Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T11:33:05.503Z Has data issue: false hasContentIssue false

8 - Can structural magnetic resonance imaging provide an alternative phenotype for genetic studies of schizophrenia?

Published online by Cambridge University Press:  04 August 2010

Colm McDonald
Affiliation:
Institute of Psychiatry, King's College London, De Crespigny Park, London, UK
Robin M. Murray
Affiliation:
Institute of Psychiatry, King's College London, De Crespigny Park, London, UK
Matcheri S. Keshavan
Affiliation:
University of Pittsburgh
James L. Kennedy
Affiliation:
Clarke Institute of Psychiatry, Toronto
Robin M. Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

This chapter reviews the value of structural brain deviations identified through magnetic resonance imaging (MRI) as potential endophenotypes in genetic studies of schizophrenia and the evidence to date that a number of specific brain deviations are linked to susceptibility genes for schizophrenia from studies of patients and their unaffected relatives. One of the earliest studies of brain structure in normal twins was a computed tomographic (CT) study of subjects from the Maudsley Twin Series. In this study, measurements of ventricular volume in normal MZ twins were much more highly correlated than those of DZ twins, indicating strong genetic control over ventricular size, with estimates of heritability for ventricular size using different methods all over 80%. Despite heterogeneous patient samples and methodologies, neuroimaging studies consistently identify subtle volumetric deviations in a range of brain structures when schizophrenia patients are compared with controls.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ananth, H., Popescu, I., Critchley, H. D., et al. (2002). Cortical and subcortical gray matter abnormalities in schizophrenia determined through structural magnetic resonance imaging with optimized volumetric voxel-based morphometry. Am J Psychiatry 159: 1497–1505CrossRefGoogle ScholarPubMed
Baare, W. F., Hulshoff, Pol H. E., Boomsma, D. I.et al. (2001a). Quantitative genetic modeling of variation in human brain morphology. Cereb Cortex 11: 816–824CrossRefGoogle Scholar
Baare, W. F., Oel, C. J., Hulshoff Pol, H. E.et al. (2001b). Volumes of brain structures in twins discordant for schizophrenia. Arch Gen Psychiatry 58: 33–40CrossRefGoogle Scholar
Bartley, A. J., Jones, D. W., Weinberger, D. R. (1997). Genetic variability of human brain size and cortical gyral patterns. Brain 120: 257–269CrossRefGoogle ScholarPubMed
Bilder, R. M., Wu, H., Bogerts, B.et al. (1994). Absence of regional hemispheric volume asymmetries in first-episode schizophrenia. Am J Psychiatry 151: 1437–1447Google ScholarPubMed
Cannon, T. D., Mednick, S. A., Parnas, J.et al. (1993). Developmental brain abnormalities in the offspring of schizophrenic mothers. I. Contributions of genetic and perinatal factors. Arch Gen Psychiatry 50: 551–564CrossRefGoogle ScholarPubMed
Cannon, T. D., Zorrilla, L. E., Shtasel, D.et al. (1994). Neuropsychological functioning in siblings discordant for schizophrenia and healthy volunteers. Arch Gen Psychiatry 51: 651–661CrossRefGoogle ScholarPubMed
Cannon, T. D., Erp, T. G. M., Huttunen, M.et al. (1998). Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 55: 1084–1091CrossRefGoogle ScholarPubMed
Cannon, T. D., Erp, T. G., Rosso, I. M.et al. (2002a). Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 59: 35–41CrossRefGoogle Scholar
