Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-22T18:16:21.308Z Has data issue: false hasContentIssue false

3 - Cognitive development: functional magnetic resonance imaging studies

Published online by Cambridge University Press:  04 August 2010

Beatriz Luna
Affiliation:
Western Psychiatric Institute and Clinic, Pittsburgh, USA
John A. Sweeney
Affiliation:
The Psychiatric Institute, University of Illinois, Chicago, USA
Matcheri S. Keshavan
Affiliation:
University of Pittsburgh
James L. Kennedy
Affiliation:
Clarke Institute of Psychiatry, Toronto
Robin M. Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

Pediatric neuroimaging techniques can probe the integrity of brain function and normal brain maturational processes and provide a window into possible abnormalities in neurocognitive development. This chapter describes the initial investigations and discusses what has been found regarding the changes in brain function that support the healthy maturation of cognitive control of behavior. Basic cognitive processes, which are evident in infancy and show dramatic changes throughout childhood, continue to develop throughout adolescence. Two higher-order cognitive abilities crucial to the voluntary control of behavior are working memory and voluntary suppression of context-inappropriate responses. Most pediatric functional magnetic resonance imaging (fMRI) studies are performed to assist in the localization of language areas to guide excision lesions to relieve epileptic seizures. Pediatric fMRI studies have provided insight into the possible factors underlying the etiology of developmental abnormalities such as attention-deficit hyperactivity disorder (ADHD) and dyslexia.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adleman, N. E., Menon, V., Blasey, C. M.et al. (2002). A developmental fMRI study of the Stroop color–word task. NeuroImage 16: 61–75CrossRefGoogle ScholarPubMed
Agartz, I., Andersson, J. L. R., Skare, S. (2001). Abnormal brain white matter in schizophrenia: a diffusion tensor imaging study. Neuroreport 12: 2251–2254CrossRefGoogle ScholarPubMed
Armstrong, E., Schleicher, A., Omran, H., Curtis, M., Zilles, K. (1995). The ontogeny of human gyrification. Cereb Cortex 5: 56–63CrossRefGoogle ScholarPubMed
Baddeley, A. D. (1983). Working memory. Philos Trans R Soc Lond B 302: 311–324CrossRefGoogle Scholar
Basser, P. J., Mattiello, J., Lebihan, D. (1994). Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson 103: 247–254CrossRefGoogle ScholarPubMed
Benson, R. R., Logan, W. J., Cosgrove, G. R.et al. (1996). Functional MRI localization of language in a 9-year-old child. Can J Neurol Sci 23: 213–219CrossRefGoogle Scholar
Bjorklund, D. F., Harnishfeger, K. K. (1990). The resources construct in cognitive development: diverse sources of evidence and a theory of inefficient inhibition. Dev Rev 10: 48–71CrossRefGoogle Scholar
Bjorklund, D. F., Harnishfeger, K. K. (1995). The evolution of inhibition mechanisms and their role in human cognition and behavior. In Interference and Inhibition in Cognition, ed. F. N. Dempster, C. J. Brainerd. San Diego, CA: Academic Press, pp. 141–173CrossRef
Bookheimer, S. Y. (2000). Methodological issues in pediatric neuroimaging. Mental Retard Dev Disabil Res Rev 6: 161–1653.0.CO;2-W>CrossRefGoogle ScholarPubMed
Booth, J. R., MacWhinney, B., Thulborn, K. R.et al. (1999). Functional organization of activation patterns in children: whole brain fMRI imaging during three different cognitive tasks. Prog Neuropsychopharmacol Biol Psychiatry 23: 669–682CrossRefGoogle ScholarPubMed
Bunge, S. A., Dudukovic, N. M., Thomason, M. E, Vaidya, C. J., Gabrieli, J. D. E. (2001). Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron 33: 301–311CrossRefGoogle Scholar
Case, R. (1992). The role of the frontal lobes in the regulation of cognitive development. Brain Cogn 20: 51–73CrossRefGoogle ScholarPubMed
