space–time and awareness

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

Quasi-periodic or “discrete” brain processes are, in theory, susceptible to a phenomenon known in engineering as “temporal aliasing.” When the rate of occurrence of events in the world is fast enough, the perceived direction of these events may be reversed. We have recently demonstrated that, because of a quasi-periodic attentional capture of motion information, continuously moving objects are sometimes perceived to move in the wrong direction (the “continuous Wagon Wheel Illusion”). Using a simple Fourier energy model of motion perception, we established that this type of attentional capture occurs at a rate of about 13 Hz. We verified with EEG recordings that the electrophysiological correlates of this illusion are restricted to a specific frequency band around 13 Hz, over right parietal regions – known for their involvement in directing attention to temporal events. We summarize these results and discuss their implications for visual attention and awareness.

Introduction

With respect to the temporal organization of visual perception – the topic of this book – one important issue that has puzzled scientists for more than a century (James 1890; Pitts & McCulloch 1947; Stroud 1956; White 1963; Shallice 1964; Harter 1967; Varela et al. 1981; Purves et al. 1996; Crick & Koch 2003; VanRullen & Koch 2003) is whether our experience relies on a continuous sampling or a discrete sequence of periodic “snapshots” or “perceptual frames” of the external world. Although it may seem that such radically different mechanisms should be easy to distinguish using elementary introspection, the realism of the cinema serves to remind us that these two alternatives can in fact lead to equivalent perceptual outcomes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2(2): 284–299.CrossRefGoogle ScholarPubMed
Anderson, S. J., & Burr, D. C. (1985). Spatial and temporal selectivity of the human motion detection system. Vision Res 25(8): 1147–1154.CrossRefGoogle ScholarPubMed
Battelli, L., Cavanagh, P., Intriligator, J., Tramo, M. J., Henaff, M. A., Michel, F., et al. (2001). Unilateral right parietal damage leads to bilateral deficit for high-level motion. Neuron 32(6): 985–995.CrossRefGoogle ScholarPubMed
Battelli, L., Cavanagh, P., Martini, P., & Barton, J. J. (2003). Bilateral deficits of transient visual attention in right parietal patients. Brain 126(Pt. 10): 2164–2174.CrossRefGoogle ScholarPubMed
Baylis, G. C., & Driver, J. (1993). Visual attention and objects: evidence for hierarchical coding of location. J Exp Psychol Hum Percept Perform 19(3): 451–470.CrossRefGoogle Scholar
Blake, R., Sobel, K. V., & Gilroy, L. A. (2003). Visual motion retards alternations between conflicting perceptual interpretations. Neuron 39(5): 869–878.CrossRefGoogle ScholarPubMed
Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S., & Movshon, J. A. (1996). A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis Neurosci 13(1): 87–100.CrossRefGoogle ScholarPubMed
Buchel, C., Josephs, O., Rees, G., Turner, R., Frith, C. D., & Friston, K. J. (1998). The functional anatomy of attention to visual motion. A functional MRI study. Brain 121 (Pt 7): 1281–1294.CrossRefGoogle ScholarPubMed
Burr, D. C., Ross, J., & Morrone, M. C. (1986). Smooth and sampled motion. Vision Res 26(4): 643–652.CrossRefGoogle ScholarPubMed
Cavanagh, P. (1992). Attention-based motion perception. Science 257(5076): 1563–1565.CrossRefGoogle ScholarPubMed
Chaudhuri, A. (1990). Modulation of the motion aftereffect by selective attention. Nature 344(6261): 60–62.CrossRefGoogle ScholarPubMed
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3): 201–215.CrossRefGoogle Scholar
Coull, J. T., & Frith, C. D. (1998). Differential activation of right superior parietal cortex and intraparietal sulcus by spatial and nonspatial attention. Neuroimage 8(2): 176–187.CrossRefGoogle ScholarPubMed
Crick, F., & Koch, C. (2003). A framework for consciousness. Nat Neurosci 6(2): 119–126.CrossRefGoogle ScholarPubMed