Cannon, T. D., Thompson, P. M., Erp, T. G.et al. (2002b). Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. Proc Natl Acad Sci USA 99: 3228–3233CrossRefGoogle Scholar
Cardno, A. G., Marshall, E. J., Coid, B.et al. (1999). Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry 56: 162–168CrossRefGoogle ScholarPubMed
Carmelli, D., DeCarli, C., Swan, G. E.et al. (1998). Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke 29: 1177–1181CrossRefGoogle ScholarPubMed
Carmelli, D., Swan, G. E., DeCarli, C.et al. (2002). Quantitative genetic modeling of regional brain volumes and cognitive performance in older male twins. Biol Psychol 61: 139–155CrossRefGoogle ScholarPubMed
Chakos, M. H., Lieberman, J. A., Alvir, J.et al. (1995). Caudate nuclei volumes in schizophrenic patients treated with typical antipsychotics or clozapine. Lancet 345: 456–457CrossRefGoogle ScholarPubMed
Chapple, B., Grech A., Sham, P.et al. (2004). Normal cerebral asymmetry in familial and non-familial schizophrenic probands and their unaffected relatives. Schizophr Res 67: 33–40CrossRefGoogle ScholarPubMed
Chua, S. E., Sharma, T., Takei, N.et al. (2000). A magnetic resonance imaging study of corpus callosum size in familial schizophrenic subjects, their relatives, and normal controls. Schizophr Res 41: 397–403CrossRefGoogle ScholarPubMed
Crawford, T. J., Sharma, T., Puri, B. K.et al. (1998). Saccadic eye movements in families multiply affected with schizophrenia: the Maudsley Family Study. Am J Psychiatry 155: 1703–1710CrossRefGoogle ScholarPubMed
DeLisi, L. E., Goldin, L. R., Hamovit, J. R.et al. (1986). A family study of the association of increased ventricular size with schizophrenia. Arch Gen Psychiatry 43: 148–153CrossRefGoogle ScholarPubMed
DeLisi, L. E., Hoff, A. L., Schwartz, J. E.et al. (1991). Brain morphology in first-episode schizophrenic-like psychotic patients: a quantitative magnetic resonance imaging study. Biol Psychiatry 29: 159–175CrossRefGoogle ScholarPubMed
Falkai, P., Bogerts, B., Schneider, T.et al. (1995). Disturbed planum temporale asymmetry in schizophrenia. A quantitative post-mortem study. Schizophr Res 14: 161–176CrossRefGoogle ScholarPubMed
Fannon, D., Chitnis, X., Doku, V.et al. (2000). Features of structural brain abnormality detected in first-episode psychosis. Am J Psychiatry 157: 1829–1834CrossRefGoogle ScholarPubMed
Faraone, S. V., Seidman, L. J., Kremen, W. S.et al. (2003). Structural brain abnormalities among relatives of patients with schizophrenia: implications for linkage studies. Schizophr Res 60: 125–140CrossRefGoogle ScholarPubMed
Frangou, S., Sharma, T., Alarcon, G.et al. (1997a). The Maudsley Family Study, II: endogenous event-related potentials in familial schizophrenia. Schizophr Res 23: 45–53CrossRefGoogle Scholar
Frangou, S., Sharma, T., Sigmudsson, T.et al. (1997b). The Maudsley Family Study IV. Normal planum temporale asymmetry in familial schizophrenia – A volumetric MRI study. Br J Psychiatry 170: 328–333CrossRefGoogle Scholar
Gershon, E. S.Goldin, L. R. (1986). Clinical methods in psychiatric genetics. I. Robustness of genetic marker investigative strategies. Acta Psychiatr Scand 74: 113–118CrossRefGoogle ScholarPubMed
Goldstein, J. M., Goodman, J. M., Seidman, L. J.et al. (1999). Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging. Arch Gen Psychiatry 56: 537–547CrossRefGoogle ScholarPubMed