Casey, B. J., Cohen, J. D., Jezzard, P.et al. (1995). Activation of prefrontal cortex in children during a nonspatial working memory task with functional MRI. NeuroImage 2: 221–229CrossRefGoogle ScholarPubMed
Casey, B. J., Trainor, R. J., Orendi, J. L.et al. (1997). A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. J Cogn Neurosci 9: 835–847CrossRefGoogle ScholarPubMed
Caviness, V. S., Kennedy, D. N., Bates, J. F., Makris, N. (1996). The developing human brain: a morphometric profile. In Developmental Neuroimaging: Mapping the Development of Brain and Behavior, ed. R. W. Thatcher, G. Reid Lyon, J. Rumsey, N. A. Krasnegor. New York: Academic Press, pp. 3–14
Changeux, J. P., Danchin, A. (1976). Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature 264: 705–712CrossRefGoogle Scholar
Chugani, H. T. (1998). A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med 27: 184–188CrossRefGoogle ScholarPubMed
Cohen, J. D., Barch, D. M., Carter, C., Servan-Schreiber, D. (1999). Context-processing deficits in schizophrenia: converging evidence from three theoretically motivated cognitive tasks. J Abnorm Psychol 108: 120–133CrossRefGoogle ScholarPubMed
Conturo, T. E., McKinstry, R. C., Akbudak, E., Robinson, B. H. (1996). Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results. Magn Reson Med 35: 399–412CrossRefGoogle ScholarPubMed
Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162–173CrossRefGoogle ScholarPubMed
Diamond, A., Goldman-Rakic, P. S. (1989). Comparison of human infants and rhesus monkeys on Piaget's AB task: evidence for dependence on dorsolateral prefrontal cortex. Exp Brain Res 74: 24–40CrossRefGoogle ScholarPubMed
Eddy, W. F., Fitzgerald, M., Genovese, C. R., Mockus, A., Noll, D. C. (1996). Functional image analysis software: computational olio. In Proceedings in Computational Statistics, ed. A. Prat. Heidelberg: Physica-Verlag, pp. 39–49
Eden, G. F., Meter, J. W., Rumsey, J. M.et al. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. [See comments]Nature 382: 66–69CrossRefGoogle Scholar
Everling, S., Munoz, D. P. (2000). Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. J Neurosci 20: 387–400CrossRefGoogle ScholarPubMed
Everling, S., Dorris, M. C., Klein, R. M., Munoz, D. P. (1999). Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. J Neurosci 19: 2740–2754CrossRefGoogle ScholarPubMed
Fischer, B., Biscaldi, M, Gezeck, S. (1997). On the development of voluntary and reflexive components in human saccade generation. Brain Res 754: 285–297CrossRefGoogle ScholarPubMed
Foong, J., Maier, M., Clark, C. A.et al. (2000). Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study. J Neurol Neurosurg Psychiatry 68: 242–244CrossRefGoogle ScholarPubMed
Frank, L. R., Buxton, R. B., Wong, E. C. (2001). Estimation of respiration-induced noise fluctuations from undersampled multislice fMRI data. Magn Reson Med 45: 635–644CrossRefGoogle ScholarPubMed
Fry, A. F., Hale, S. (1996). Processing speed, working memory, and fluid intelligence: evidence for a developmental cascade. Psychol Sci 7: 237–241CrossRefGoogle Scholar
Fuster, J. M. (1997). The Prefrontal Cortex. New York: Raven Press
Gaillard, W. D., Hertz-Pannier, L., Mott, S. H.et al. (2000). Functional anatomy of cognitive development: fMRI of verbal fluency in children and adults. Neurology 54: 180–185CrossRefGoogle ScholarPubMed
Gaillard, W. D., Pugliese, M., Grandin, C. B.et al. (2001a). Cortical localization of reading in normal children: an fMRI language study. Neurology 57: 47–54CrossRefGoogle Scholar
Gaillard, W. D., Grandin, C. B., Xu, B. (2001b). Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation. NeuroImage 13: 239–249CrossRefGoogle Scholar
Georgiewa, P., Rzanny, R., Gaser, C.et al. (2002). Phonological processing in dyslexic children: a study combining functional imaging and event related potentials. Neurosci Lett 318: 5–8CrossRefGoogle ScholarPubMed