Doesburg, S. M., Kitajo, K., & Ward, L. M. (2005). Increased gamma-band synchrony precedes switching of conscious perceptual objects in binocular rivalry. Neuroreport 16(11): 1139–1142.CrossRefGoogle ScholarPubMed
Georgiades, M. S., & Harris, J. P. (2000). Attentional diversion during adaptation affects the velocity as well as the duration of motion after-effects. Proc R Soc Lond B Biol Sci 267(1461): 2559–2565.CrossRefGoogle ScholarPubMed
Georgiades, M. S., & Harris, J. P. (2002). Evidence for spatio-temporal selectivity in attentional modulation of the motion aftereffect. Spat Vis 16(1): 21–31.CrossRefGoogle ScholarPubMed
Harter, M. R. (1967). Excitability cycles and cortical scanning: a review of two hypotheses of central intermittency in perception. Psychol Bull 68(1): 47–58.CrossRefGoogle ScholarPubMed
Holcombe, A. O., Clifford, C. W., Eagleman, D. M., & Pakarian, P. (2005). Illusory motion reversal in tune with motion detectors. Trends Cogn Sci 9(12): 559–560.CrossRefGoogle ScholarPubMed
Hutchinson, C. V., & Ledgeway, T. (2006). Sensitivity to spatial and temporal modulations of first-order and second-order motion. Vision Res 46(3): 324–335.CrossRefGoogle ScholarPubMed
James, W. (1890). The Principles of Psychology (Vol. I). New York: Holt.Google Scholar
Kline, K., Holcombe, A. O., & Eagleman, D. M. (2004). Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field. Vision Res 44(23): 2653–2658.CrossRefGoogle Scholar
Kline, K., Holcombe, A. O., & Eagleman, D. M. (2005). Illusory motion reversal is not caused by discrete sampling of global or hemispheric visual fields. Society for Neuroscience 2005 abstracts #619.15.Google Scholar
Kline, K., Holcombe, A. O., & Eagleman, D. M. (2006). Illusory motion reversal does not imply discrete processing: reply to Rojas et al. Vision Res 46(6–7): 1158–1159.CrossRefGoogle Scholar
Kobayashi, T., Kato, K., Owada, T., & Kuriki, S. (1996). Difference of EEG spectral powers observed between binocular rivalry and binocular fusion. Front Med Biol Eng 7(1): 11–19.Google ScholarPubMed
Lankheet, M. J., & Verstraten, F. A. (1995). Attentional modulation of adaptation to two-component transparent motion. Vision Res 35(10): 1401–1412.CrossRefGoogle ScholarPubMed
Lu, Z. L., & Sperling, G. (1995a). Attention-generated apparent motion. Nature 377(6546): 237–239.CrossRefGoogle ScholarPubMed
Lu, Z. L., & Sperling, G. (1995b). The functional architecture of human visual motion perception. Vision Res 35(19): 2697–2722.CrossRefGoogle ScholarPubMed
Lumer, E. D., Friston, K. J., & Rees, G. (1998). Neural correlates of perceptual rivalry in the human brain. Science 280(5371): 1930–1934.CrossRefGoogle ScholarPubMed
O'Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature 401(6753): 584–587.CrossRefGoogle ScholarPubMed
Pantle, A. J. (1978). Temporal frequency response characteristic of motion channels measured with three different psychophysical techniques. Percept Psychophys 24(3): 285–294.CrossRefGoogle ScholarPubMed
Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11): 1842–1857.CrossRefGoogle ScholarPubMed
Pitts, W., & McCulloch, W. S. (1947). How we know universals: the perception of auditory and visual forms. Bull Math Biophys 9: 127–147.CrossRefGoogle ScholarPubMed
Posner, M. I., Snyder, C. R. R., & Davidson, B. J. (1980). Attention and the detection of signals. J Exp Psychol Gen 109: 160–174.CrossRefGoogle ScholarPubMed
Purves, D., Paydarfar, J. A., & Andrews, T. J. (1996). The wagon wheel illusion in movies and reality. Proc Natl Acad Sci U S A 93(8): 3693–3697.CrossRefGoogle Scholar
Rees, G., Frith, C. D., & Lavie, N. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science 278(5343): 1616–1619.CrossRefGoogle Scholar
Rees, G., & Lavie, N. (2001). What can functional imaging reveal about the role of attention in visual awareness? Neuropsychologia 39(12): 1343–1353.CrossRefGoogle ScholarPubMed
Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In W. A., Rosenblith (ed.), Sensory Communication (303–317). Cambridge, MA: MIT Press.Google Scholar
Rezec, A., Krekelberg, B., & Dobkins, K. R. (2004). Attention enhances adaptability: evidence from motion adaptation experiments. Vision Res 44(26): 3035–3044.CrossRefGoogle ScholarPubMed