Gottesman, I. I. (1991). Schizophrenia Genesis: The Origins of Madness. New York: H Freeman
Gur, R. E., Cowell, P., Turetsky, B. I.et al. (1998). A follow-up magnetic resonance imaging study of schizophrenia. Relationship of neuroanatomical changes to clinical and neurobehavioral measures. Arch Gen Psychiatry 55: 145–152CrossRefGoogle ScholarPubMed
Harris, J. G., Young, D. A., Rojas, D. C.et al. (2002). Increased hippocampal volume in schizophrenics' parents with ancestral history of schizophrenia. Schizophr Res 55: 11–17CrossRefGoogle ScholarPubMed
Harrison, P. J. (1999). The neuropathology of schizophrenia: a critical review of the data and their interpretation. Brain 122: 593–624CrossRefGoogle ScholarPubMed
Hirayasu, Y., Shenton, M. E., Salisbury, D. F.et al. (1998). Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. Am J Psychiatry 155: 1384–1391CrossRefGoogle ScholarPubMed
Holzman, P. S., Kringlen, E., Matthysse, S.et al. (1988). A single dominant gene can account for eye tracking dysfunctions and schizophrenia in offspring of discordant twins. Arch Gen Psychiatry 45: 641–647CrossRefGoogle ScholarPubMed
Jones, P., Murray, R. M. (1991). The genetics of schizophrenia is the genetics of neurodevelopment. Br J Psychiatry 158: 615–623CrossRefGoogle ScholarPubMed
Keshavan, M. S., Montrose, D. M., Pierri, J. N.et al. (1997). Magnetic resonance imaging and spectroscopy in offspring at risk for schizophrenia: Preliminary studies. Prog Neuropsychopharmacol Biol Psychiatry 21: 1285–1295CrossRefGoogle ScholarPubMed
Keshavan, M. S., Dick, E., Mankowski, I.et al. (2002). Decreased left amygdala and hippocampal volumes in young offspring at risk for schizophrenia. Schizophr Res, 58: 173–183CrossRefGoogle ScholarPubMed
Kunugi, H., Hattori, M., Nanko, S.et al. (1999). Dinucleotide repeat polymorphism in the neurotrophin-3 gene and hippocampal volume in psychoses. Schizophr Res 37: 271–273CrossRefGoogle ScholarPubMed
Lawrie, S. M., Whalley, H., Kestelman, J. N.et al. (1999). Magnetic resonance imaging of brain in people at high risk of developing schizophrenia. Lancet 353: 30–33CrossRefGoogle ScholarPubMed
Lawrie, S. M., Whalley, H. C., Abukmeil, S. S.et al. (2001). Brain structure, genetic liability, and psychotic symptoms in subjects at high risk of developing schizophrenia. Biol Psychiatry 49: 811–823CrossRefGoogle ScholarPubMed
Leboyer, M., Bellivier, F., Nosten-Bertrand, M.et al. (1998). Psychiatric genetics: search for phenotypes. Trends Neurosci 21: 102–105CrossRefGoogle ScholarPubMed
Lewis, S. W. (1990). Computerised tomography in schizophrenia 15 years on. Br J Psychiatry 9(Suppl.): 16–24Google Scholar
Lieberman, J., Chakos, M., Wu, H.et al. (2001). Longitudinal study of brain morphology in first episode schizophrenia. Biol Psychiatry 49: 487–499CrossRefGoogle ScholarPubMed
McCarley, R. W., Wible, C. G., Frumin, M.et al. (1999). MRI anatomy of schizophrenia. Biol Psychiatry 45: 1099–1119CrossRefGoogle ScholarPubMed
McDonald, C., Grech, A., Toulopoulou, T.et al. (2002). Brain volumes in familial and non-familial schizophrenic probands and their unaffected relatives. Am J Med Genet 114: 616–625CrossRefGoogle ScholarPubMed
McGrath, J., Murray, R. (1995). Risk factors for schizophrenia: from conception to birth. In Schizophrenia, ed. S. Hirsch, D. R. Weinberger. Oxford: Blackwell Scientific, pp. 187–205