Giedd, J. N., Snell, J. W., Lange, N.et al. (1996). Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 6: 551–560CrossRefGoogle ScholarPubMed
Giedd, J. N., Blumenthal, J., Jeffries, N. O.et al. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2: 861–863CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1988). Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci 11: 137–156CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1990). Parallel systems in the cerebral cortex: the topography of cognition. In Natural and Artificial Parallel Computation, ed. M. A. Arbib, J. A. Robinson. New York: MIT Press, pp. 155–176
Goldman-Rakic, P. S. (1992). Working memory and the mind. Sci Am 267: 111–117CrossRefGoogle ScholarPubMed
Gottesman, I. I., Shields, J., Hanson, D. (1982). Schizophrenia: The Epigenetic Puzzle. New York: Cambridge University Press
Hertz-Pannier, L., Gaillard, W. D., Mott, S. H.et al. (1997). Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology 48: 1003–1012CrossRefGoogle ScholarPubMed
Hertz-Pannier, L., Chiron, C., Vera, P., Morteele, P. F.et al. (2001). Functional imaging in the work-up of childhood epilepsy. Childs Nerv Syst 17: 223–228CrossRefGoogle ScholarPubMed
Holland, S. K., Plante, E., Byars, A. W.et al. (2001). Normal fMRI brain activation patterns in children performing a verb generation task. NeuroImage 14: 837–843CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia 28: 517–527CrossRefGoogle ScholarPubMed
Hyde, T. M., Ziegler, J. C., Weinberger, D. R. (1992). Psychiatric disturbances in metachromatic leukodystrophy. Arch Neurol 49: 401–406CrossRefGoogle ScholarPubMed
Jernigan, T. L., Trauner, D. A., Hesselink, J. R., Tallal, P. A. (1991). Maturation of human cerebrum observed in vivo during adolescence. Brain 114: 2037–2049CrossRefGoogle ScholarPubMed
Kemna, L. J., Posse, S. (2001). Effect of respiratory CO2 changes on the temporal dynamics of the hemodynamic response in functional MR imaging. NeuroImage 14: 642–649CrossRefGoogle Scholar
Keshavan, M. S., Kapur, S., Pettegrew, J. W. (1991). Magnetic resonance spectroscopy in psychiatry: potential, pitfalls, and promise. Am J Psychiatry 148: 976–985Google ScholarPubMed
Keshavan, M. S., Anderson, S., Pettegrew, J. W. (1994). Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J Psychiatr Res 28: 239–265CrossRefGoogle ScholarPubMed
Keshavan, M., Diwadkar, V., Spencer, S. M.et al. (2002). A preliminary functional magnetic resonance imaging study in offspring of schizophrenic parents. Prog Neuropsychopharmacol Biol Psychiatry 26: 1143–1149CrossRefGoogle ScholarPubMed
Kim, S. G., Ugurbil, K., Strick, P. L. (1994). Activation of a cerebellar output nucleus during cognitive processing. Science 265: 949–951CrossRefGoogle ScholarPubMed
Klein, C., Heinks, T., Andresen, B., Berg, P., Moritz, S. (2000). Impaired modulation of the saccadic contingent negative variation preceding antisaccades in schizophrenia. Biol Psychiatry 47: 978–990CrossRefGoogle Scholar
Klingberg, T., Vaidya, C. J., Gabrieli, J. D. E., Moseley, M. E., Hedehus, M. (1999). Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. Neuroreport 10: 2817–2821CrossRefGoogle ScholarPubMed
Klingberg, T., Hedehus, M., Temple, E.et al. (2000). Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25: 493–500CrossRefGoogle ScholarPubMed
Klingberg, T., Forssberg, H., Westerberg, H. (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. J Cogn Neurosci 14: 1–10CrossRefGoogle ScholarPubMed
Kwon, H., Reiss, R. L., Menon, V. (2002). Neural basis of protracted developmental changes in visuo-spatial working memory. Proc Natl Acad SciUSA 99: 13336–13341CrossRefGoogle ScholarPubMed
Bihan, D., Mangin, J. F., Poupon, C.et al. (2001). Diffusion tensor imaging: concepts and applications. J Magn Reson 13: 534–546CrossRefGoogle ScholarPubMed