Saenz, M., Buracas, G. T., & Boynton, G. M. (2002). Global effects of feature-based attention in human visual cortex. Nat Neurosci 5(7): 631–632.CrossRefGoogle ScholarPubMed
Schouten, J. F. (1967). Subjective stroboscopy and a model of visual movement detectors. In I., Wathen-Dunn (ed.), Models for the Perception of Speech and Visual Form (44–45). Cambridge, MA: MIT Press.Google Scholar
Seiffert, A. E., & Cavanagh, P. (1998). Position displacement, not velocity, is the cue to motion detection of second-order stimuli. Vision Res 38(22): 3569–3582.CrossRefGoogle Scholar
Shallice, T. (1964). The detection of change and the perceptual moment hypothesis. British Journal of Statistical Psychology 17: 113–135.CrossRefGoogle Scholar
Shorter, S., & Patterson, R. (2001). The stereoscopic (cyclopean) motion aftereffect is dependent upon the temporal frequency of adapting motion. Vision Res 41(14): 1809–1816.CrossRefGoogle ScholarPubMed
Shulman, G. L. (1993). Attentional effects of adaptation of rotary motion in the plane. Perception 22(8): 947–961.CrossRefGoogle ScholarPubMed
Simpson, W. A., Shahani, U., & Manahilov, V. (2005). Illusory percepts of moving patterns due to discrete temporal sampling. Neurosci Lett 375(1): 23–27.CrossRefGoogle ScholarPubMed
Singh, K. D., Barnes, G. R., Hillebrand, A., Forde, E. M., & Williams, A. L. (2002). Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response. Neuroimage 16(1): 103–114.CrossRefGoogle ScholarPubMed
Snowden, R. J., & Hess, R. F. (1992). Temporal frequency filters in the human peripheral visual field. Vision Res 32(1): 61–72.CrossRefGoogle ScholarPubMed
Stroud, J. M. (1956). The fine structure of psychological time. In H., Quastler (ed.), Information Theory in Psychology (174–205). Chicago, IL: Free Press.Google Scholar
Treue, S., & Martinez Trujillo, J. C. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399(6736): 575–579.CrossRefGoogle ScholarPubMed
Uchida, N., Kepecs, A., & Mainen, Z. F. (2006). Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making. Nat Rev Neurosci 7(6): 485–491.CrossRefGoogle Scholar
VanRullen, R. (2006). The continuous Wagon Wheel Illusion is object-based. Vision Res 46(24): 4091–4095.CrossRefGoogle ScholarPubMed
VanRullen, R. (2007). The continuous Wagon Wheel Illusion depends on, but is not identical to neuronal adaptation. Vision Res, in press.Google Scholar
VanRullen, R., Guyonneau, R., & Thorpe, S. J. (2005). Spike times make sense. Trends Neurosci 28(1): 1–4.CrossRefGoogle ScholarPubMed
VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends Cogn Sci 7(5): 207–213.CrossRefGoogle ScholarPubMed
VanRullen, R., Reddy, L., & Koch, C. (2005). Attention-driven discrete sampling of motion perception. Proc Natl Acad Sci U S A 102(14): 5291–5296.CrossRefGoogle ScholarPubMed
VanRullen, R., Reddy, L., & Koch, C. (2006). The continuous wagon wheel illusion is associated with changes in electroencephalogram power at approximately 13 Hz. J Neurosci 26(2): 502–507.CrossRefGoogle Scholar
van Santen, J. P., & Sperling, G. (1985). Elaborated Reichardt detectors. J Opt Soc Am A 2(2): 300–321.CrossRefGoogle ScholarPubMed
van Winsum, W., Sergeant, J., & Geuze, R. (1984). The functional significance of event-related desynchronization of alpha rhythm in attentional and activating tasks. Electroencephalogr Clin Neurophysiol 58(6): 519–524.CrossRefGoogle ScholarPubMed
Varela, F. J., Toro, A., John, E. R., & Schwartz, E. L. (1981). Perceptual framing and cortical alpha rhythm. Neuropsychologia 19(5): 675–686.Google ScholarPubMed
White, C. (1963). Temporal numerosity and the psychological unit of duration. Psychological Monographs: General and Applied 77(12): 1–37, Whole No. 575.CrossRefGoogle ScholarPubMed
Worden, M. S., Foxe, J. J., Wang, N., & Simpson, G. V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci 20(6): RC63.CrossRefGoogle ScholarPubMed
Wright, M. J., & Johnston, A. (1985). Invariant tuning of motion aftereffect. Vision Res 25(12): 1947–1955.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×