McNeil, T. F., Cantor-Graae, E., Weinberger, D. R. (2000). Relationship of obstetric complications and differences in size of brain structures in monozygotic twin pairs discordant for schizophrenia. Am J Psychiatry 157: 203–212CrossRefGoogle Scholar
Meisenzahl, E. M., Rujescu, D., Kirner, A.et al. (2001). Association of an interleukin-1beta genetic polymorphism with altered brain structure in patients with schizophrenia. Am J Psychiatry 158: 1316–1319CrossRefGoogle ScholarPubMed
Murray, R. M., Lewis, S. W., Reveley, A. M. (1985). Towards an aetiological classification of schizophrenia. Lancet : 1023–1026CrossRefGoogle Scholar
Narr, K. L., Cannon, T. D., Woods, R. P.et al. (2002). Genetic contributions to altered callosal morphology in schizophrenia. J Neurosci 22: 3720–3729CrossRefGoogle Scholar
Noga, J. T., Bartley, A. J., Jones, D. W.et al. (1996). Cortical gyral anatomy and gross brain dimensions in monozygotic twins discordant for schizophrenia. Schizophr Res 22: 27–40CrossRefGoogle Scholar
Nosarti, C., Al-Asady, M. H., Frangou, S.et al. (2002). Adolescents who were born very preterm have decreased brain volumes. Brain 125: 1616–1623CrossRefGoogle ScholarPubMed
O'Driscoll, G. A., Florencio, P. S., Gagnon, D.et al. (2001). Amygdala-hippocampal volume and verbal memory in first-degree relatives of schizophrenic patients. Psychiatry Res 107: 75–85CrossRefGoogle ScholarPubMed
Oppenheim, J. S., Skerry, J. E., Tramo, M. J.et al. (1989). Magnetic resonance imaging morphology of the corpus callosum in monozygotic twins. Ann Neurol 26: 100–104CrossRefGoogle ScholarPubMed
Pennington, B. F., Filipek, P. A., Lefly, D.et al. (2000). A twin MRI study of size variations in human brain. J Cogn Neurosci 12: 223–232CrossRefGoogle ScholarPubMed
Pfefferbaum, A., Sullivan, E. V., Swan, G. E.et al. (2000). Brain structure in men remains highly heritable in the seventh and eighth decades of life. Neurobiol Aging 21: 63–74CrossRefGoogle ScholarPubMed
Reveley, A. M., Reveley, M. A., Clifford, C. A.et al. (1982). Cerebral ventricular size in twins discordant for schizophrenia. Lancet : 540–541CrossRefGoogle Scholar
Reveley, A. M., Reveley, M. A., Chitkara, B.et al. (1984a). The genetic basis of cerebral ventricular volume. Psychiatr Res 13: 261–266CrossRefGoogle Scholar
Reveley, A. M., Reveley, M. A., Murray, R. M. (1984b). Cerebral ventricular enlargement in non-genetic schizophrenia: a controlled twin study. Br J Psychiatry 144: 89–93CrossRefGoogle Scholar
Rujescu, D., Meisenzahl, E. M., Giegling, I.et al. (2002). Methionine homozygosity at codon 129 in the prion protein is associated with white matter reduction and enlargement of CSF compartments in healthy volunteers and schizophrenic patients. Neuroimage 15: 200–206CrossRefGoogle ScholarPubMed
Rutherford, M. C., Pennock, J. M., Schwieso, J. E.et al. (1995). Hypoxic ischaemic encephalopathy: early magnetic resonance findings and their evolution. Neuropediatrics 26: 183–191CrossRefGoogle ScholarPubMed
Schreiber, H., Baur-Seack, K., Kornhuber, H. H.et al. (1999). Brain morphology in adolescents at genetic risk for schizophrenia assessed by qualitative and quantitative magnetic resonance imaging. Schizophr Res 40: 81–84CrossRefGoogle ScholarPubMed
Schulze, K., McDonald, C., Frangou, S.et al. (2003). Hippocampal volume in familial and nonfamilial schizophrenic probands and their unaffected relatives. Biol Psychiatry 53: 562–570CrossRefGoogle ScholarPubMed