Levin, H. S., Culhane, K. A., Hartmann, J., Evankovich, K., Mattson, A. J. (1991). Developmental changes in performance on tests of purported frontal lobe functioning. Dev Neuropsychol 7: 377–395CrossRefGoogle Scholar
Lim, K. O., Hedehus, M., Moseley, M.et al. (1999). Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch Gen Psychiatry 56: 367–374CrossRefGoogle ScholarPubMed
Logan, W. J. (1999). Functional magnetic resonance imaging in children. Semin Pediatr Neurol 6: 78–86CrossRefGoogle ScholarPubMed
Luciana, M., Nelson, C. A. (1998). The functional emergence of prefrontally-guided working memory systems in four- to eight-year-old children. Neuropsychologia 36: 273–293CrossRefGoogle ScholarPubMed
Luna, B., Sweeney, J. A. (1999). Cognitive functional magnetic resonance imaging at very-high-field: eye movement control. Top Magn Reson Imaging 10: 3–15CrossRefGoogle ScholarPubMed
Luna, B., Sweeney, J. A. (2001). Studies of brain and cognitive maturation through childhood and adolescence: a strategy for testing neurodevelopmental hypotheses. Schizophr Bull 27: 443–455CrossRefGoogle ScholarPubMed
Luna, B., Thulborn, K. R., Munoz, D. P.et al. (2001). Maturation of widely distributed brain function subserves cognitive development. NeuroImage 13: 786–793CrossRefGoogle ScholarPubMed
Luna, B., Minshew, N. J., Garver, K. E.et al. (2002). Neocortical system abnormalities in autism: an fMRI study of spatial working memory. Neurology 59: 834–840CrossRefGoogle ScholarPubMed
McDowell, J. E., Clementz, B. A. (2001). Behavioral and brain imaging studies of saccadic performance in schizophrenia. Biol Psychol 57: 5–22CrossRefGoogle Scholar
Merriam, E. P., Thase, M. E., Haas, G. L., Keshavan, M. S., Sweeney, J. A. (1999). Prefrontal cortical dysfunction in depression determined by Wisconsin Card Sorting Test performance. Am J Psychiatry 156: 780–782Google ScholarPubMed
Munoz, D. P., Broughton, J. R., Goldring, J. E., Armstrong, I. T. (1998). Age-related performance of human subjects on saccadic eye movement tasks. Exp Brain Res 217: 1–10Google Scholar
Nelson, C. A., Monk, C. S., Lin, J.et al. (2000). Functional neuroanatomy of spatial working memory in children. Dev Psychol 36: 109–116CrossRefGoogle ScholarPubMed
Park, S., Holzman, P. S. (1992). Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49: 975–982CrossRefGoogle ScholarPubMed
Peled, S., Yeshurun, Y. (2001). Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn Reson Med 42: 29–353.0.CO;2-Z>CrossRefGoogle Scholar
Pettegrew, J. W., Keshavan, M. S., Minshew, N. J. (1993). 31P nuclear magnetic resonance spectroscopy: neurodevelopment and schizophrenia. Schizophr Bull 19: 35–53CrossRefGoogle Scholar
Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V.et al. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 51: 874–887CrossRefGoogle ScholarPubMed
Poldrack, R. A., Pare-Blagoev, E. J., Grant, P. E. (2002). Pediatric functional magnetic resonance imaging: progress and challenges. Top Magn Reson Imaging 13: 61–70CrossRefGoogle ScholarPubMed
Raj, D., Anderson, A. W., Gore, J. C. (2001). Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes. Phys Med Biol 46: 3331–3340CrossRefGoogle ScholarPubMed
Rakic, P., Bourgeois, J. P., Eckenhoff, M. F., Zecevic, N, Goldman-Rakic, P. S. (1986). Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232: 232–235CrossRefGoogle ScholarPubMed
Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., Denckla, M. B. (1996). Brain development, gender, and IQ in children: a volumetric imaging study. Brain 119: 1763–1774CrossRefGoogle ScholarPubMed
Ridderinkhof, K. R., Molen, M. W. (1997). Mental resources, processing speed, and inhibitory control: a developmental perspective. Biol Psychol 45: 241–261CrossRefGoogle ScholarPubMed