Seidman, L. J., Faraone, S. V., Goldstein, J. M.et al. (1999). Thalamic and amygdala–hippocampal volume reductions in first-degree relatives of patients with schizophrenia: an MRI-based morphometric analysis. Biol Psychiatry 46: 941–954CrossRefGoogle ScholarPubMed
Seidman, L. J., Faraone, S. V., Goldstein, J. M.et al. (2002). Left hippocampal volume as a vulnerability indicator for schizophrenia: a magnetic resonance imaging morphometric study of nonpsychotic first-degree relatives. Arch Gen Psychiatry 59: 839–849CrossRefGoogle ScholarPubMed
Sharma, T., Lancaster, E., Lee, D.et al. (1998). Brain changes in schizophrenia – volumetric MRI study of families multiply affected with schizophrenia: The Maudsley Family Study 5. Br J Psychiatry 173: 132–138CrossRefGoogle ScholarPubMed
Sharma, T., Lancaster, E., Sigmundsson, T.et al. (1999). Lack of normal pattern of cerebral asymmetry in familial schizophrenic patients and their relatives: the Maudsley Family Study. Schizophr Res 40: 111–120CrossRefGoogle ScholarPubMed
Shihabuddin, L., Silverman, J. M., Buchsbaum, M. S.et al. (1996). Ventricular enlargement associated with linkage marker for schizophrenia-related disorders in one pedigree. Mol Psychiatry 1: 215–222Google ScholarPubMed
Siegel, C., Waldo, M., Mizner, G.et al. (1984). Deficits in sensory gating in schizophrenic patients and their relatives. Evidence obtained with auditory evoked responses. Arch Gen Psychiatry 41: 607–612CrossRefGoogle ScholarPubMed
Sigmundsson, T., Suckling, J., Maier, M.et al. (2001). Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiatry 158: 234–243CrossRefGoogle ScholarPubMed
Silverman, J. M., Smith, C. J., Guo, S. L.et al. (1998). Lateral ventricular enlargement in schizophrenic probands and their siblings with schizophrenia-related disorders. Biol Psychiatry 43: 97–106CrossRefGoogle ScholarPubMed
Staal, W. G., Hulshoff, H. E., Schnack, H.et al. (1998). Partial volume decrease of the thalamus in relatives of patients with schizophrenia. Am J Psychiatry 155: 1784–1786CrossRefGoogle ScholarPubMed
Staal, W. G., Pol, H. E. H., Schnack, H. G.et al. (2000). Structural brain abnormalities in patients with schizophrenia and their healthy siblings. Am J Psychiatry 157: 416–421CrossRefGoogle ScholarPubMed
Steel, R. M., Whalley, H. C., Miller, P.et al. (2002). Structural MRI of the brain in presumed carriers of genes for schizophrenia, their affected and unaffected siblings. J Neurol Neurosurg Psychiatry 72: 455–458Google ScholarPubMed
Stefanis, N., Frangou, S., Yakeley, J.et al. (1999). Hippocampal volume reduction in schizophrenia: effects of genetic risk and pregnancy and birth complications. Biol Psychiatry 46: 697–702CrossRefGoogle ScholarPubMed
Stefansson, H., Sigurdsson, E., Steinthorsdottir, V.et al. (2002). Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71: 877–892CrossRefGoogle Scholar
Steinmetz, H., Herzog, A., Huang, Y.et al. (1994). Discordant brain-surface anatomy in monozygotic twins. N Engl J Med 331: 951–952CrossRefGoogle ScholarPubMed
Steinmetz, H., Herzog, A., Schlaug, G.et al. (1995). Brain asymmetry in monozygotic twins. Cereb Cortex 5: 296–300CrossRefGoogle ScholarPubMed
Straub, R. E., Jiang, Y., MacLean, C. J.et al. (2002). Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71: 337–348CrossRefGoogle ScholarPubMed
Suddath, R. L., Christison, G. W., Torrey, E. F.et al. (1990). Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 322: 789–794CrossRefGoogle Scholar
Sullivan, E. V., Pfefferbaum, A., Swan, G. E.et al. (2001). Heritability of hippocampal size in elderly twin men: equivalent influence from genes and environment. Hippocampus 11: 754–762CrossRefGoogle ScholarPubMed
Suzuki, M., Nohara, S., Hagino, H.et al. (2002). Regional changes in brain gray and white matter in patients with schizophrenia demonstrated with voxel-based analysis of MRI. Schizophr Res 55: 41–54CrossRefGoogle ScholarPubMed
Thompson, P. M., Cannon, T. D., Narr, K. L.et al. (2001). Genetic influences on brain structure. Nat Neurosci 4: 1253–1258CrossRefGoogle ScholarPubMed
Toulopoulou, T., Morris, R. G., Rabe-Hesketh, S.et al. (2003). Selectivity of verbal memory deficit in schizophrenic patients and their relatives. Am J Med Genet 116: 1–7CrossRefGoogle Scholar
Tramo, M. J., Loftus, W. C., Stukel, T. A.et al. (1998). Brain size, head size, and intelligence quotient in monozygotic twins. Neurology 50: 1246–1252CrossRefGoogle ScholarPubMed
Erp, T. G., Saleh, P. A., Rosso, I. M.et al. (2002). Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers. Am J Psychiatry 159: 1514–1520CrossRefGoogle ScholarPubMed
Vogeley, K., Tepest, R., Pfeiffer, U.et al. (2001). Right frontal hypergyria differentiation in affected and unaffected siblings from families multiply affected with schizophrenia: a morphometric MRI study. Am J Psychiatry 158: 494–496CrossRefGoogle ScholarPubMed
Wassink, T. H., Nelson, J. J., Crowe, R. R.et al. (1999). Heritability of BDNF alleles and their effect on brain morphology in schizophrenia. Am J Med Genet 88: 724–7283.0.CO;2-7>CrossRefGoogle Scholar
Wassink, T. H., Crowe, R. R., Andreasen, N. C. (2000). Tumor necrosis factor receptor-II: heritability and effect on brain morphology in schizophrenia. Mol Psychiatry 5: 678–682CrossRefGoogle Scholar
Weinberger, D. R., McClure, R. K. (2002). Neurotoxicity, neuroplasticity, and magnetic resonance imaging morphometry: what is happening in the schizophrenic brain?Arch Gen Psychiatry 59: 553–558CrossRefGoogle ScholarPubMed
Weinberger, D. R., DeLisi, L. E., Neophytides, A. N.et al. (1981). Familial aspects of CT scan abnormalities in chronic schizophrenic patients. Psychiatry Res 4: 65–71CrossRefGoogle ScholarPubMed
White, T., Andreasen, N. C., Nopoulos, P. (2002). Brain volumes and surface morphology in monozygotic twins. Cereb Cortex 12: 486–493CrossRefGoogle ScholarPubMed
Wickham, H.Murray, R. M. (1997). Can biological markers identify endophenotypes predisposing to schizophrenia?Int Rev Psychiatry 9: 355–364CrossRefGoogle Scholar
Wilke, M., Kaufmann, C., Grabner, A.et al. (2001). Gray matter-changes and correlates of disease severity in schizophrenia: a statistical parametric mapping study. Neuroimage 13: 814–824CrossRefGoogle ScholarPubMed
Wright, I. C., Ellison, Z. R., Sharma, T.et al. (1999). Mapping of grey matter changes in schizophrenia. Schizophr Res 35: 1–14CrossRefGoogle Scholar
Wright, I. C., Rabe-Hesketh, S., Woodruff, P. W. R.et al. (2000). Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157: 16–25CrossRefGoogle Scholar
Wright, I. C., Sham, P., Murray, R. M.et al. (2002). Genetic contributions to regional variability in human brain structure: methods and preliminary results. Neuroimage 17: 256–271CrossRefGoogle ScholarPubMed
Zorrilla, L. T., Cannon, T. D., Kronenberg, S.et al. (1997). Structural brain abnormalities in schizophrenia: a family study. Biol Psychiatry 42: 1080–1086CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×