Rosenberg, D. R., Sweeney, J. A., Gillen, J.et al. (1997). Magnetic resonance imaging of children without sedation: preparation with simulation. J Am Acad Child Adolesc Psychiatry 36: 853–859CrossRefGoogle ScholarPubMed
Rubia, K., Overmeyer, S, Taylor, E.et al. (2000). Functional frontalisation with age: mapping neurodevelopmental trajectories with fMRI. Neurosci Biobehav Rev 24: 13–19CrossRefGoogle ScholarPubMed
Schlaggar, B. L., Brown, T. T., Lugar, H. M.et al. (2002). Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science 296: 1476–1479CrossRefGoogle ScholarPubMed
Sereno, A. B., Holzman, P. S. (1995). Antisaccades and smooth pursuit eye movements in schizophrenia. Biol Psychiatry 37: 394–401CrossRefGoogle Scholar
Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R.et al. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol Psychiatry 52: 101–110CrossRefGoogle ScholarPubMed
Slifer, K. J. (1996). A video system to help children cooperate with motion control for radiation treatment without sedation. J Pediatr Oncol Nurs 13: 91–97Google ScholarPubMed
Stanley, J. A., Williamson, P. C., Drost, D. J.et al. (1996). An in vivo proton magnetic resonance spectroscopy study of schizophrenia patients. Schizophr Bull 22: 597–609CrossRefGoogle Scholar
Stapleton, S. R., Kiriakopoulos, E., Mikulis, D.et al. (1997). Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg 26: 68–82CrossRefGoogle ScholarPubMed
Szameitat, A. J., Schubert, T., Mueller, K., Cramon, D. Y. (2002). Localization of executive functions in dual-task performance with fMRI. J Cogn Neurosci 14: 1184–1199CrossRefGoogle ScholarPubMed
Talairach, J., Tournoux, P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain. New York: Thieme Medical
Temple, E., Poldrack, R. A., Salidis, J.et al. (2001). Disrupted neural responses to phonological and orthographic processing in dyslexic children: an fMRI study. Neuroreport 12: 299–307CrossRefGoogle Scholar
Thatcher, R. W. (1991). Maturation of the human frontal lobes: physiological evidence for staging. Dev Neuropsychol 7: 397–419CrossRefGoogle Scholar
Thomas, K. M., King, S. W., Franzen, P. L.et al. (1999). A developmental functional MRI study of spatial working memory. NeuroImage 10: 327–338CrossRefGoogle ScholarPubMed
Thulborn, K. R., Shen, G. X. (1999). An integrated head immobilization system and high-performance RF coil for fMRI of visual paradigms at 1.5 T. J Magn Reson 139: 26–34CrossRefGoogle ScholarPubMed
Vaidya, C. J., Austin, G., Kirkorian, G.et al. (1998). Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci USA 95: 14494–14499CrossRefGoogle ScholarPubMed
Waddington, J. L., Torrey, E. F., Crow, T. J., Hirsch, S. R. (1991). Schizophrenia, neurodevelopment and disease. Arch Gen Psychiatry 48: 271–273CrossRefGoogle ScholarPubMed
Weinberger, D. R., Lipska, B. K. (1995). Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophr Res 16: 87–110CrossRefGoogle ScholarPubMed
Weinberger, D. R., Berman, K. F., Zec, R. F. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia: I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 43: 114–124CrossRefGoogle ScholarPubMed
Welsh, M. C., Pennington, B. F., Groisser, D. B. (1991). A normative–developmental study of executive function: a window on prefrontal function in children. Dev Neuropsychol 7: 131–149CrossRefGoogle Scholar
Wilson, S. P., Kipp, K. (1998). The development of efficient inhibition: evidence from directed-forgetting tasks. Dev Rev 18: 86–123CrossRefGoogle Scholar
Woods, R. P., Mazziotta, J. C., Cherry, S. R. (1993). Automated image registration. In Quantification of Brain Function: Tracer Kinetics and Image Analysis in Brain PET, ed. K. Uemura, N. A. Lassen, T. Jones, et al. Amsterdam: Elsevier Science, pp. 391–400
Yakovlev P. I., Lecours A. R. (1967). Regional Development of the Brain in Early Life. Oxford: Blackwell Scientific, pp. 3–70

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×